
Abstract Extending the description of canonical rings from [Rei78] we show that
every Gorenstein stable Godeaux surface with torsion of order at least 3 is smooth-
able.

Mathematics Subject Classification (2000) 14J29, 14J10, 14H45

Keywords stable surface, Godeaux surface



2 Marco Franciosi and Sönke Rollenske

Noname manuscript No.
(will be inserted by the editor)

Canonical rings of Gorenstein stable Godeaux surfaces

Marco Franciosi and Sönke Rollenske

the date of receipt and acceptance should be inserted later

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Paracanonical curves on Gorenstein stable Godeaux surfaces . . . . . . . . . . . . . 5
4 Canonical ring of Gorenstein stable Godeaux surfaces with large torsion . . . . . . . 7
5 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 The canonical ring of a simply connected stable Godeaux surface . . . . . . . . . . . 16

1 Introduction

Surfaces of general type with the smallest possible invariants, namely K2
X = 1

and pg(X) = q(X) = 0 are called (numerical) Godeaux surfaces, in honour of L.
Godeaux who constructed the first such examples.

It is well known that their algebraic fundamental group, or equivalently, the
torsion subgroup T (X) ⊂ Pic(X), is cyclic of order at most 5. After his seminal
work [Rei78], Reid was lead to the following.

Conjecture (Reid) The fundamental group of a Godeaux surface is cyclic of order

d ≤ 5 and for every d the moduli space of Godeaux surfaces with fundamental group

Z/d is irreducible and (close to) rational.

In particular, the Gieseker moduli space M1,1 has exactly five irreducible compo-

nents.

Indeed, he gave explict descriptions of Godeaux surfaces with |T (X)| ≥ 3 in
[Rei78]. The statement about the fundamental group is clear from the construction
if |T (X)| ≥ 4, the case of T (X) = Z/3 has been treated in [CU16].
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While quite a few examples of Godeaux surfaces with torsion Z/2 or trivial have
been constructed since then (see e. g. [Bar84], [Bar85], [CD89], [Ino94], [Wer94],
[DW99], [DW01], [RTU15] [Cou16]), the conjecture is still open. For instance, it
is still possible that there is a Godeaux surface with trivial algebraic fundamental
group, whose fundamental group is infinite.

The purpose of this article is to extend the results from [Rei78] to Gorenstein
stable Godeaux surfaces.

Theorem 1 The moduli space of Gorenstein stable Godeaux surfaces with order of the

torsion subgroup |T (X)| = 3, 4, 5 is irreducible.

In particular, every Gorenstein stable Godeaux surface with |T (X)| = 3, 4, 5 is

smoothable.

Stable surfaces are the the analogue of stable curves in dimension two: they
are the surfaces that appear in a modular compactification of the Gieseker moduli
space of surfaces of general type (see [Ale06], [Kol12], [Kol16]). Indeed, this was one
of the motivations for the introduction of this class of singularities by Kollár and
Shepherd-Barron in [KSB88]. However, this compactification, called the moduli
space of stable surfaces, can have many additional irreducible or connected com-
ponents containing non-smoothable surfaces. This happens also for Gorenstein
stable Godeaux surfaces [Rol16].

The method of [Rei78], studying the canonical ring of a maximal finite cover
(via restriction to a canonical curve), generalises quite well to Gorenstein stable
surfaces. The only obstacle is that we cannot assume the general member of a
base-point free linear system to be smooth or irreducible, that is, we have to deal
with slightly worse curves throughout. As an example of the flavor of arguments
that need to be reconsidered carefully: a non-hyperelliptic smooth curve of genus
4 embeds canonically in P3 as the complete intersection of a quadric and a cubic,
while the image of the canonical map of the union of an elliptic curve and a non-
hyperelliptic curve of genus 3 meeting in a node is the union of a plane quartic
and a point not in that plane.

In a companion paper [FPR16] we will study more in detail examples of Goren-
stein stable Godeaux surfaces and in particular prove that T (X) is a cyclic group
of order at most 5 and it coincides with the fundamental group in the presence of
worse than canonical singularities.

This article is part of series of papers, mostly joint with Rita Pardini, exploring
Gorenstein stable surfaces with K2

X = 1. These are tamed by the fact that 1 is a
very small number but every now and then some unexpected phenomena occur.
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2 Notations and conventions

We work exclusively with schemes of finite type over the complex numbers.

– A curve is a projective scheme of pure dimension one but not necessarily re-
duced or irreducible or connected.

– A surface is a reduced, connected projective scheme of pure dimension two but
not necessarily irreducible.

– We will not distinguish between Cartier divisors and invertible sheaves.
– All schemes we consider will be Cohen-Macaulay and thus admit a dualising

sheaf ωX . We call X Gorenstein if ωX is an invertible sheaf. A canonical divisor
is a Weil-divisor KX whose support does not contain any component of the
non-normal locus and such that OX(KX) ∼= ωX .

– Given a an invertible sheaf L ∈ Pic(X), one defines the ring of sections

R(X,L) =
⊕
m≥0

H0(mL);

for L = KX , we have the canonical ring R(KX) := R(X,KX).

2.1 stable surfaces

Since we work on stable surfaces we feel compelled to give a definition. However,
the precise nature of the singularities of stable surfaces will only indirectly play a
role in the sequel, namely when we use Riemann–Roch and Kodaira vanishing to
compute the dimension of some spaces of sections. Our main reference is [Kol13,
Sect. 5.1–5.3].

Let X be a demi-normal surface, that is, X satisfies S2 and at each point of
codimension one X is either regular or has an ordinary double point. We denote by
π : X̄ → X the normalisation of X. The conductor ideal H omOX (π∗OX̄ ,OX) is an
ideal sheaf in both OX and OX̄ and as such defines subschemes D ⊂ X and D̄ ⊂ X̄,
both reduced and of pure codimension 1; we often refer to D as the non-normal
locus of X.

The demi-normal surface X is said to have semi-log-canonical (slc) singularities
if it satisfies the following conditions:

1. The canonical divisor KX is Q-Cartier.
2. The pair (X̄, D̄) has log-canonical (lc) singularities.

It is called a stable surface if in addition KX is ample. We define the geometric
genus of X to be pg(X) = h0(X,ωX) = h2(X,OX) and the irregularity as q(X) =
h1(X,ωX) = h1(X,OX), so that we have χ(X) := χ(OX) = 1 − q(X) + pg(X). A
Gorenstein stable surface is a stable surface such that KX is a Cartier divisor.
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We will discuss surfaces in the following hierarchy of moduli spaces of surfaces
with fixed invariants a = K2

X and b = χ(X).

Ma,b = Gieseker moduli space of surfaces of general type

M
(G)
a,b = moduli space of Gorenstein stable surfaces

Ma,b = moduli space of stable surfaces

For the time being there is no self-contained reference for the existence of the
moduli space of stable surfaces with fixed invariants as a projective scheme, and
we will not use this explicitly. A major obstacle in the construction is that in the
definition of the moduli functor one needs additional conditions beyond flatness to
guarantee that invariants are constant in a family. For Gorenstein surfaces these
problems do not play a role; we refer to [Kol12] and the forthcoming book [Kol16]
for details.

3 Paracanonical curves on Gorenstein stable Godeaux surfaces

In analogy with the smooth case, we define a stable (numerical) Godeaux surface
as a Gorenstein stable surface X with K2

X = 1 and pg(X) = q(X) = 0. This is the
same as asking for K2

X = χ(X) = 1 by [FPR15, Prop. 4.2].
For a stable Godeaux surface the group T (X) of torsion invertible sheaves

coincides with Pic0(X) and is a finite group.
For a smooth Godeaux surface it is classically known that T (X) is cyclic of

order at most 5 and in [FPR16] we show that no surprises occur for stable Godeaux
surfaces.

Proposition 2 ([FPR16, Cor. 4.2]) Let X be a Gorenstein stable Godeaux surface.

Then πalg1 (X), and hence T (X), is a cyclic group of order at most 5.

We will now analyse paracanonical curves on a Gorenstein stable Godeaux
surface X, that is curves numerically equivalent to KX .

Lemma 3 Let Ci be distinct Cartier divisors which are numerically equivalent to KX .

Then

1. Ci is an irreducible Gorenstein curve of arithmetic genus 2,

2. C1 and C2 intersect with multiplicity 1 in a single point P (C1, C2),

3. if C1 − C2 is not linearly equivalent to 0, then P (C1, C3) 6= P (C2, C3).

Proof By assumption we have KXCi = K2
X = 1, thus Ci is irreducible as KX is an

ample Cartier divisor and Gorenstein. Since by adjunction KCi = (KX + Ci)|Ci ,
the first and the second item follow. For the last item consider

0→ OX(C1 − C2 − C3)→ OX(C1 − C2)→ OC3
(P (C1, C3)− P (C2, C3))→ 0.

In the associated long exact sequence in cohomology H0(OX(C1 − C2)) = 0 by
assumption and H1(OX(C1 −C2 −C3) = 0 by Kodaira vanishing (see e. g. [LR14,
Cor. 19]). Thus H0(OC3

(P (C1, C3)−P (C2, C3))) = 0 and the last claim follows. ut
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The existence of a paracanonical curve is ensured as soon as T (X) 6= 0.

Lemma 4 Let L1 be a torsion invertible sheaf on X. Then

1. h0(m(KX + L1)) = 1 + (m2 ) for m ≥ 2.

2. If L1 is non-trivial then h0(KX + L1) ≥ 1 and equality holds if there exists a

different non-trivial torsion invertible sheaf L2 on X.

Proof The first item follows directly from the Riemann-Roch formula [LR16, Thm.
3.1] and Kodaira vanishing [LR14, Cor. 19]. In the second case h2(KX + Li) =
h0(Li) = 0 since Li is non-trivial thus h0(KX + L1) = h1(KX + L1) + 1 ≥ 1. To
show equality let C2 be a section of H0(KX +L2), which exists by Riemann-Roch
and is irreducible of arithmetic genus 2 by Lemma 3. Thus the invertible sheaf of
degree 1 (KX + L1)|C2

has at most 1 section and the restriction sequence

0→ H0(L1 − L2)→ H0(KX + L1)→ H0((KX + L1)|C′)→ . . .

gives h0(KX + L1) ≤ 1. This concludes the proof. ut

For later reference we compute the dimension of some cohomology spaces.

Lemma 5 Let X be a Gorenstein stable Godeaux surface with T (X) cyclic of order

d ≥ 3, L be a generator for T (X). Let C ∈ |KX + L| be a paracanonical curve in X

and M = KX |C . Then 2M + L = KC and

h0(C,M + iL) =

{
0 i = 0, 1

1 i = 2, . . . , d− 1

h0(C, 2M + iL) =

{
1 i 6= 1

2 i = 1

h0(C,mM + iL) = m− 1 m ≥ 3

Proof Since C ∈ |KX +L| is a Gorenstein curve of genus 2 everything, follows from
the restriction sequence, the invariants of X, adjunction and Riemann–Roch on
C. ut

We will be studying graded section rings on curves. To control multiplication
maps we need Castelnuovos base-point-free pencil trick and its variants.

Proposition 6 Let C be a reduced and connected Gorenstein curve and let F , H be

invertible sheaves on C. Assume W ⊆ H0(C,F ) is a subspace of dim = r + 1 which

defines a base point free system. Then

1. If H1(C,H ⊗ F−1) = 0, then the multiplication map

W ⊗H0(C,H)→ H0(C,F ⊗H)

is surjective.

2. If r = 1, i. e., W is a base point free pencil, then

ker{W ⊗H0(C,H)→ H0(C,F ⊗H)} ∼= H0(C,H ⊗ F−1).
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Proof The first part follows from [Fra13, Prop. 25].

In the latter case we can repeat verbatim the proof of the base-point-free pencil
trick given in [ACGH85, chap. III , §3, pag. 126]. ut

Remark 7 In the following sections we study canonical rings of surfaces by restric-
tion to canonical curves C. One step in the analysis is usually to show that the
Gorenstein curve C behaves like a smooth curve of the same genus. The relevant
notion in this context is numerical connectedness, which was defined in [CFHR99],
and by [FT14] everything would follow if C is numerically 3-connected. Checking
3-connectedness turns out to be at least as intricate as a direct proof of the proper-
ties we need in each cases. Thus we decided to avoid this extra layer of complexity.

4 Canonical ring of Gorenstein stable Godeaux surfaces with large torsion

In this section we adapt the algebraic treatment of numerical Godeaux surfaces
with sufficiently large torsion by Miles Reid to the Gorenstein case. Many argu-
ments carry over unchanged from [Rei78]. The idea is that, if πalg

1 is sufficiently
big, then the universal cover is simple to describe algebraically. The main issue
is that due to the presence of singularities we have to work on considerably more
singular curves.

4.1 The case |T (X)| = 5

Theorem 8 Consider the action of G = Z/5 on S = C[x1, . . . , x4] given by xi 7→ ξixi
where ξ is a primitive fifth root of unity.

Let X be a stable Gorenstein surface with πalg
1 (X) = Z/5 and Y the (algebraic)

universal cover. Then Y is a quintic surface in P3 defined by a G-invariant quintic

polynomial q ∈ S and the canonical ring of X is

R(X,KX) = (S/(q))
G
.

Proof The proof in [Rei78] works without modification. ut

Remark 9 Consider a quintic given by the orbit of a plane not meeting the fixed
points of the above action, for example given by

q = (x1 + x2 + x3 + x4)(ξx1 + ξ2x2 + ξ3x3 + ξ4x4)(ξ2x1 + ξ4x2 + ξx3 + ξ3x4)

· (ξ3x1 + ξx2 + ξ4x3 + ξ2x4)(ξ4x1 + ξ3x2 + ξ2x3 + ξx4).

The surface Y = {q = 0} is a normal crossing divisor in P3, in particular
stable. It has exactly 10 triple points, thus the quotient by the free action is a
stable surface with normalisation P2 and two triple points. This is the surface
X1,5 described in [FPR15, Sect. 4.2].
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4.2 The case |T (X)| = 4

By Proposition 2 in this case T (X) ∼= Z/4. This case can be described explicitly.

Theorem 10 Consider the polynomial ring S = C[x1, x2, x3, y1, y3] with deg xj = 1
and deg yj = 2. An action of G = Z/4 on S is defined by xj 7→ ijxj and yj 7→ ijyj . Let

X be a stable Gorenstein surface with T (X) = Z/4 and f : Y → X be the associated

cover. Then there are two G-invariant polynomials q1, q2 ∈ S of weighted degree 4 such

that

R(Y,KY ) = S/(q1, q2) and R(X,KX) = R(Y,KY )G.

In other words, X is the free quotient by G of a weighted complete intersection of

bidegree (4, 4) in P(1, 1, 1, 2, 2).

Proof Fix a generator L of T (X) and let C be the paracanonical curve corre-
sponding to a generator x1 ∈ H0(X,KX + L). We set M = KX |C . The preimage
C̃ = f−1(C) is a canonical curve in Y and has arithmetic genus 5.

Let M̃ = KY |C̃ = f∗M . We now compute the restriction of the canonical ring

of Y to C̃, which via f∗ can also be interpreted as a Z × Z/4 graded ring on C,
that is,

R = R(Y,KY )|
C̃

= R(C̃, M̃) =
⊕
m

H0(mM̃) =
⊕
m

3⊕
i=0

H0(C,mM + iL).

This decomposition is the weight-space decomposition with respect to the Z/4-
action on C̃. Note that we computed all the relevant dimensions in Lemma 5.

Let x2 be a generator of H0(M + 2L) and x3 be a generator of H0(M + 3L).

Then H0(M̃) = 〈x2, x3〉 defines a base-point-free pencil on C̃ by Lemma 3. We now
choose y1 ∈ H0(2M+L) and y3 ∈ H0(2M+3L) such that they span a complement

of im{S2H0(M̃)→ H0(2M̃)}.
We claim that x2, x3, y1, y3 generate R. Indeed for every k ≥ 2 consider the

multiplication map

µ1,k : H0(M̃)⊗H0(kM̃)→ H0((k + 1)M̃).

It is surjective for k = 2 since its Kernel is isomorphic to H0(M̃) by (ii) of Proposi-

tion 6, whilst h0(2M̃) = g(C̃) = 5 and h0(3M̃) = 8 by Lemma 5. For k ≥ 4 it is sur-

jective by Proposition 6, item 2. as H1((k−1)M̃) = 0. For k = 3 the image has codi-
mension 1, and it remains to show that there is no additional generator in degree
4. Considering a second multiplication map µ2,2 : H0(2M̃)⊗H0(2M̃) → H0(4M̃)
our claim follows if

im(µ2,2) + im(µ1,3) = H0(4M̃)

as vector spaces.
To prove this, we first decompose image and target of µ1,3 into weight spaces

to identify the culprit for non-surjectivity: it is the sequence

0 H0(KC)
H0(M + 3L)⊗H0(3M + 3L)
⊕H0(M + 2L)⊗H0(3M)

H0(2KC) H1(KC) 0

(
x2

−x3

)

where we used KC = 2M + L.
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Therefore it suffices to show that the image of µ2,2 contains H0(2KC). But
since C is an integral Gorenstein curve of genus 2 the canonical linear system is
also a base-point free pencil and the long exact sequence for

0→ OC → KC ⊗H0(KC)→ 2KC → 0

shows that the multiplication map H0(KC)⊗H0(KC)→ H0(2KC) is surjective.
Therefore R is generated in degree at most two and hence by x2, x3, y1, y3.

Counting dimensions one checks that the the kernel of C[x2, x3, y1, y3] � R is
generated by two relations in weighted degree 4 (of weight 0 and 2).

Thus, R(Y,KY )|
C̃

= R(C̃, M̃) realises C̃ as a complete intersection of degree
(4, 4) in P(1, 1, 2, 2) which implies that the canonical ring of Y realises Y as a
complete intersection of degree (4, 4) in P(1, 1, 1, 2, 2).

The rest of the statements carries over verbatim from [Rei78, §2]. ut

4.3 The case |T (X)| = 3

We now consider the following situation. Let X be a Gorenstein stable numerical
Godeaux surface with T (X) = Z/3, generated by L, and let C be the paracanonical
curve corresponding to a generator x1 ∈ H0(X,KX + L). Let f : Y → X be the
associated étale cover of X. As in the previous case we set

M = KX |C , L = L|C ,

C̃ = f−1(C) ∈ |KY , |

M̃ = f∗M = KY |
C̃
.

We will analyse the canonical ring of Y via restriction to C̃.
We now introduce some further notation. Let R = R(C̃, M̃) be the graded ring

of sections associated to M̃ . Push-forward to C induces an additional Z/3 grading
on this ring. Writing

Rmi = H0(C,mM + iL), Rm = (Rm0 ⊕Rm1 ⊕Rm2 )

we have R =
⊕

Rm, where we consider the Rmi weight-spaces for an appropriately
normalised Z/3-action.

We can choose elements x2, y0, y1, y2 ∈ R such that

R1
2 = H0(OC(P )) = 〈x2〉,

R2
0 = 〈y0〉, R2

1 = 〈x2
2, y1〉, R2

2 = 〈y2〉,

(y0 : y1 : y2)(P̃ ) = (1 : 1 : 1).

(1)

Note that we have made use of the fact that C is reduced to ensure that x2
2 6= 0.

Since C is integral of genus 2 the sections of R2
1 = H0(KC) define a base-point-free

pencil on C and we get a polynomial subring Sym∗R2
1 ⊂ R. Thus y1 cannot vanish

at P and also y0 and y2 cannot vanish at P because R1
1 = R1

0 = 0; thus we can
scale the sections to satisfy the last condition.

Denoting the canonical map of C̃ by

ϕ = ϕKC̃ : C̃ 99K P(R2)∨ ∼= P3

the action of Z/3 on the canonical model is induced by an action on P3.
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Proposition 11 Let R(C̃,K
C̃

) = R[2] =
⊕
m≥0R

2m be the subring of even elements

of R, which coincides with the canonical ring of C̃ (with degrees multiplied by 2).

Choosing appropriate elements satisfying the conditions (1) we have

R[2] ∼= C[x2
2, y0, y1, y2]/(f2, h0)

where

f2 = y0y2 − y2
1 + x4

2,

h0 = y3
0 − 2y0y1y2 + y3

2 + x2
2F2,

with F2 = αx4
2 + βx2

2y1 + γy0y2, α, β, γ ∈ C.

In particular, the canonical map embeds C̃ as a complete intersection of a cubic and a

quadric in P3.

Proof We first show that R[2] is indeed generated by the elements of degree 2.
First, let us consider R4 = H0(4M)⊕H0(4M + L)⊕H0(4M + 2L). We have

〈x2
2y2, y1y2, y

2
0〉 ⊂ H0(4M)

〈x2
2y0, y0y1, y

2
2〉 ⊂ H0(4M + L)

〈x4
2, y

2
1 , x

2
2y1〉 ⊂ H0(4M + 2L)

and we claim that in each case there is no relation between the elements on the left
hand side. This is clear for H0(4M + 2L) = Sym2H0(2M +L). Since H0(2M +L)
defines a base-point-free pencil every relation in 〈x2

2y2, y1y2, y
2
0〉 can be written as

y2
0 = y1(αx2

2 + βy1). But div y0
y1
∼ 2L is non-trivial, so the left hand side and the

right hand side can never have the same zeros, a contradiction. The argument in
the other case is the same. Then counting dimensions shows that we have equality
in all three cases, that is, R2⊗R2 � R4.

Now let us consider R6 = H0(6M)⊕H0(6M + L)⊕H0(6M + 2L).
From the base-point-free pencil trick (Proposition 6) we get

H0(2M + L)⊗H0(4M)� H0(6M + L)

H0(2M + L)⊗H0(4M + L)� H0(6M + 2L)

since H1(2M − L) = 0 and H1(2M) = 0 because 2M + L ∼= KC . To complete the
remaining summand observe that

ker{H0(2M + L)⊗H0(4M + 2L)→ H0(6M)} ∼= H0(C, 2M + L) = H0(C,KC).

Hence the cokernel is one-dimensional since h0(6M) = 5. By an argument similar
to the above we see that (y0)3 is not in the image of this multiplication map and
thus

H0(6M) = H0(2M) ·H0(4M) +H0(2M + L) ·H0(4M + 2L)

is generated by products of elements in R2.
For higher degrees Proposition 6 implies the surjectivity of

H0(2M + L)⊗H0((2hM + iL)� H0((2h+ 2)M + (i+ 1)L)
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for every h ≥ 3 and every i ∈ Z/3 because H1((2h− 2)M + (i− 1)L) = 0 for degree
reasons.

Therefore R2⊗R2h � R2h+2 for every h ≥ 3, which shows that R[2] is generated
in degree 2. In particular, the surjection R2 ∼= C[x2

2, y0, y1, y2] → R[2] defines the
canonical embedding ϕ = ϕKC̃ : C̃ → P3, ϕ(C̃) a reduced curve of degree 6 and

pa(C̃) = 4, and ϕ(P̃ ) = (0 : 1 : 1 : 1) because of (1).
Counting dimensions we see that ϕ(C̃) is contained in a unique quadric. Look-

ing more closely at the basis for R4 given above we see that there is a relation f2 in-
volving the missing element y0y2 ∈ R4

2. Noting that f2(ϕ(P̃ )) = f2(0 : 1 : 1 : 1) = 0
we can arrange f2 to be of the form above by completing the square with y1 and
rescaling x2. This does not affect the choices made in (1).

As in the classical case, h0(P3, I
ϕ(C̃)

(3)) = 5, so we can find an irreducible cubic

surface vanishing on ϕ(C̃), which together with f2 generates the ideal. More pre-
cisely, dimension counting shows that the relation h0 occurs among the monomials
of degree 6 and weight 0. Since the relation cannot be contained in y0 · H0(4M)
or y2 · H0(4M + L) modulo x2 it has to involve y3

0 , y3
2 and y0y2y2 with non-zero

coefficients. Note that y0y1y2 ≡ y3
1 mod x2 so we can eliminate y3

1 . We rescale
the equation such that h0 ≡ y3

0 − (a + 1)y0y1y2 + ay3
2 mod x2

2. On C̃ the divisor
of x2

2 is f∗2P . Cutting the ϕ(C̃) with the plane {x2
2 = 0} thus gives three double

points defined by (f2, h0) mod x2
2. Restricting the cubic equation to the quadric

and computing the derivative we see that this happens if and only if a = 1 and
thus h2 mod x2

2 is of the claimed form. ut

Lemma 12 Let S =
⊕
m≥0 S

m be the subring of R generated by R1 and R2.

1. With the choices made in Proposition 11 we have

R[2] ⊂ S ∼= C[x0, y0, y1, y2]/J ⊂ R,

where J = (f2, h0).

2. There exist elements z1 ∈ R3
1 and z2 ∈ R3

2 such that R3 = S3 ⊕ 〈z1, z2〉 and the

relations

f0 = x2z1 + y2
0 − y1y2 = 0 and f1 = x2z2 + y0y1 − y2

2 = 0

hold in R4. Moreover, z1 and z2 do not vanish at P .

For convenient reference we collect generators and relations of R in small degree
in Table 1.

Proof The first item is clear, because adding a square root of x2
2 in R[2] cannot

introduce new relations.
The existence of the zi follows from comparing dimR3

i and dimx2R
2
i+1, where

we use again that x0 cannot be a zero-divisor. We prove the statement for z1, the
argument for z2 is the same.

By the first item we have x2z1 ∈ S4
0 = R4

0, that is, 0 6= x2z1 = ay2
0+by1y2+cx2

2y2

for some coefficients a, b, c. Replacing z1 by z1 − cx2y2 we may assume that c = 0.
Since the relation has to vanish at P̃ we also have a = −b and both have to be
non-zero. Rescaling z1 we can choose a = −1 as claimed.

For the final claim assume on the contrary that z1 vanishes at P . Then z1/x2 ∈
H0(2M + 2L) = R2

2, which is spanned by y2. This is impossible, since x2y2 and z1
are linearly independent. ut



1
2

M
a
rco

F
ra

n
cio

si
a
n

d
S

ö
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Table 1 Canonical ring of the Z/3-cover of a Godeaux restricted to a canonical curve.

degree weights monomials in S monomials not in S relations in J relations not in J

R1
0

1 R1
1

R1
2 x2

R2
0 y0

2 R2
1 x2

2, y1

R2
2 y2

R3
0 x3

2, x2y1

3 R3
1 x2y2 z1

R3
2 x2y0 z2

R4
0 x2

2y2, y2
0 , y1y2 x2z1 f0 = x2z1 + y2

0 − y1y2

4 R4
1 x2

2y0, y0y1, y2
2 x2z2 f1 = x2z2 + y0y1 − y2

2

R4
2 x4

2, x2
2y1, y0y2, y2

1 f2 = x4
2 + y0y2 − y2

1

R5
0 x3

2y0, x2y0y1, x2y2
2 x2

2z2, y1z2, y2z1 x2f1, g0 ≡ y1z2 − y2z1 mod x2

5 R5
1 x5

2, x3
2y1, x2y0y2, x2y2

1 y0z1, y2z2 x2f2 g1 ≡ y0z1 − y2z2 mod x2

R5
2 x3

2y2, x2y2
0 , x2y1y2 x2

2z1, y0z2, y1z1 x2f0, g2 ≡ y0z2 − y1z1 mod x2

6

R6
0

x2
2 ·R4

2, . . . x2
2f2, y1f2, y0f0, y2f1

y3
0 , y0y1y2, y3

1 , y3
2 h0 = y3

0 − 2y0y1y2 + y3
2 + x4

2F2 x2g1, H0

R6
1

x2
2 ·R4

0 . . .
y2f2

x2
2f0, y0f1, y1f0,

y2
0y1, y0y2

2 , y2
1y2 x2g2, H1

R6
2

x2
2 ·R4

1, . . .
y0f2

x2
2f1, y1f1, y2f0,

y2
0y2, y0y2

1 , y1y2
2 x2g0, H2
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We will now show, that R is generated in degree at most three and determine
the relations in degree 5.

Lemma 13 The natural map R̄ = C[x2, y0, y1, y2, z1, z2]→ R is surjective. Denoting

its kernel by I the relations in degree 5 are

I5 = 〈x2f1, g0〉 ⊕ 〈x2f2, g1〉 ⊕ 〈x2f0, g2〉

where the gi can be chosen to be

g0 = y1z2 − y2z1 + x3
2y0,

g1 = y0z1 − y2z2 − x2F2,

g2 = y0z1 − y2z2 + y2x
3
2.

Proof Proposition 6 implies that on C̃ the multiplication map

H0(mM̃)⊗H0(2M̃)→ H0((m+ 2)M̃)

is surjective for m ≥ 7. Since we know that the subring of even elements is gener-
ated in degree 2 and have dealt with degree 3 in Lemma 12 we only need to show
that there is no new generator in degree 5.

Let us discuss in detail the map

R̄5
0 = x2〈x2

2y0, y0y1, y
2
2〉+ z1〈y2〉+ z2〈x2

2, y1〉 → R5
0,

whose kernel contains the known relation x2f1 = x2
2z2 +x2(y0y1− y2

2) and at least
one other relation g0, which cannot be contained in x2〈x2

2y0, y0y1, y
2
2〉. Thus g0

has to contain at least one of the monomials y2z1 or y1z2. Since none of the yi, zi
vanish at P while necessarily g0(P ) = 0 we can normalise to get

g0 ≡ y1z2 − ay2z1 mod x2 where a =
y1z2
y2z1

(P ) =
z2
z1

(P ).

If r is any other non-zero relation in the kernel of the map, which is not a multiple
of x2f1 then by the same argument it coincides with g0 modulo x2 (up to multi-
plication with scalars). Then g0 − r gives a relation divisible by x2 which has to
be a multiple of x2f1. Hence there is no further relation and the map is surjective
with kernel spanned by x2f1 and g0.

The argument for the other weight spaces is analogous and gives g0 = y1z2 −
ay2z1 + g̃0, g1 = y0z1− 1

ay2z2 + g̃1, and g2 = y0z2− ay1z1 + g̃2 for some g̃i divisible
by x2.

To determine a consider in R̄6
2 the relation

x2g0 − y1f1 + ay2f0 ≡ (a− 1)y1y
2
2 + ay2

0y2 − y0y
2
1 mod x2

2. (2)

which does not contain z1, z2 modulo x2
2 and thus is in

J6
2 = 〈y0f2 = y2

0y2 − y0y
2
1 + x4

2y0〉

modulo x2
2. This is only possible if a = 1.

It remains to show that the polynomials g̃i can be normalised as claimed.
Substituting a = 1 in (2) we see that the relation x2g0 − y0f2 − y1f1 + y2f0 in R̄6

2

is divisible by x2
2. Since I4

1 = 〈f1〉 there exists an α such that

x2g0 − y0f2 − y1f1 + y2f0 = αx2
2f1
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Replacing g0 by g0 − αx2f1 gives

g0 = y1z2 − y2z1 + x3
2y0.

The same argument works for g2 looking at the relation

x2g2 − y0f1 + y1f0 − y2f2

and for g1 looking at the relation

x2g1 − y0f0 + y2f1 + h0.

This concludes the proof. ut

Remark 14 One can easily check that with these choices we have the following
syzygies of degree 6:

x2g0 − y0f2 − y1f1 + y2f0 = 0,

x2g1 − y0f0 + y2f1 + h0 = 0,

x2g2 − y0f1 + y1f0 − y2f2 = 0.

Lemma 15 In R6 the quadratic monomials in z1, z2 satisfy relations

H0 = z1z2 − x2
2y0y2 + y1F2 = 0,

H1 = z2
2 − x2

2y
2
0 + y2F2 = 0,

H2 = z2
1 − x2

2y
2
2 + y0F2 = 0

Proof Since R6 = S6 we know that we can express quadratic polynomials in z1
and z2 as elements in S. To compute one such expression we use that x2 is a
non-zero-divisor. Thus

x2
2z

2
1 ≡ (−y2

0 + y1y2)2 mod f0

= y0(y3
0 − 2y0y1y2 + y3

2)− y2
2(y0y2 − y2

1)

= y0h0 − y0x
2
2F2 − y2

2f2 + x4
2y

2
2

≡ x4
2y

2
2 − x2

2y0F2 mod f2, h

⇒ z2
1 − x2

2y
2
2 + y0F2 ∈ I6

2 .

We repeat the calculation for z2
2 ,

x2
2z

2
2 ≡ (−y2

2 + y0y1)2 mod f1

= y2(y3
0 − 2y0y1y2 + y3

2)− y2
0(y0y2 − y2

1)

≡ x4
2y

2
0 − x2

2y2F2 mod f2, h

⇒ z2
2 − x2

2y
2
0 + y2F2 ∈ I6

1 ,

and for z1z2,

x2
2z2z2 ≡ (−y2

0 + y1y2)(−y0y1 + y2
2) mod f0, f1

= y0y2(y2
1 − y0y2) + y1(y3

0 − 2y0y1y2 + y3
2)

≡ x4
2y0y2 − x2

2y1F2 mod f2, h

⇒ z1z2 − x2
2y0y2 + y1F2 ∈ I6

0

ut
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Theorem 16 Let X be a Gorenstein stable Godeaux surface with torsion group T (X) ∼=
Z/3 and let f : Y → X be the corresponding triple cover. If C̃ = f−1C is the preimage

of a paracanonical curve in X and M̃ = KY |C̃ then

R(C̃, M̃) = R = C[x2, y0, y1, y2, z1, z2]/(f0, f1, f2, g0, g1, g2, h0, H0, H1, H2),

with generators and relations chosen as above.

Therefore the canonical ring of X can be described as in [Rei78] by lifting relations

and syzygies to C[x1, x2, y0, y1, y2, z1, z2].

A more conceptual approach to this ring is explained in [Rei15].

Proof By the above results there is a surjection from the ring on the right hand
side onto R which is a bijection in even degrees and in degree up to 5.

Assume that some polynomial r(x2, . . . , z2) of odd degree at least 7 is zero in
R. By Lemma 12 it cannot be contained in S and thus has to involve z1 or z2.
Using the relations in I we see that

r ≡ z1r1(y0, y1, y2) + r2(x2, y0, y1, y2) mod I.

Reducing modulo z1 we see that r2 ∈ J , so actually r ≡ r ≡ z1r1(y0, y1, y2) mod I.
However, z1 is not a zero-divisor, thus r1 ∈ I and consequently r ∈ I as claimed.

ut

4.4 Remarks on the case |T (X)| = 2

The description of the universal cover of Godeaux surfaces with torsion Z/2 has
been treated in [CD89] and from a slightly different point of view in [Cou16]. We
did not attempt to extend this description to Gorenstein stable Godeaux surfaces
but believe it should go through: In the smooth case, the following is the starting
point of both constructions.

Lemma 17 Let f : Y → X be the natural double cover of a Gorenstein stable Godeaux

surface with torsion Z/2. Then a canonical curve D of Y is honestly hyperelliptic of

arithmetic genus 3.

Proof The canonical curve is a double cover of a paracanonical curve C ⊂ X, which
is irreducible of arithmetic genus 2 by Lemma 3. Thus the canonical pencil of C
defines a polynomial subring of R(D,KD) and since the image of the multiplication
map H0(KD)⊗H0(KD)→ H0(2KD) is contained in H0(2KC) we are done. ut

5 Proof of Theorem 1

In this short section we quickly deduce Theorem 1 from the descriptions of the
canonical rings in the previous section.

Let X be a Gorenstein stable Godeaux surface with torsion of order 3 ≤ d ≤ 5
and f : Y → X the cover associated to T (X) ∼= Z/d. Then we have seen in the
preceding section that the canonical ring of Y , including the action of Z/d, is
uniquely determined up to the choice of some parameters parametrised by an



16 Marco Franciosi and Sönke Rollenske

open set in some projective space. We know from [Rei78] that the parameter
space is non-empty in each case and thus the image of each of these families is a
uni-rational irreducible component.

Since the general element corresponds to a smooth Godeaux surface and being
smooth is an open condition every surface in the family is smoothable.

6 The canonical ring of a simply connected stable Godeaux surface

The canonical rings of simply-connected (stable) Godeaux surfaces remain elusive
(see however [CP00]). When we consider degenerations, the constructions become
much more explicit and thus actual computations are possible. In this section we
give a description of the canonical ring of a simply connected Gorenstein stable
Godeaux surface which however rather serves as an indication of the complexity
of the problem than as a starting point for a general structure theory. The compu-
tation was carried out by the second author in discussion with Roberto Pignatelli.

Let a, b, c be homogeneous coordinates in the plane X̄ = P2 and consider the
plane quartic D̄ which is union of

C = {f = a2 − 6ab+ b2 − c2 = 0},
L = {a = 0} = Proj(C[b, c]),

L′ = {b = 0} = Proj(C[a, c]).

We define an involution τ on the normalisation D̄ν of D̄ that preserves the conic
and interchanges the lines by its action on functions:

on C τ∗(a, b, c) = (−a,−b, c),

L ∼= L′ τ∗(b, c) = −1

2
(a+ c, 3a− c) .

Then as explained in [FPR16, Section 3.B, Case (P2); Prop. 3.16] the triple
(X̄, D̄, τ) gives rise to a non-normal Gorenstein stable Godeaux surface X, by
glueing D̄ to itself as prescribed by τ .

Let π : X̄ → X be the normalisation of X, and D ⊂ X the non-normal locus.
Then π−1(D) = D̄ and D consists of two irreducible components: a rational curve
with one node, which is the image of the conic, and a rational curve with a triple
point, which is the image of the lines. These two components meet transversally
at the singular points, that is, D has a unique singular point which (analytically
locally) looks like the coordinate axes in C5.

Our computation, which we will only sketch, is based on the following result
of Kollár, which we state in a simplified version.

Proposition 18 ([Kol13, Prop. 5.8]) Let X be a Gorenstein stable surface. Define

the different ∆ = DiffD̄ν (0) by the equality (KX̄ + D̄)|D̄ = KD̄ +∆.

Then a section s ∈ H0(X̄,m(KX̄ + D̄)) descends to a section in H0(X,mKX) if

and only if the image of s in H0(D̄ν ,m(KD̄+∆)) under the Residue map is τ -invariant

if m is even respectively τ -anti-invariant if m is odd.
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To do the actual computation we need to pick explicit generators of the respective
bundles and compute the residue maps. We choose as generator of ωX̄(D̄) the
rational 2-form

ω̄ =
abc

abf

(
da ∧ db

ab
+

db ∧ dc

bc
+

dc ∧ da

ca

)
=

c

f

(
da ∧ db

ab
+

db ∧ dc

bc
+

dc ∧ da

ca

)
which gives an isomorphism R(X̄,KX̄+D̄) ∼= C[a, b, c]. As generators for ωL(D̄−L),
ωL′(D̄ − L′), respectively ωC(L+ L′) we choose the forms

ω = ResL(ω̄) =
c

f

(
db

b
− dc

c

)
ω′ = ResL′(ω̄) =

c

f

(
−da

a
+

dc

c

)
η = ResC(ω̄)

Note that τ∗ω = ω′, that is, with the choices made, the residue maps are compatible
with the identifications R(L, ωL(C + L′)) ∼= C[b, c] and R(L′, ωL′(C + L)) ∼= C[a, c]
and we have by Proposition 18

R(X,KX) ∼=
{
g ∈ C[a, b, c]

∣∣∣∣ g is contained in C[a, b, c2] modulo f
g(a, 0, c) = g(0, 1/2(a+ c), 1/2(3a+ c))

}
,

where the apparent change of signs in the involutions it due to the fact that we
take anti-invariant sections in odd degrees and invariant sections in even degrees.
The generators of the resulting ring can be computed with a computer algebra
system and we get:

Proposition 19 The canonical ring of X is generated as a subring of C[a, b, c] by

ab, 3a2 + 3b2 + c2,

ab2, a2b,

12b3 − a2c+ 6abc− b2c+ 8ac2 − 4bc2 + c3,

12a3 − a2c+ 6abc− b2c− 4ac2 + 8bc2 + c3,

abc2, ab3,

9a3c− 45a2bc− 45ab2c+ 9b3c+ 15a2c2 + 15b2c2 − 9ac3 − 9bc3 + c4,

27b4 + 9a2bc− 54ab2c+ 9b3c+ 30a2c2 + 3b2c2 − 9bc3 + 2c4,

ab2c2,

18a2b2c− 108ab3c+ 18b4c+ 39a3c2 + 33b3c2 − a2c3

+ 6abc3 − 19b2c3 − 7ac4 − bc4 + c5,

3a4c− 612ab3c+ 105b4c+ 233a3c2 + 199b3c2 − 9a2c3

+ 18abc3 − 111b2c3 − 41ac4 − 7bc4 + 6c5,

and there are 54 relation in degrees (66, 712, 818, 912, 106). In particular, X embeds

canonically as a codimension 10 subvariety in P(22, 34, 44, 53).
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The numbers and degrees of generators and relations in this ring are the same
as in the other example that was computed in [Rol16], which makes hope that a
general structure theory is lurking in the background.

Note that by [LR14, Example 47] the unique degenerate cusp of X is a base
point of the 2-canonical map, and neither the 3-canonical nor the 4-canonical map
embed the non-normal locus of X.
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[Kol16] János Kollár. Moduli of varieties of general type. 2016. book in preparation.
[KSB88] János Kollár and Nick Shepherd-Barron. Threefolds and deformations of surface

singularities. Invent. Math., 91(2):299–338, 1988.
[LR14] Wenfei Liu and Sönke Rollenske. Pluricanonical maps of stable log surfaces. Adv.

Math., 258:69–126, 2014.
[LR16] Wenfei Liu and Sönke Rollenske. Geography of Gorenstein stable log surfaces.

Trans. Amer. Math. Soc., 368(4):2563–2588, 2016.



Canonical rings of Gorenstein stable Godeaux surfaces 19

[RTU15] Julie Rana, Jenia Tevelev, and Giancarlo Urzúa. The Craighero-Gattazzo surface
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