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Abstract The issue of the pseudoconvexity of a function on a closed set is
addressed. It is proved that if a function has no critical points on the bound-
ary of a convex set, then the pseudoconvexity on the interior guarantees the
pseudoconvexity on the closure of the set. This results holds even when the
boundary of the set contains line segments and it is used to characterize the
pseudoconvexity, on the non-negative orthant, of a wide class of generalized
fractional functions, namely the sum between a linear one and a ratio which
has an affine function as numerator and, as denominator, the p-th power of an
affine function. The relationship between quasiconvexity and pseudoconvexity
is also investigated.
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1 Introduction

Among different classes of generalized convex functions, pseudoconvexity plays
a key role in Optimization theory and in many applied sciences such as Eco-
nomics and Management Science. Pseudoconvexity owes its great relevance to
the fact that it maintains some nice optimization properties of convex func-
tions, such as critical and local minimum points are global minimum. Fur-
thermore, if the objective function of a bicriteria problem is component-wise
pseudoconvex, then the efficient frontier is connected.
Unlike their good properties, it is not easy to establish whether a function
is pseudoconvex or not. Except for some particular classes of functions (see
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for all the contributions of [2] and [7] together with the classical book [1] and
references therein), pseudoconvexity characterizations are given for functions
defined on an open and convex set; unfortunately these results can not be in
general extended to the closure of the set itself. In this paper we will prove
that if a function is pseudoconvex on the interior of a convex set and it has no
critical points on the boundary, then it is pseudoconvex on the closure of the
set. The stated result holds irrespective of the fact that the boundary contains
line segments or not and it will be used to characterize the pseudoconvexity
of a wide class of generalized fractional functions on the non-negative orthant.
More precisely we will consider the sum between a linear function and a ratio
which has an affine function as numerator and, as denominator, the p-th power
(p > 0) of a positive affine one. Since the case p = 1 has been recently ana-
lyzed [5,9], we will focus our attention on p > 0, p 6= 1. The performed analysis
will be based on the second order characterization of pseudoconvexity given
in [8] and it will give necessary and sufficient conditions for pseudoconvexity
which are very easy to be verified. The stated conditions can also be used to
construct several subclasses of pseudoconvex generalized fractional functions.
Furthermore, we will analyze the relationship between the quasiconvexity and
the pseudoconvexity of the proposed class of functions.

2 Pseudoconvexity on a closed convex set

For the sake of completeness we first recall the definition of pseudoconvexity
and several useful properties (see for instance [3]).

Definition 1 Let f be a differentiable function defined on an open set A ⊆ Rn

and let S ⊆ A be a convex set.
f is said to be pseudoconvex on S if the following implication holds:

x1, x2 ∈ S, f(x1) > f(x2) ⇒ ∇f(x1)T (x2 − x1) < 0 (1)

Theorem 1 Let f be a differentiable function defined on an open set A ⊆ Rn

and let S ⊆ A be a convex set.
i) A function f is pseudoconvex on S if and only if the restriction of f on each
line segment contained in S is pseudoconvex.
ii) Let ϕ be a restriction of f on a line segment I ⊂ S.
ϕ is pseudoconvex on I if and only if for every t0 ∈ I such that ϕ′(t0) = 0, t0
is a local minimum point of ϕ.

It is well known that the pseudoconvexity of a function on the interior of a
closed convex set X does not in general guarantee the pseudoconvexity on the
whole set (see for instance [3]). We are going to prove that if there are no
critical points on the boundary of X (denoted by FrX), the pseudoconvexity
on the interior of X implies the pseudoconvexity of the function on the whole
set.
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Theorem 2 Let f be a differentiable function on an open set A ⊆ Rn and let
X ⊂ A be a closed convex set, with intX 6= ∅.
If f is pseudoconvex on intX and ∇f(x) 6= 0 for every x ∈ FrX, then f is
pseudoconvex on X.

Proof We will prove that f is pseudoconvex on every line segment contained
in X.
Let x1, x2 ∈ X; with respect to the line segment [x1, x2], we get either (x1, x2) ⊂
intX, or [x1, x2] ⊂ FrX. Without any loss of generality, we assume, that
f(x1) > f(x2).

In the case (x1, x2) ⊂ intX, we prove that∇f(x1)T (x2−x1) < 0. If x1, x2 ∈
intX, then the result follows from the definition of pseudoconvexity on intX;
if otherwise, the continuity of f implies the existence of a point y ∈ (x1, x2)
such that f(x1) > f(y). If x1 ∈ intX, from the pseudoconvexity on intX, it
is ∇f(x1)T (y − x1) < 0 and hence ∇f(x1)T (x2 − x1) < 0. Suppose now that
x1 ∈ FrX; the assumptions imply ∇f(x1) 6= 0. If ∇f(x1)T (y − x1) > 0, then
d = y − x1 is a local increasing direction; since f(x1) > f(y), the restriction
f(x1 + td), t ∈ [0, 1], has a maximum point belonging to the relative interior
of the line segment (x1, y) and this contradicts the pseudoconvexity of the
restriction of f on (x1, y). If ∇f(x1)T (y − x1) = 0, take z = y + ε∇f(x1). For
a suitable ε > 0, we have: z ∈ intX, f(x1) > f(z), and ∇f(x1)T (z − x1) =
ε‖∇f(x1)‖2 > 0. Once again, f(x1 + td1), d1 = z − x1, t ∈ [0, 1], has a
maximum point which belongs to intX and this can not be true. Consequently
∇f(x1)T (y − x1) < 0 and hence ∇f(x1)T (x2 − x1) < 0.

Consider now the case [x1, x2] ⊂ FrX and let ϕ(t) be the restriction of
f along the line segment [x1, x2] with ϕ(1) = x1 and ϕ(0) = x2. Taking into
account Theorem 1, we are going to prove that if there exists t̄ ∈ [0, 1] such
that ϕ′(t̄) = 0, then t̄ is a minimum for ϕ(t). If x2 is the only critical point of
ϕ(t), that is x2 = t̄, recalling that ϕ(1) > ϕ(0), x2 is a minimum point.
Suppose now that there exists t̄ ∈ (0, 1] such that ϕ′(t̄) = 0. Let x̄ = t̄x1 +
(1 − t̄)x2 and take a point y ∈ intX such that ∇f(x̄)T (y − x̄) 6= 0; con-
sider the plane containing the points x̄, x2, y, that is Λ = {x ∈ Rn : x =
x̄+α(x̄−x2)+β(y− x̄), α, β ∈ R}. Obviously the line r passing through x1, x2

is contained in Λ. Setting Λ̄ = Λ ∩X and r̄ = r ∩ Λ̄, we get r̄ ⊂ FrΛ̄.
Let ψ(α, β) be the restriction of f on Λ̄; observe that there exists a suit-
able interval I such that ∀α ∈ I ψ(α, 0) coincides with ϕ(t) and the point

t̄ corresponds to α = 0, so that
∂ψ

∂α
(0, 0) = 0 and

∂ψ

∂β
(0, 0) 6= 0. Since ψ is

pseudoconvex on the relative interior of Λ̄, it is quasiconvex on Λ̄ and hence
the level set L = {(α, β) : ψ(α, β) ≤ ψ(0, 0)} is convex (see for instance [3]).
Define L∗ = {(α, β) : ψ(α, β) = ψ(0, 0)}; if L \ L∗ = ∅, then (0, 0) is a
global minimum point for ψ and, in particular, t̄ is a minimum point for

ϕ. If L \ L∗ 6= ∅, (0, 0) is a boundary point for L and since
∂ψ

∂α
(0, 0) = 0

and
∂ψ

∂β
(0, 0) 6= 0, the line s of equation β = 0 is a support line for L,

so that s ∩ intL = ∅. Consequently, for any point (α, 0), with α ∈ I it is
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ψ(α, 0) ≥ ψ(0, 0). It follows that (0, 0) is a minimum point for the restriction
of ψ along β = 0, so that t̄ is a minimum point for ϕ and the proof is complete.

In the next section, Theorem 2 will be used to characterize the pseudoconvexity
of a general class of fractional functions on the non-negative orthant of Rn.

3 Pseudoconvexity for a wide class of generalized fractional
functions

Consider the following class of generalized fractional functions

f(x) = aTx+
cTx+ c0

(dTx+ d0)
p , x ∈ D = {x ∈ Rn : dTx+ d0 > 0} (2)

Throughout the paper we will assume d ∈ intRn
+, d0 > 0, p > 0 and p 6= 1

(For the case p = 1 the interested reader can see [5,9]).
The gradient, the Hessian matrix H(x) and the quadratic form associated with
H(x) are the following:

∇f(x) = a+
c
(
dT x+ d0

)
− p

(
cT x+ c0

)
d

(dT x+ d0)
p+1

(3)

H(x) =
p

(dT x+ d0)
p+2

[(
dT x+ d0

)(
−dcT − cdT

)
+ (p+ 1)

(
cT x+ c0

)
ddT

]
(4)

wTH(x)w =
p

(dT x+ d0)
p+2

[
−2
(
dT x+ d0

)(
wT d

)(
cTw

)
+ (p+ 1)

(
cT x+ c0

)
(dTw)2

]
(5)

A key tool for our analysis will be the well-known second order characteriza-
tion of pseudoconvexity on an open convex set, given in [8].

Theorem 3 Let f be a twice continuously differentiable function defined on
an open convex set X ⊆ Rn.
Then, f is pseudoconvex on X if and only if the following conditions hold:
i) x ∈ X, w ∈ Rn, wT∇f(x) = 0 ⇒ wTH(x)w ≥ 0;
ii) if x0 ∈ X is a critical point, then x0 is a local minimum point for f .

By means of the previous Theorem, we will prove that if the vectors a, c, d are
linearly independent, then function f is never pseudoconvex.

Theorem 4 Let S ⊆ D be a convex set with intS 6= ∅. If f is pseudoconvex
on S, then rank[a, c, d] ≤ 2.

Proof Suppose on the contrary that rank[a, c, d] = 3; this implies ∇f(x) 6= 0
for every x ∈ S. Applying Theorem 3, let us consider x ∈ intS and a direction
w such that ∇f(x)Tw = 0.

We have aTw +

(
dTx+ d0

)
cTw − p

(
cTx+ c0

)
dTw

(dTx+ d0)
p+1 = 0 so that

(
dTx+ d0

)
cTw = p

(
cTx+ c0

)
dTw −

(
dTx+ d0

)p+1
aTw
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Substituting the value cTw
(
dTx+ d0

)
in (5), we get

wTH(x)w =
p

(dT x+ d0)
p+2

dTw

[
(1− p)

(
cT x+ c0

)
dTw + 2

(
dT x+ d0

)p+1
aTw

]

For every x ∈ intS, consider the linear map A : Rn → R3, x 7→ Ax,

where A =

∇f(x)T

aT

dT

. Since rank[a, c, d] = 3, the map A is surjective

and hence we can choose w ∈ Rn such that ∇f(x)Tw = 0, dTw < 0 and

aTw >
(p− 1)

(
cTx+ c0

)
2 (dTx+ d0)

p+1 dTw, so that wTH(x)w < 0. Consequently, f is not

pseudoconvex on intS and this is a contradiction.

3.1 Pseudoconvexity on Rn
+.

Taking into account Theorem 4, the study of the pseudoconvexity of f on the
non-negative orthant Rn

+ is carried on by considering the following exhaustive
cases:
i) rank[a, c, d] = 1;
ii) rank[a, d] = 2, and c, d are linearly dependent;
iii) rank[c, d] = 2, and a is a linear combination of c and d.
In the present paper we will not deal with the case rank[a, c, d] = 1 since, in
this case, the study of the pseudoconvexity on Rn

+ reduces to the study of the
pseudoconvexity of a suitable one variable function and consequently it is very
easy to handle (a complete discussion of the case rank[a, c, d] = 1 can be found
in [6]). We are going to consider case ii) and iii) separately.

• Case rank[a, d] = 2, and c, d are linearly dependent

The following theorem gives a complete characterization of the pseudoconvex-
ity in Case ii).

Theorem 5 Assume rank[a, d] = 2 and c = βd, β ∈ R.
Then f is pseudoconvex on Rn

+ if and only if the following conditions hold:
i) β(p− 1) ≥ 0;

ii) β ≤ c0(p+ 1)

2d0
.

Proof The gradient and the Hessian matrix of f become

∇f(x) = a+
d

(dTx+ d0)
p+1

[
β(1− p)

(
dTx+ d0

)
+ p(βd0 − c0)

]
(6)

H(x) =
pddT

(dTx+ d0)
p+2

[(
dTx+ d0

)
(p− 1)β + (c0 − βd0) (p+ 1)

]
(7)
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Note that ∇f(x) 6= 0, ∀x; furthermore, wTH(x)w ≥ 0 for every x ∈ Rn
+ if and

only if
(
dTx+ d0

)
(p − 1)β + (c0 − βd0) (p + 1) ≥ 0, x ∈ Rn

+. It follows that

necessarily we have β(p− 1) ≥ 0 and β ≤ c0(p+ 1)

2d0
.

As a consequence of Theorem 5 we get the following equivalence.

Corollary 1 Assume rank[a, d] = 2 and c = βd.
Then f is pseudoconvex on Rn

+ if and only if f is convex on Rn
+.

• Case rank[c, d] = 2 and a is a linear combination of c and d

We will prove that, whenever ∇f(0) 6= 0, the pseudoconvexity of f on intRn
+

implies the pseudoconvexity of f on Rn
+ (Theorem 6). Exploiting the fact intRn

+

is open, we will able to apply Theorem 3 to obtain pseudoconvexity conditions
(see Theorem 8 and Theorem 9). Finally we will see that when ∇f(0) = 0, f
may be pseudoconvex or not; nevertheless we will be able to characterize the
pseudoconvexity of f also in this particular case (see Theorem 10).
Referring to Theorem 3, two crucial aspects for our study are the existence
(or non-existence) of critical points and the behavior of the Hessian matrix of
f along those directions which are orthogonal to the gradient. In this light,
let us first compute the gradient of f , taking into account that a is a linear
combination of c and d. Substituting a = α1c+ α2d in (3), we get

∇f(x) =
c
(
dT x+ d0

) (
α1

(
dT x+ d0

)p
+ 1
)
+ d

(
α2

(
dT x+ d0

)p+1 − p
(
cT x+ c0

))
(dT x+ d0)

p+1

Since rank[c, d] = 2, f has critical points in Rn
+ if and only if the following

system has solutions in Rn
+:{

α1

(
dTx+ d0

)p
+ 1 = 0

α2

(
dTx+ d0

)p+1 − p
(
cTx+ c0

)
= 0

(8)

Consider the following function

h(x) = (1−p)
(
cTx+ c0

)
(dTx+ d0)p

+(α1(p+ 1)c+ 2α2d)
T
x+α1(p+1)c0+2α2d0 (9)

The following lemma plays a fundamental role both in proving the non-existence
of critical points on Rn

+ \ {0} and in characterizing the pseudoconvexity of f
on intRn

+.

Lemma 1 Assume rank[c, d] = 2.
i) f is pseudoconvex on D+

1 = {x ∈ intRn
+ : α1

(
dTx+ d0

)p
+ 1 > 0} if and

only if h(x) ≥ 0, ∀x ∈ D+
1 .

ii) f is pseudoconvex on D−1 = {x ∈ intRn
+ : α1

(
dTx+ d0

)p
+ 1 < 0} if and

only if h(x) ≤ 0, ∀x ∈ D−1 .
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Proof Note that α1

(
dTx+ d0

)p
+ 1 6= 0 implies the non-existence of critical

points, so that we can refer to i) of Theorem 3. Condition wT∇f(x) = 0 holds
if and only if(
dTx+ d0

)
cTw =

1

(α1 (dTx+ d0)
p

+ 1)
dTw

(
p
(
cTx+ c0

)
− α2

(
dTx+ d0

)p+1
)

(10)
Substituting (10) in (5) we get

wTH(x)w =
p(dTw)2

(dTx+ d0)
2

h(x)

α1 (dTx+ d0)
p

+ 1
(11)

Therefore wTH(x)w ≥ 0 if and only if
h(x)

α1 (dTx+ d0)
p

+ 1
≥ 0. The proof is

complete.

By means of the previous Lemma and taking into account Theorem 2 we get
the following fundamental result.

Theorem 6 Assume rank[c, d] = 2.
i) If f is pseudoconvex on intRn

+, then ∇f(x) 6= 0 for every x ∈ Rn
+ \ {0}.

ii) If ∇f(0) 6= 0, then f is pseudoconvex on Rn
+ if and only if f is pseudoconvex

on intRn
+.

iii) If f is pseudoconvex on Rn
+, then either α1 ≥ 0 or α1 ≤ −

1

dp0
.

Proof We will prove that α1

(
dTx+ d0

)p
+ 1 6= 0 for every x ∈ Rn

+ \ {0}. By

contradiction assume the existence of x̄ ∈ Rn
+ \{0} such that α1

(
dT x̄+ d0

)p
+

1 = 0. Since d ∈ intRn
+ and d0 > 0, both D+

1 and D−1 are non empty. Taking
into account Lemma 1 and the continuity of h, it results h(x) = 0 for every

x ∈ intRn
+ such that α1

(
dTx+ d0

)p
+ 1 = 0. Substituting α1 = − 1

(dTx+ d0)
p

in h(x) = 0 we get α2

(
dTx+ d0

)p+1 − p
(
cTx+ c0

)
= 0, so that, from (8),

f has critical points belonging to intRn
+. Due to the linear independence of c

and d, the quadratic form (5) is indefinite for every fixed x ∈ Rn
+ and hence

any critical point of f in intRn
+ is not a minimum point and this contradicts

the pseudoconvexity of f .
Conditions α1

(
dTx+ d0

)p
+1 6= 0 for every x ∈ Rn

+\{0} implies that f admits

no critical points in Rn
+ \ {0} and that either α1 ≥ 0 or α1 ≤ −

1

dp0
, so that i)

and iii) hold.
ii) follows directly from i) and Theorem 2.

From Theorem 6 and Lemma 1, the study of the pseudoconvexity of f reduces

to give conditions on the sign of h; more precisely if α1 ≥ 0 (α1 ≤ −
1

dp0
) we

will give conditions guaranteeing h is non-negative (h is non-positive).
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Note that, by continuity, condition h(x) ≥ 0 (h(x) ≤ 0), ∀x ∈ intRn
+, implies

h(x) ≥ 0 (h(x) ≤ 0), ∀x ∈ Rn
+, or, equivalently, inf

x∈Rn
+

h(x) ≥ 0

(
sup
x∈Rn

+

h(x) ≤ 0

)
.

The following theorem states that the sign of h on Rn
+ can be deduced by the

sign of the restriction of h on the edges of Rn
+.

Theorem 7 There exists an index i ∈ I = {1, ..., n} such that

inf
x∈Rn

+

h(x) = inf
xi≥0

hi(xi) (12)

sup
x∈Rn

+

h(x) = sup
xi≥0

hi(xi) (13)

where hi(xi) denotes the restriction of function h(x) on the i-th edge of Rn
+.

Proof Let {xn} ⊂ Rn
+ be a sequence such that h(xn)→ ` = inf

x∈Rn
+

h(x).

For every fixed xn, consider the linear problem

Pn : inf
x∈Sn

h(x), Sn = {x ∈ Rn
+ : dTx+ d0 = dTxn + d0}

Since Sn is a compact set, the infimum is attained as a minimum at a vertex
x̂n, which belongs to an edge of Rn

+, and it is h(x̂n) ≤ h(xn), ∀n. Consequently,
h(x̂n)→ `. The finite number of edges implies the existence of a subsequence
{yn} of {xn}, contained in an edge, such that h(yn)→ `, so that (12) holds.
The proof of (13) follows in a similar way.

Remark 1 When a = 0, that is α1 = α2 = 0, h(x) reduces to h(x) =
(1− p)(cTx+ c0)

(dTx+ d0)p
, so that f is pseudoconvex on intRn

+ if and only if 0 < p < 1,

c ∈ Rn
+, c0 ≥ 0 or p > 1, c ∈ Rn

−, c0 ≤ 0.

From now on, taking into account the previous remark, we will consider the
case a 6= 0. Furthermore, for sake of simplicity, we will assume c ∈ intRn

+.
Conditions for the case ci ≤ 0 can be obtained following the same strategies
used in the results that we are going to present.
In order to characterize the pseudoconvexity of f on intRn

+ , according with
iii) of Theorem 6, we first deal with the case α1 ≥ 0.

Theorem 8 Assume rank[c, d] = 2, c ∈ intRn
+ and α1 ≥ 0.

Then f is pseudoconvex on intRn
+ if and only if:

i) α1(p+ 1)c+ 2α2d ∈ Rn
+ \ {0};

ii) (1− p)c0 + dp0 (α1(p+ 1)c0 + 2α2d0) ≥ 0
and one of the following conditions holds:
iii) 0 < p < 1;

iv) p > 1 and either ∇h(0) = (1− p)d0c− pc0d
dp+1
0

+ α1(p+ 1)c+ 2α2d ∈ Rn
+, or

min
i∈J

hi(x̄i) ≥ 0, where J = {i :
∂h

∂xi
(0) < 0}, and x̄i is such that h′i(x̄i) = 0.



Pseudoconvexity on a closed convex set and a wide class of fractional functions 9

Proof The assumption α1 ≥ 0 guarantees the non-existence of critical points,
so that f is pseudoconvex on intRn

+ if and only if h(x) ≥ 0, ∀x ∈ intRn
+.

Firstly we prove that i) and ii) are necessary conditions for pseudoconvexity.
Note that h(x) ≥ 0, ∀x ∈ intRn

+, implies h(0) ≥ 0, i.e., ii). On the other hand,
if α1(p+ 1)c+ 2α2d 6∈ Rn

+ \ {0}, then there exists a restriction of h on an edge
of Rn

+ for which inf
xi≥0

hi(xi) = −∞ and this is a contradiction.

Let us now consider the case 0 < p < 1. Conditions i) and ii) imply that hi(xi),
i = 1, ..., n, is the sum of increasing functions with hi(0) ≥ 0. From Theorem
7 we get h(x) ≥ 0, for every x ∈ intRn

+.
We are left to prove that conditions i), ii) and iv) imply h(x) ≥ 0, ∀x ∈ intRn

+,
or, equivalently (see Theorem 7), hi(xi) ≥ 0, ∀xi ≥ 0, ∀i ∈ {1, ..., n}.
We have

h′i(xi) = (1− p) (1− p)cidixi + cid0 − pdic0
(dixi + d0)p+1

+ α1(p+ 1)ci + 2α2di (14)

and

h′′i (xi) =
(1− p)p

(dixi + d0)p+2
di [(p− 1)cidixi − 2cid0 + (p+ 1)dic0] (15)

Let us preliminary observe that h′i(xi) has a unique critical point which is a
maximum point and lim

xi→+∞
h′i(xi) = α1(p + 1)ci + 2α2di ≥ 0. Therefore if

∇h(0) ∈ Rn
+, that is h′i(0) ≥ 0 for every i, then h′i(xi) ≥ 0, ∀xi ≥ 0. Since

hi(0) ≥ 0, it results hi(xi) ≥ 0, ∀xi ≥ 0.
On the other hand, if i ∈ J , then there exists a critical point x̄i which is a
minimum for hi with hi(x̄i) ≥ 0. Consequently hi(xi) ≥ 0, ∀xi ≥ 0, ∀i ∈ J
and the thesis follows.

Remark 2 When 0 < p < 1, condition i) of Theorem 8 implies ai ≥
(1− p)ci

2
.

Consequently, if there exists i such that ai < 0, then f is not pseudoconvex.

The following example points out that, in the case J 6= ∅, condition min
i∈J

hi(x̄i) ≥
0 can not be relaxed.

Example 1 Consider the function f(x, y) =
1

32
x+

4x+ y − 1

(3x+ y + 1)2
. The restric-

tion of f on y = 1 has a critical point at x = 0, 98142397 which is a maximum
point. Therefore f is not pseudoconvex on intR2

+.

Referring to Theorem 8, it is easy to verify that a =
1

32
c− 1

32
d and rank[c, d] =

2. Since α1 =
1

32
> 0, f has no critical points. Moreover, necessary conditions

i) and ii) of Theorem 8 are verified.

On the other hand, h1(x) = h(x, 0) = − (4x− 1)

(3x+ 1)2
+

3

16
x − 5

32
with h′1(0) =

−157

16
, hence J 6= ∅. Function h1(x) has a minimum point at x̄ = 0, 546247734

with h1(x̄) = −0, 224, so that condition iv) of Theorem 8 is not verified.
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From iii) of Theorem 6, to completely characterize the pseudoconvexity of f

on intRn
+ it remains to deal with the case α1 ≤ −

1

dp0
.

Theorem 9 Assume rank[c, d] = 2, c ∈ intRn
+ and α1 ≤ −

1

dp0
.

Then f is pseudoconvex on intRn
+ if and only if:

i) α1(p+ 1)c+ 2α2d ∈ Rn
− \ {0};

ii) (1− p)c0 + dp0 (α1(p+ 1)c0 + 2α2d0) ≤ 0;
and one of the following conditions holds:
iii) p > 1;

iv) 0 < p < 1 and max
i/∈J1

hi(x̄i) ≤ 0, where J1 =

{
i :

∂h

∂xi
(0) ≤ 0,

ci
di
≥ p+ 1

2

c0
d0

}
and x̄i is such that h′i(x̄i) = 0

Proof Note that the assumption α1 ≤ −
1

dp0
guarantees the non-existence

of critical points, consequently f is pseudoconvex on intRn
+ if and only if

h(x) ≤ 0, ∀x ∈ Rn
+.

Firstly we prove that i) and ii) are necessary conditions for pseudoconvexity.
Infact, h(x) ≤ 0, ∀x ∈ Rn

+, implies h(0) ≤ 0, i.e., condition ii). On the other
hand, if α1(p+ 1)c+ 2α2d 6∈ Rn

− \ {0}, there exists a restriction on an edge of
Rn

+ for which h(x)→ +∞ and this is a contradiction.
Let us now consider the case p > 1. Condition i) and ii) imply that hi(xi),
i = 1, ..., n, is the sum of decreasing functions with hi(0) ≤ 0. From Theorem
7 we get h(x) ≤ 0, for every x ∈ intRn

+.
We are left to prove that when 0 < p < 1, conditions i), ii) and iv) imply
h(x) ≤ 0, ∀x ∈ intRn

+, or, equivalently (see Theorem 7), hi(xi) ≤ 0, ∀xi ≥ 0,
∀i ∈ {1, ..., n}.
Let us note that lim

xi→+∞
h′i(xi) = α1(p+ 1)ci + 2α2di ≤ 0.

If i ∈ J1, then from (15) we get h′i(xi) ≤ 0, ∀xi ≥ 0; consequently, hi(xi) ≤
0, ∀xi ≥ 0.
Consider now the case i /∈ J1.
If h′i(0) > 0, then hi has a maximum point x̄i, so that condition max

i/∈J1

hi(x̄i) ≤ 0

implies hi(xi) ≤ 0, ∀xi ≥ 0.

If h′i(0) < 0, and
ci
di
<
p+ 1

2

c0
d0

, h′i has a maximum point at x̃ =
2cid0 − (p+ 1)dic0

cidi(p− 1)
.

If h′i(x̃) ≤ 0, then hi is decreasing so that hi(xi) ≤ 0, ∀xi ≥ 0. If h′i(x̃) > 0,
then there exists x̄i such that h′i(x̄i) = 0 which is a maximum point for hi.
Condition max

i/∈J1

hi(x̄i) ≤ 0 implies hi(xi) ≤ 0, ∀xi ≥ 0. The proof is complete.

Remark 3 When 0 < p < 1, condition i) of Theorem 9 implies ai ≤
(1− p)ci

2
.

Consequently, if there exists i such that ai > 0, then f is not pseudoconvex.

The following example points out that condition max
i/∈J1

hi(x̄i) ≤ 0 can not be

relaxed.
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Example 2 Consider the function f(x, y) = −1, 001x− 3, 001y +
2x+ 3y + 8√
x+ y + 1

,

the point P = (898, 1) and the direction wT = (w1, w2) with w1 = −1212, 843229
and w2 = 400. It can be verified that ∇f(P )Tw = 0, and wTH(P )w < 0.
Therefore f is not pseudoconvex on intR2

+.
Referring to Theorem 9, it is a = −2c + 2, 999d and rank[c, d] = 2. Since
α1 = −2 < −1, f has no critical points and, by simple computations, it fol-
lows that necessary conditions i) and ii) of Theorem 9 are verified. Moreover

h′1(0) < 0 and
c1
d1

= 2 <
p+ 1

2

c0
d0

= 6, so that 1 /∈ J1. On the other hand, the

maximum value of h1 is positive and so f is not pseudoconvex.

Summarizing the previous results, whenever ∇f(0) 6= 0 the pseudoconvexity
on Rn

+ is completely characterized by the pseudoconvexity on intRn
+ (see i)

and ii) of Theorem 6); moreover Theorem 8 and Theorem 9 provide a complete
characterization of the pseudoconvexity of f on intRn

+ and hence, in the case
∇f(0) 6= 0, on Rn

+. Therefore we are left to deal with the case ∇f(0) = 0.

The particular case ∇f(0) = 0

The following example shows that, when the origin is a critical point, f may
be not pseudoconvex.

Example 3 Consider the function f(x, y) = − 1

125
x− 9

500
y +

x+ 2y + 1

(x+ y + 10)2
.

It is to verify that α1 = − 1

100
and α2 =

1

500
and conditions i), ii) and iii)

of Theorem 9 hold, so that f is pseudoconvex on R2
+ \ {0}. Moreover (0, 0) is

a critical point and it is a maximum for the restriction of f on the half-line
(0, y), y ≥ 0. Therefore f is not pseudoconvex on R2

+.

The following theorem provides necessary and sufficient conditions for the
pseudoconvexity of f when the origin is a critical point. Note that ∇f(0) = 0

if and only if α1 = − 1

dp0
and α2 =

pc0

dp+1
0

.

Theorem 10 Assume rank[c, d] = 2, c ∈ intRn
+, α1 = − 1

dp0
and α2 =

pc0

dp+1
0

.

Then, f is pseudoconvex on Rn
+ if and only if the following conditions hold:

i) p > 1;

ii)
2p

p+ 1

c0
d0
≤ min

i

ci
di

;

iii) max
i

ci
di
≤ p+ 1

2

c0
d0

.

Proof Assume that f is pseudoconvex. Condition ii) follows immediately from
i) of Theorem 9.
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Consider now the restriction ϕu(t) of f on the half-line x = tu, t ≥ 0, u ∈ Rn
+.

We have

ϕ′u(t) =
pc0d

Tu− d0cTu
dp+1
0

+
(1− p)cTudTut+ d0c

Tu− pc0dTu
(tdTu+ d0)p+1

ϕ′′u(t) =
pdTu

(tdTu+ d0)p+2

[
(p− 1)cTudTu t− 2d0c

Tu+ (p+ 1)c0d
Tu
]

(16)

Since ϕ′u(0) = 0, necessarily we must have ϕ′′u(0) ≥ 0, i.e.
cTu

dTu
≤ p+ 1

2

c0
d0
,∀u ∈

Rn
+ which is equivalent to iii). We are left to show that p > 1.

Suppose that 0 < p < 1; since ii) holds, there exists u ∈ Rn
+ such that

cTu

dTu
>
pc0
d0

and hence lim
t→+∞

ϕ′u(t) < 0. Moreover, from (16) and from condi-

tion iii), ϕ′u(t) has a maximum point t̃ > 0. Since ϕ′u(t̃) > 0, ϕ′u has one zero
corresponding to a maximum point for ϕu(t), contradicting the pseudoconvex-
ity of f .
Viceversa, assume that conditions i), ii) and iii) hold.
From Theorem 9, f is pseudoconvex on intRn

+ and hence from Theorem 6, f
is pseudoconvex on Rn

+ \ {0}. It remains to prove that the restriction of f on
every half-line of the kind x = tu, t ≥ 0, u ∈ Rn

+ is pseudoconvex; observe that

conditions p > 1 and
cTu

dTu
≤ p+ 1

2

c0
d0
, ∀u ∈ Rn

+, guarantee the convexity of

every restriction ϕu(t) and this completes the proof.

4 On the relationship between pseudoconvexity and quasiconvexity

We would like to make some remarks on the relationship between pseudocon-
vexity and quasiconvexity. As it is well known the following properties hold
(see for instance [3]):

1. if a function f is pseudoconvex, then f is quasiconvex;
2. if ∇f(x) 6= 0, for every x belonging to an open convex set S, then f is

pseudoconvex if and only if it is quasiconvex.

It is worth pointing out that Theorem 2 extends Property 2. to a function
which is defined on a closed convex set.

Corollary 2 Let f be a differentiable function on an open set A ⊆ Rn and
let X ⊂ A be a closed convex set, with intX 6= ∅.
If ∇f(x) 6= 0 for every x ∈ X, then f is pseudoconvex on X if and only if f
is quasiconvex.

With respect to the considered class of generalized fractional functions, the
following theorem provides a sufficient condition which guarantees the equiva-
lence between the pseudoconvexity and the quasiconvexity on an open convex
set.
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Theorem 11 Consider the function f(x) = aTx +
cTx+ c0

(dTx+ d0)
p and let S be

an open and convex set contained in D.
If rank[a, c, d] = 2, then f is pseudoconvex on S if and only if f is quasiconvex
on S.

Proof If rank[a, d] = 2 and c = βd, it is ∇f(x) 6= 0 for every x ∈ S (see (6)),
so that the thesis follows from Property 2. If rank[c, d] = 2 we prove that the
quasiconvexity of f implies the non-existence of critical points. Suppose by
contradiction that f admits a critical point x0; since rank[c, d] = 2, H(x0)
is indefinite. Let u be an eigenvector associated with a negative eigenvalue
of H(x0) and let ϕ be the restriction of f on the line segment x = x0 + tu,
t ∈ (−ε, ε); ϕ admits a maximum point and this is a contradiction. Therefore
f has not critical points and the thesis follows again from Property 2.

The previous result does not in general hold if we consider an arbitrary closed
convex set S. Actually the following examples point out that whenever f
admits critical points, the proper inclusion still holds.

Example 4 Consider the function f(x) = 3x+ 36x+3
(4x+1)2 on the set X = [0,+∞).

f is quasiconvex on X since it is an increasing function; on the other hand, it
admits a critical point at x = 1

4 which is not a minimum point, so that f is
not pseudoconvex.

Example 5 Referring to Example 3, f is not pseudoconvex on R2
+, but it is

quasiconvex, since f is pseudoconvex on intR2
+.

5 Concluding remarks

In this paper the equivalence between the pseudoconvexity of a function on
the interior of a convex set and the pseudoconvexity on the closure of the
set is established. This result is applied to characterize the pseudoconvexity
on Rn

+ of a wide class of generalized fractional functions. The obtained con-
ditions are very easy to be verified and suggest further developments. From
an algorithmic point of view, in [4], the authors propose a procedure for solv-
ing problems having this kind of functions as objective and a polyhedron as
feasible region. The new pseudoconvexity characterizations, obtained in the
present paper, can be applied to improve the procedure in [4]; whenever the
function is pseudoconvex, new stop criteria can be considered. As soon as a lo-
cal minimum is reached, the global minimum point is found and the procedure
can stop without further investigations. Furthermore, the particular structure
of the problem and the new pseudoconvexity characterizations would suggest
to conceive also simplex-like sequential methods for solving this class of prob-
lems. Moving from the scalar to the bicriteria case, it would be interesting to
derive the efficient frontier when one of the two objectives is linear and the
other one belongs to the studied class.
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