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Abstract

The environmental efficiency of 96 Tuscan (Italian) wastewater treatment plants

(WWTPs) is investigated taking into account the quality of the outgoing water

in terms of pollutant. In this regard, the presence of the residual nitrogen in the

outgoing treated water is considered as undesirable output.The efficiency analy-

sis is performed by applying a novel integrated Analytic Hierarchy Process/Non-

radial Directional Distance Function (AHP/NDDF) approach, combining the

benefits of the two techniques. Similarly to the standard NDDF approach, the

suggested model allows to include simultaneously inputs, desirable and undesir-

able outputs and not to overestimate the efficiency scores. At the same time,

the AHP inclusion gives the possibility to directly take into account the deci-

sion maker preferences in the weighting system and to encompass some existing

directional distance function models as special cases.

The obtained results are then used to identify the efficiency explanatory vari-

ables: among them, the facilities’ capacity, the percentage of wastewater dis-

charged by the industrial and agricultural activities and the level of compliance

with the pollutant concentration threshold set by the legislator have a significant

impact on the WWTP performance. The integrated performance assessment al-

lows the water authorities to combine the WWTP efficiency together with the

environmental sustainability issue and it has the potential for further promising

environmental inspections.
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1. Introduction

Over the last decades, the wastewater treatment has received growing at-

tention worldwide as one of the relevant activities to ensure environmental sus-

tainability. Referring to Goodland (1995, p. 3), environmental sustainability

“seeks to improve human welfare by protecting the sources of raw materials

[food, water, air and energy] used for human needs and ensuring that the sinks

for human wastes are not exceeded, in order to prevent harm to humans”. More

precisely, environmental sustainability is defined as “a set of constraints on the

four major activities regulating the scales of the human economic subsystem:

the use of renewable and non-renewable resources on the source side, and pollu-

tion and waste assimilation on the sink side” (ibidem, p. 10). The same concept

has been proposed by the Organisation for Economic Co-operation and Devel-

opment (OECD) in the OECD Environmental Strategy for the First Decade of

the 21st Century (OECD, 2001, p. 6). The document considered the “assimi-

lation” one of the four specific criteria for environmental sustainability, as “the

releases of hazardous or polluting substances into the environment shall not ex-

ceed their assimilative capacity”. Obviously, the stated criterion is intrinsically

linked to the wastewater treatment and the water and nitrogen cycles are di-

rectly involved in the definition of environmental sustainability: since the main

goal of the wastewater treatment is to remove nitrogen and other pollutants

from the ingoing water, this activity is extremely relevant on the sink side.

It is worth recalling that Environmental Sustainability is one of the three pillars

of Sustainable Development and its key role is universally acknowledged1. Even

the 2030 Agenda for Sustainable Development (UN General Assembly, 2015)

confirms the triple bottom line (social, environmental and economic) approach

1During the World Summit on Sustainable Development in 2002 (UN General Assembly,

2002) the three pillars of Sustainable Development were identified by the words People (social

sustainability), Planet (environmental sustainability) and Prosperity (economic sustainability)

(see also Moldan et al., 2012).
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and it defines 17 Sustainable Development Goals (SDGs) to be implemented

and achieved by 2030. In this context, the improvement of water quality is

considered a necessary step to ensure availability and sustainable management

of water and sanitation for all (Goal 6, ibidem): the water quality has to be im-

proved “by reducing pollution, eliminating dumping and minimizing release of

hazardous chemicals and materials, halving the proportion of untreated wastew-

ater and substantially increasing recycling and safe reuse globally” (Target 6.3.,

ibidem). Among the pollutants to be removed in the water after the treatments,

the nitrogen is considered the most relevant one. Eutrophication, reduction of

crop quality, pollution of groundwater and death of aquatic life are part of the

fallout of an excessive presence of nitrogen.

The main objective of this paper is to assess the environmental efficiency

of the wastewater treatment plants (WWTPs) by including in the analysis the

residual nitrogen in the outgoing water. Looking at the wastewater treatment

plant as a production process, the presence of nitrogen in the treated water

can be considered an undesirable output. In the water sector efficiency lit-

erature, few papers deal with undesirable outputs (Picazo-Tadeo et al., 2008;

De Witte and Marques, 2010; Hernández-Sancho et al., 2012; Molinos-Senante

et al., 2014a, 2015b) and none of them are related to the quality of the outgoing

water in terms of leftover pollutants. In line with part of the existing literature

on undesirable output, the WWTP performance is evaluated using a Non-radial

Directional Distance Function (NDDF) approach. As the WWTPs under anal-

ysis exhibit variable returns to scale, the Kuosmanen technology is considered

(Kuosmanen, 2005) and a vector directional distance function is proposed. The

efficiency scores are computed by solving a DEA-like program whose objective

function is the weighted sum of the vector function components and the cor-

responding weights are determined by the Analytic Hierarchy Process (AHP).

The integration between NDDF and AHP allows to generalize the framework

proposed by Zhou et al. (2012) and by Adler and Volta (2016).

The described methodology is used to evaluate 96 WWTPs located in Tus-

cany (Italy). According to the different parameter specifications of the NDDF

model, different efficiency scores are computed. The obtained results are then

used to identify the variables affecting the efficiency. On the basis of the WWTP
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features, it is evident that the facilities’ capacity, the percentage of wastewater

discharged by the industrial and agricultural activities and the level of com-

pliance with the pollutant concentration threshold set by the Italian legislator

exhibit an incontrovertible impact on the WWTP performance. The policy im-

plications of the findings are mainly twofold: firstly, the WWTPs should exploit

larger scale economies. Secondly, the water utilities, the environmental agencies

and the regulators should promote inspection activities to stimulate a better

functioning in particular of those plants that treat only domestic sewage and do

not respect the nitrogen concentration regulatory limit.

The remainder of the paper is organized as follows: in Section 2 a review of

the related literature is presented and in Section 3 the adopted methodology is

described. Then, the next three sections are devoted to the empirical analysis.

More precisely, data choice can be found in Section 4, while the critical discus-

sion of the performed WWTPs efficiency analysis is in Section 5 and in Section

6. In Section 7 the main findings of the analysis are summarized, together with

some concluding remarks. The appendix includes a short description of the

wastewater treatment process.

2. Related literature

Among the huge amount of quantitative studies on the water sector (Berg

and Marques, 2011; Worthington, 2014), the wastewater treatment plant effi-

ciency analysis has gained growing attention in the recent years, i.e. starting

from the 2000s (for a review, Fuentes et al., 2015). In this strand of literature,

Data Envelopment Analysis (DEA) is the most used technique: it can man-

age a multiplicity of inputs and outputs and it does not require the selection

of a specific functional form, thus resulting useful to estimate different model

specifications, e.g. non-radial DEA (Hernández-Sancho et al., 2011a; Molinos-

Senante et al., 2014b), DEA with uncertainty (Sala-Garrido et al., 2012a), DEA

metafrontier approach (Sala-Garrido et al., 2011), Malmquist Productivity In-

dex (Hernández-Sancho et al., 2011b; Molinos-Senante et al., 2015a). More-

over, several studies propose a further assessment of the WWTP environmental

impact by means of a second stage analysis, to detect the effects of specific

WWTP features on the efficiency. The most common practice is to perform
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non-parametric tests such as the Mann-Whitney U test and the Kruskal-Wallis

test, since they do not need the normal distribution assumption of the ef-

ficiency scores (e.g. Hernández-Sancho and Sala-Garrido, 2009; Sala-Garrido

et al., 2012a; Molinos-Senante et al., 2014a). In line with this strand of litera-

ture, the present paper provides new evidences on the WWTP efficiency assess-

ment, providing also a second stage analysis. Despite the great environmental

impact of the wastewater treatment process, few papers take into account the

sustainability aspects. This lack of consideration could lead to biased estimates

in the performance assessment: those utilities that devote more resources to

increase their environmental sustainability are penalized and turn out to be less

efficient compared to those that ceteris paribus spend less. To address this issue

in the production efficiency analysis, most of the studies introduce the unde-

sirable output: it refers to those outputs whose increase may not be desirable.

In the water sector performance assessment, few DEA papers deal with the

undesirable output. With respect to other fields of application such as energy

and cement sector, the notion of undesirable output has been conceived with a

broader meaning. Looking at the various contributions, the undesirable outputs

encompass unintended bad consequences (or negative externalities) which can

be largely attributed to the production process, given the fact that producing

good outputs is accompanied by the production of bads (Färe et al., 2014).

More precisely Picazo-Tadeo et al. (2008) consider as non-desirable output the

unaccounted-for water losses, De Witte and Marques (2010) and Hernández-

Sancho et al. (2012) use the water losses, Molinos-Senante et al. (2015b, 2016)

and Romano et al. (2017) introduce variables representing the lack of service

quality such as the value of the penalties, the number of complaints, the number

of unplanned interruptions and the number of connected water service proper-

ties with water pressure below a reference level. Concerning the WWTPs, only

Molinos-Senante et al. (2014a) deal with undesirable output by considering the

CO2 emission resulting from the WWTP activity. Except for this study, the

environmental impact issue has not been addressed: as far as the authors know,

none of the studies on the efficiency analysis considers outgoing water pollution.

This paper contributes to the literature addressing this gap and considering the

nitrogen left in the water after the treatment as undesirable output (for more
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details Section 4 and the Appendix).

From a methodological point of view, there are several ways to model unde-

sirable outputs, depending on how the production technology process has been

formalized. Following Dakpo et al. (2016), a first approach considers the unde-

sirable outputs as inputs and it implicitly assumes its strong disposability. To

mitigate this unrealistic assumption, a second strand of approaches considers

undesirable outputs under the null-jointness and weak disposability assumption

(see for all Färe et al. (1989) and for more recent contributions Färe et al.

(2014), Adler and Volta (2016) and Färe et al. (2016)). However, in the at-

tempt to better understand the role of undesirable outputs for some production

processes, alternative approaches have been recently developed. They basically

rely on the presence of some inputs directly responsible for pollution and to

the possibility of identifying two distinct technologies, one related to the pro-

duction of desirable outputs and the other specifically taking into account how

certain inputs generate pollution. In this line, Murty (2010) defines undesirable

output as a by-product incidental output ; Hampf and Rødseth (2015) assume

the weak-G disposability on inputs and outputs; Sueyoshi and Goto (2012a,b)

identify two different notions of disposability, the natural and the managerial

one, to describe the managers’ response to the environmental regulations by

exploiting the presence of two sub-technologies2. The presence of two different

technologies appears particularly suitable for the energy, petroleum and cement

sector. By contrast, looking at the WWTPs’ activity (see also Section 3), there

is no input which can be directly associated with the chosen undesirable output,

the nitrogen left in the water, and it is not possible to separate the production

process into two distinct technologies. Therefore, in compliance with the above

mentioned second strand of the literature, the undesirable output is modelled

by assuming null-jointness and weak disposability. Regarding the efficiency as-

sessment with undesirable output, different types of models have been used

(see for all the recent surveys by Dakpo et al. (2016) and Liu et al. (2016)).

Among them, it is worth mentioning the standard DEA model, the slack-based

2For a detailed discussion on the role of the undesirable output in the production process

and how it can be included in a non-parametric efficiency analysis see for all Førsund (2008),

Dakpo et al. (2016) and references therein.
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DEA model and its extension, the model based on Russell index, the network

DEA model and the Directional Distance Function (DDF) model. This latter

one occupies a prominent role since it allows simultaneously the desirable out-

put expansion and the input/undesirable output contraction (see for example

Picazo-Tadeo et al. (2005), Zhang and Choi (2014) and the references therein):

it is referred as radial DDF if there is a proportional adjustment of the vari-

ables (Chambers et al., 1996; Chung et al., 1997; Chambers et al., 1998; Färe

and Grosskopf, 2004). Referring to the undesirable output specifically in the

water sector, the DDF is considered a very suitable approach and hence it is the

most developed method (e.g. Picazo-Tadeo et al., 2008, 2011; Molinos-Senante

et al., 2014a, 2015b, 2016). As Fukuyama and Weber (2009) underline, the

radial DDF may overestimate the efficiency when there exist non-zero slacks.

To overcome this problem, several authors propose a non-radial DDF approach

where slacks are directly incorporated in the efficiency measures (e.g. Cheng

and Zervopoulos, 2014; Fukuyama and Weber, 2009; Färe and Grosskopf, 2010;

Barros et al., 2012). A formal definition of the non-radial Directional Distance

Function method (NDDF), together with several environmental indexes, is given

in Zhou et al. (2012). With a similar approach, Adler and Volta (2016) suggest

an economic environmental directional distance function with variable return

of scale. Going further with the NDDF approach, in the present paper the

non-radial directional distance function is conceived as a vector function whose

components are the scaling factors associated with the reduction of inputs, the

good output expansion and the reduction of the undesirable output. With a

standard technique of vector optimization, a solution is found by choosing a

proper scalarization (see for example Pomerol and Barba-Romero, 2000). More

precisely, the vector objective function is replaced by the normalized weighted

sum of its components and the weights are analytically defined, according to

the Analytic Hierarchy Process (AHP) (Saaty, 1977, 1990). A NDDF approach

is then integrated by the AHP; the model proposed by Zhou et al. (2012) can

be seen as a particular case. There, the normalized weight vector is chosen by

“assigning the same importance” to the set of inputs, the set of outputs and the

undesirable output; the same happens among the input and good output vari-

ables (see also Section 3). It is worth underling that with respect to the current
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analysis, although several integrated DEA/AHP models have been proposed in

the recent literature (see for example Pakkar (2015) and references therein),

they address different issues and they serve different purposes.

3. Methodology

3.1. The WWTP production technology

The overall production process of a WWTP is characterized by a very high

environmental impact and therefore the efficiency assessment of a plant can-

not be separated from its sustainability performance evaluation. Therefore, the

environmental production technology has to take into account inputs, good (de-

sirable) outputs and bad (undesirable) outputs. Inputs are described by vector

x = (x1, ..., xN ) ∈ RN
+ , while good and undesirable outputs are represented by

y = (y1, ..., yM ) ∈ RM
+ and b = (b1, ..., bJ) ∈ RJ

+ respectively. The environmen-

tal production technology is characterized by the following set T = {(x, y, b) :

x can produce (y, b)} or alternatively P (x) = {(y, b) : (x, y, b) ∈ T}. Regard-

ing inputs and good outputs, the environmental production technology satisfies

the standard axioms of the production theory (for further details see Färe and

Grosskopf, 2003): i) inactivity is always possible, i.e., (0, 0, 0) ∈ T ; ii) finite

amount of inputs can produce only finite amount of outputs; iii) T is convex;

iv) good outputs are strongly disposable, i.e., if a given amount of inputs can

produce a certain level of outputs, even a smaller quantity of outputs can be

produced.

According to a very standard approach (see for all Färe et al., 1989, 2014), in

the present paper, the undesirable output is considered as an unintended “by-

product” of the production process and the technology is assumed to verify the

following assumptions: (i) null-jointness, i.e., if (x, y, b) ∈ T and b = 0, then

y = 0; (ii) weak disposability of undesirable outputs, i.e., if (x, y, b) ∈ T , then

(x, θy, θb) ∈ T , with θ ∈ [0, 1]. Roughly speaking, null-jointness implies that

there is no possibility to eliminate the undesirable outputs without stopping the

good output production. Weak disposability states that a reduction of undesir-

able outputs is possible only if it is accompanied by a corresponding reduction

of good outputs (for further discussion, see Section 4).
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Looking at the wastewater treatment production, there are no empirical

evidences allowing the description of the process by means of a specific func-

tional form; therefore, non-parametric approaches are the most developed in this

framework and, among them, DEA models occupy a prominent position. The

technology set is then described by means of inequality and equality constraints

which characterize DEA models. Moreover, preliminary analysis on the present

data set show that the production processes of the wastewater treatment plants

exhibit variable returns to scale3. Following Kuosmanen (2005), the production

technology can be then described as follows

Tl = {(x, y, b) :

K∑
k=1

λkykm ≥ ym, ∀m
K∑

k=1

λkbkj = bj , ∀j

K∑
k=1

(λk + µk)xkn ≤ xn, ∀n
K∑

k=1

λk + µk = 1 λk, µk ≥ 0, ∀k}
(1)

where k is the number of observed production units, i.e. DMUs (in the specific

context of the present paper, WWTPs); ykm is the m-th output produced by the

k-th DMU and ym is the m-th desirable output produced by the evaluated DMU.

Similarly bkj (xkn ) is the j-th undesirable output (n-th input) produced by the k-

th DMU and bj (xn) is the j-th undesirable output (n-th input) associated with

the evaluated DMU; λk+µk represents the intensity weights for constructing the

convex combinations of the observed DMUs. Strong disposability of inputs and

good outputs are formalized by the inequality constraints and weak disposability

of bad outputs is described by the equality constraints related to b.

3.2. The Analytic Hierarchy Process/Non-radial Directional Distance Function

approach

Taking into account the Kuosmanen technology, the environmental efficiency

analysis of WWTP is performed by introducing the following vector non-radial

distance function:

→
V D(x, y, b) = sup{(βx, βy, βb) : (x, y, b) + g diag(βx, βy, βb) ∈ Tl} (2)

where β = (βx, βy, βb) = ((βxn
)Nn=1, (βym

)Mm=1, (βbj )Jj=1) is the scaling vector

function. More precisely, βym
is the scaling factor of output m, βbj and βxn

3Regarding the scientific debate about the proper way of modelling weak disposability and

variable returns to scale see also Chen and Ang (2016).
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represent the scaling factor of the j-th undesirable output and n-th input re-

spectively; g = (gx, gy, gb) = ((gxn
)Nn=1, (gym

)Mm=1, (gbj )Jj=1) is the explicit direc-

tional vector in which the input-output combination will be scaled (Zhou et al.,

2012). For each DMU, the value of the vector non-radial distance function can

be obtained by solving the following DEA-like vector maximization problem

max β = (βx, βy, βb)

s.t.

K∑
k=1

(λk + µk)xkn ≤ xn + gxn
βxn

, ∀n

K∑
k=1

λkykm ≥ ym + gym
βym

, ∀m

K∑
k=1

λkbkj = bj + gbjβbj , ∀j

K∑
k=1

λk + µk = 1

λk, µk ≥ 0, ∀k

βxn ≥ 0, βym ≥ 0, βbj ≥ 0 ∀n,∀m,∀j

(3)

The above general formalization can be differently specified according to the

form of β and g and hence Problem 3 can be seen as a general framework encom-

passing some relevant directional distance function models. In the present anal-

ysis, the following specifications are considered: i) β = (βx) and g = (−x, 0, 0),

ii) β = (βx, βy) and g = (−x, y, 0), iii) β = (βx, βy, βb) and g = (−x, y,−b).

In the first case, the model allows for the reduction of inputs, while in the sec-

ond case it deals with the simultaneous input reduction and output expansion.

The third specification of β and g takes into account the input and bad output

reduction together with the output expansion. The vector formulation empha-

sizes that improvements for inefficient DMUs can be suggested through different

directions; the non-radial approach is therefore taken to its extreme. However,

from a mathematical point of view, a vector maximization problem has multi-

ple non-dominated solutions and, among them, it is necessary to identify the

most suitable ones with respect to the environmental efficiency analysis of the

DMUs 4. Following a very standard approach (see for all Pomerol and Barba-

4DEA vector optimization problems have been introduced even in other different contexts.

Among them, an interesting contribution is the one by An et al. (2016) where a Nash bar-
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Romero, 2000), the vector maximization problem can be solved by maximizing

a scalar function of the type wTβ where w = ((wxn
)Nn=1, (wym

)Mm=1, (wbj )Jj=1)

is the normalized weight vector, that is

N∑
n=1

wxn +

M∑
m=1

wym +

J∑
j=1

wbj = 1 and

wxn
≥ 0, wym

≥ 0, wbj ≥ 0, ∀n,m, j. Once the set of weights is chosen, the

environmental efficiency score of each DMU is obtained by solving the following

scalar problem

max wTβ

s.t.

K∑
k=1

(λk + µk)xkn ≤ xn + gxnβxn , ∀n

K∑
k=1

λkykm ≥ ym + gym
βym

, ∀m

K∑
k=1

λkbkj = bj + gbjβbj , ∀j

K∑
k=1

λk + µk = 1

λk, µk ≥ 0, ∀k

βxn
≥ 0, βym

≥ 0, βbj ≥ 0 ∀n,∀m,∀j

(4)

In this regard, the non-radial directional function model proposed by Zhou et al.

(2012) (see Problem 12 p. 629) can be seen as a particular case of Problem 4 5.

As regards the weights’ assignment, in the authors’ opinion, the decision maker

(in the present analysis the water utility) should be allowed to determine a set

of weights according to the specific features of the evaluated production process.

To address this issue, the Analytic Hierarchy Process appears a valuable tool.

AHP has been developed by Saaty at the end of the seventies (Saaty, 1977) and

later widely applied in different fields and contexts. In the present case, the

AHP model is able to define a set of weights w which takes into account the

preferences of the decision maker (DM) on the relative importance of inputs,

good and bad outputs. The DM is asked to establish if inputs are more im-

portant than good outputs and to define the intensity of such importance. The

gaining approach is proposed.
5Zhou et al. (2012) deeply investigate the relationship among their models and the most

relevant distance function models (radial and non-radial) in the recent literature. Their con-

siderations still apply for the present paper.
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comparison yields a number which is determined on the basis of the standard

AHP scale, from 1 (Equal Importance) to 9 (Extreme Importance).

Similar judgements have to be given between inputs and bad outputs and be-

tween good and bad outputs. Therefore, the following order 3 square matrix A

is obtained


x y b

x axx axy axb

y ayx ayy ayb

b abx aby abb


Clearly aij > 0, aii = 1 and aij = 1

aji
∀i, j. A is called pairwise comparison

matrix; the set of global weights w = (wx, wy, wb) is the normalized eigenvector

associated with the dominant eigenvalue of matrix A (see for all Saaty, 1990).

Going on with the pairwise comparisons among inputs, the relative weights of

input variables are determined. More precisely, according to the DM preferences

a pairwise comparison matrix I is constructed. The normalized eigenvector r

associated with the dominant eigenvalue of matrix I represents the relative

weights of input variables and hence the weight associated with the n-th input

is defined as wxn
= wxrn. The weights for desirable and undesirable output

are computed following the same procedure. Furthermore, to detect the incon-

sistency of the DM preferences, the following Inconsistency Ratio is computed:

IR =
αmax − n

(n− 1)CRI
, where αmax is the dominant eigenvalue of the pairwise

comparison matrix, n is the dimension of the matrix and CRI represents the

coefficient of random inconsistency which is computed by calculating
αmax − n
(n− 1)

for randomly filled reciprocal matrices (see for all Saaty, 1990). If IR > 0.1,

then the inconsistency occurs and the DM has to revise her/his judgement.

Following the AHP approach, the system of weights suggested by Zhou et al.

(2012) can be obtained by considering pairwise comparison matrices whose en-

tries are all ones.

Once the set of weights are determined, Problem 4 is solved for each DMU;

the higher the optimal value, the lower the efficiency level of the evaluated unit.

In line with Zhou et al. (2012), the obtained scores are then used to construct

normalized efficiency indexes, where 1 corresponds to the best performance and

0 to the worst. Obviously, according to the specification of g and β different
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models can be considered and then different water efficiency performance in-

dexes (WPI) can be constructed. The present analysis deals with the indexes

presented in Table 1.

Table 1: Indexes

Input model Input/Good Out. model Input/Good/Bad Out. model

β β = (βx) β = (βx, βy) β = (βx, βy, βb)

g g = (−x, 0, 0) g = (−x, y, 0) g = (−x, y,−b)

Index WPI1 = 1−
N∑

n=1

wxnβxn WPI2 =

1−

N∑
n=1

wxn
βxn

1+

M∑
m=1

wymβym

WPI3 =

1−


N∑

n=1

wxn
βxn

+
J∑

j=1

wbjβbj


1+

M∑
m=1

wymβym

3.3. Identifying WWTP efficiency explanatory variables

In line with an increasing part of the literature, a second-stage analysis is

performed to identify whether there is a relationship between some WWTP

features and the efficiency scores obtained as described in the previous section.

The regression analysis is one of the most common methodological approach, but

its application presents few drawbacks: among them, there are the misspecifica-

tion of the model because of omitted variables that should have been introduced

rather in the first stage (Hernández-Sancho et al., 2011b) and inaccurate results

that might arise from serial correlation between the error term and the covari-

ates in the second stage (Simar and Wilson, 2007). Therefore, in this paper

a different approach is preferred and it is applied into two steps: first of all,

the WWTPs have to be categorized into groups by different operational factors

that could affect the WWTP performance; then, a test is performed to assess

whether there is or not statistically significant difference between/among groups

according to the explanatory factor under scrutiny. As the WWTP sample does

not satisfy all the necessary assumptions to apply parametric and statistical

tests such as the t-test or the analysis of variance-ANOVA (Hernández-Sancho

et al., 2011b; Molinos-Senante et al., 2014b), the corresponding non-parametric

test is performed: the Mann-Whitney U test applies for two groups, while the

Kruskal-Wallis test for three groups or more (see e.g. Kruskal and Wallis (1952)

and Ruxton and Beauchamp (2008) for further details). The null hypothesis

states that the groups/samples originate from the same population, while the

alternative hypothesis asserts that they originate from other populations. The
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null hypothesis is rejected for a p lower than or equal to 0.05: if this is the

testing result, it is possible to conclude that the factor under investigation does

affect the WWTP efficiency.

4. Data

The empirical analysis involves 96 wastewater treatment plants located in

Tuscany and controlled by Acque SpA, a public-private utility entrusted in

2002 with water services in the so called “Basso Valdarno” river basin in the

Pisa province. Data are provided by Acque Spa and refer to 2014. The data

grid for this study has been constructed with the support of the Tuscan water

authority staff and the technical staff of Acque SpA and Ingegnerie Toscane.

The data have been gathered by a team of engineers and their consistency has

been double-checked by Acque management and researchers. In compliance

with the basic DEA requisites, the sample consists of a group of homogeneous

WWTPs to be compared: the units under analysis refer to those plants that

have costs both for the water treatment and for the sludge process and they

have been refined by means of a preliminary outlier detection analysis.

As a fundamental step in the efficiency assessment, the variables have been

selected not only according to the related literature, but also according to the

opinion of the engineers and the data availability (e.g. Fuentes et al., 2015).

Before going to define the variables, it is worth pointing out that as concerns

the input and output choice, a selection screening process has been executed as

proposed in Golany et al. (1994): in particular, the correlation analysis between

pairs of factors turns out to be useful to identify redundant variables and then

to increase the discriminatory power of the DEA method. Table 2 presents the

descriptive statistics of the variables introduced as follows.

Input. According to the mainstream literature, costs for the wastewater treat-

ment functioning are considered as inputs. They can be taken both at an ag-

gregate level as total costs (e.g. Da Cruz et al., 2012; Molinos-Senante et al.,

2014a) or at a disaggregate level (e.g. Hernández-Sancho and Sala-Garrido, 2009;

Hernández-Sancho et al., 2011a,b; De Witte and Marques, 2012; Sala-Garrido

et al., 2012b; Molinos-Senante et al., 2014b). In this analysis three different cost

items have been identified: (x1) materials and energy costs; (x2) staff and main-
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tenance costs; (x3) sludge transport and disposal costs: they all are expressed

as e/year.

Desirable output. Looking at the literature on the WWTP efficiency evalua-

tion, basically two approaches can be identified for the output choice. In the

first one, the volume of treated/delivered water and/or the population served

are considered as output. The papers by e.g. De Witte and Marques (2010),

Picazo-Tadeo et al. (2011), Da Cruz et al. (2012), De Witte and Marques (2012)

belong to this first strand of literature. Alternatively, outputs can be chosen

among the eliminated contaminants and the quantity of pollutants removed to

value the production of a plant or as the difference between the pollution level in

the influent and effluent, namely Net Environmental Benefits (see for example

Hsiao et al., 2007; Hernández-Sancho et al., 2011a,b; Sala-Garrido et al., 2011,

2012a,b; Fuentes et al., 2015; Molinos-Senante et al., 2015a). After the prelimi-

nary screening process and in compliance with the first strand of the literature,

the treated water, expressed in m3, is chosen as output (y1). Considering in

addition the main WWTP competences and the engineering expertise, a second

output (y2) has been selected, the Kg of removed sludge; actually it is by far

the largest removed constituent (for further details see the Appendix).

Undesirable output. As already pointed out in Section 2, there are no efficiency

analysis papers dealing with the WWTP water pollution as an undesirable out-

put. Once the wastewater enters in the treatment plant, it is characterized by

the presence of several constituents. Even though one of the main objective of a

WWTP should be the removal of as many contaminants as possible and to get

the water purified for further reuse, it is almost impossible to remove them com-

pletely and so they are still present in the ongoing wastewater. The higher the

pollutants in the outgoing wastewater, the higher the negative impact on the en-

vironment. Among the constituents, the nitrogen is one of the most preeminent

pollutant and its relevance is widely acknowledged in the related literature (see

e.g. Lorenzo-Toja et al., 2015): accordingly, this paper introduces as undesirable

output the quantity of nitrogen which remains in the outgoing wastewater. It

is worth pointing out that the chosen undesirable output can be seen as a bad

externality and as an unintended by-product of the production process in the

sense of Färe et al. (2014), but it is far from the definition of by-product given

15



by Murty (2010). Actually, looking at the data and at the treatment process,

the assumptions of null-jointness and weak disposability are fulfilled, ruling out

other approaches proposed in the literature to model the undesirable outputs6.

Table 2: Descriptive statistics

Inputs Desirable outputs Undesirable output

Materials+ Staff+ Sludge transport+ Treated Removed Residual

Energy Maintenance disposal water sludge Nitrogen

e e e m3 Kg Kg

Mean 41,894.25 13,556.09 33,190.35 402,233.20 503,315.50 5,557.39

Std. Dev. 86,448.89 23,710.57 67,347.96 942,951.40 757,611.10 11,745.93

Min 1,270.81 375.19 316.90 1,515.00 2,000.00 70.75

Max 529,684.70 145,919.00 447,154.00 6,234,272.00 4,659,130.00 78,551.83

5. The WWTPs performance assessment

5.1. Model set-up

As explained in Section 3.2, the choice of the normalized weight vector w is

a key element of the analysis: in the following, two sets of weights are used. The

first one is constructed by assigning the same importance to the three groups

of variables (inputs, good and bad outputs) and the same applies inside each

group (see also Section 3.2). The obtained weight vector coincides with the one

proposed by Zhou et al. (2012). Referring to the second set, different pairwise

comparison matrices are taken, following a discussion with the water utility

staff. More precisely, the importance of the undesirable output is judged “very

strong” with respect to good output (input). On the input side, the first two

inputs share the same level of importance and they are strongly more important

than the third input. Finally, with respect to the kg of removed sludge, the

importance of treated water is judged very strong. Table 3 describes the chosen

pairwise comparison matrices, the associated inconsistency ratio (IR) and the

corresponding generated weights.

6 In the presented WWTP framework, there are no inputs which are specifically related

to the “production” of undesirable output and therefore one of the five attributes for the

by-product technology “à la Murty” fails to be verified. Therefore, the technology proposed

in Murty et al. (2012) cannot be used in the present context. The authors are grateful to

an anonymous referee for giving the opportunity to better clarify this important and debated

aspect (for a broader overview, see Dakpo et al., 2016).
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Table 3: AHP-non-radial set of weights

Global comparison Inputs Good Outputs Bad Output

Matrix


1 3 1/7

1/3 1 1/9

7 9 1




1 1 5

1 1 5

1/5 1/5 1


 1 7

1/7 1


IR 0.0692 0 0

WPI1 Weights (1, 0, 0) (0.455, 0.455, 0.09)

WPI2 Weights (0.75, 0.25, 0) 0.75 ∗ (0.455, 0.455, 0.09) 0.25 ∗ (0.875, 0.125)

WPI3 Weights (0.149, 0.066, 0.785) 0.149 ∗ (0.455, 0.455, 0.09) 0.066 ∗ (0.875, 0.125) 0.785

Before showing the obtained results, it is worth pointing out that a further

index WPI0 has been computed in addition to the three indexes described in

Section 3.2 and listed in Table 1: for the sake of comparison, WPI0 has been

constructed by considering a non-radial Directional Distance Function model

where the undesirable output is completely ignored. Referring to the parameter

specification, the form of β and g has been set as β = (βx, βy) and g = (−x, y),

while the equality constraint associated with the weak disposability of the un-

desirable output has been cancelled. The set of weights of WPI0 coincides with

the one for WPI2.

5.2. Results

For both sets of weights and for the 96 WWTPs, the efficiency indexes

have been computed. Table 4 presents in a synthetic way the main descriptive

statistics of the results: the full list of the results are available upon request

from the authors. The first part of the table is denoted as “Non-radial” and it

refers to the set of weights proposed by Zhou et al. (2012). The second part

is referred as “AHP-non-radial” and it is related to the set of weights coming

from the pairwise comparison matrices of Table 37.

7All models have been implemented using MATLAB 9.0 R2016a.
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Table 4: Efficiency score for each Wastewater Performance Index

WPI0 WPI1 WPI2 WPI3

Non-radial

Mean 0.430 0.654 0.556 0.564

Std. Dev. 0.322 0.277 0.349 0.338

AHP-non-radial

Mean 0.419 0.647 0.571 0.623

Std. Dev. 0.333 0.290 0.338 0.306

No efficient WWTPs 19 33 33 31

Not surprisingly, the number of efficient units increases as the undesirable

output enters in the analysis. In fact, the wastewater treatment plants might

face higher costs because of their water quality concern: the more their effort,

the more efficient the wastewater treatment process and the lower the quantity

of dangerous nitrogen in the outgoing water. If this aspect is not considered in

the WWTP performance assessment, the “environmentally oriented” WWTPs

will be penalized.

By comparing the results across the three models with the undesirable out-

put (WPI1, WPI2 and WPI3), a more discriminating power is shown by the

one where the contraction of both inputs and bad output and the expansion

of outputs are simultaneously considered (WPI3). Looking inside the same

model specification, the number of efficient units does not change even if the

normalized weight vectors varies. However, the different weighting scheme af-

fects the WWTP performance assessment in terms of efficiency scores: as it

will be clarified in the next section, it influences also the explanatory variable

investigation. Not surprisingly, the WPI2 and WPI3 efficiency scores in the

AHP-non-radial case are higher than in the non-radial one: those plants who

are more “environmentally” focused are valued more for keeping their water

quality commitment when the undesirable output is taken into account and its

importance is considered way more important than the other variables in the

assessment.

6. A step further in the WWTPs performance assessment

Once the wastewater environmental performance indexes have been obtained,

a further analysis has been performed. Firstly, the variables affecting the
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WWTP environmental impact and their efficiency assessment have been de-

tected. Then, the main evidences have been discussed so to give the water

authorities and the decision makers additional insights for the WWTP manage-

ment.

6.1. External factor choice

In compliance with the related literature (e.g. Hernández-Sancho et al.,

2011a,b; Molinos-Senante et al., 2014a,b, 2015a) and according to the opinion

of the engineers, the data availability and the WWTP main activities (for more

technical details see the Appendix), the following external factors have been

put under scrutiny. (1) Age: two groups of WWTPs have formed depending on

whether the buildings are under 30 years old (that is after or before 1985). The

thresholds have been set considering that the useful life of a WWTP is averagely

25/30 years, so that a plant over 30 years old is outdated. (2) Plant capacity

expressed as Population Equivalent8: the facility size can be expressed in terms

of per capita and per day pollution load; three groups have been defined in

accordance with the Decision on Implementation Programmes (European Com-

mission, 2007): i) less than 2000 PE, ii) between 2000 and 10,000, and iii) greater

than 10,000. (3) Sewage system: WWTPs have been split into two groups, as

they can have either a separate or a combined system. (4) Kind of treatment :

two groups have been defined as the WWTPs in the sample use either secondary

or tertiary treatment. (5) Technologies: referring to the wastewater treatment

technology, WWTPs have been divided into two groups, as they can use or

not activated sludge process. (6) Estimated dry weather flow : it refers to the

wastewater flow occurring during the dry season when groundwater infiltration

and surface runoff have a minimum influence: i) less than 100,000 m3/year, ii)

between 100,000 and 500,000 m3/year, and iii) greater than 500,000 m3/year.

(7) Wastewater discharged by industrial and agricultural activities (expressed as

%): the WWTP sample has been clustered in three different groups, considering

separately i) those with no wastewater discharged by these activities at all, ii)

those with a percentage lower than 10, and iii) those with one higher than 10.

8“1 P.E. (Population Equivalent)” means the organic biodegradable load having a five-day

biochemical oxygen demand (BOD5) of 60 g of oxygen per day (directive 91/271/EEC).
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(8) N Concentration regulatory limit : since the detrimental effect of nitrogen

in terms of eutrophication and environmental impact on plant and aquatic life

is acknowledged also by the national legislator, two groups of WWTPs have

been distinguished depending on whether the outgoing nitrogen concentration

is below or above the limit (30 mg/L) set by the legislative decree 152/2006.

6.2. Results and policy remarks

Table 5 presents the Mann-Whitney U and Kruskal-Wallis test results and

the average efficiency scores, together with the efficient WWTP percentages and

the standard deviations, for each Water Performance Index and for both the

weighting schemes over the WWTPs under analysis, grouped according to the

described explanatory variables9. Before going into detail, the results suggest

two preliminary considerations. First of all, when the undesirable output is

considered in the efficiency assessment, there can be different test outcomes: this

is the case between, on the one hand, WPI1 and, on the other hand, WPI2 and

WPI3. As already highlighted in Section 5.2, the inclusion of the undesirable

output in the WWTP technology process allows those more “environmentally

focused” plants to be evaluated in a fairer way and, more broadly speaking, it

better depicts the overall WWTP process framework. Accordingly, the factors

that might affect the performance assessment are better captured when also the

undesirable output is included in the analysis. Moreover, it can be observed that

there are not remarkable differences across the two different weighting scheme

proposed in the current analysis. However, this might not have been the case

if the water utilities would have assigned different level of importance to the

inputs, good and bad outputs at the efficiency analysis stage.

Among the examined factors, the facility capacity seems to play an impor-

tant role. In fact, considering as its proxy both the Population Equivalent and

the dry weather flow, the efficiency means are greater for WWTPs with big-

ger capacity than for smaller plants and the Kruskal-Wallis test results lead to

reject the equality of means hypothesis especially in the WPI3 model. These

evidences are consistent to each other and in line with other empirical appli-

cations (e.g. Hernández-Sancho et al., 2011b; Molinos-Senante et al., 2014a,b).

9Descriptive statistics and test results have been obtained using Stata 13.
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This suggests the water utilities room for improvement in terms of unexploited

economies of scale: large plants show a good hydraulic performance and their

pumps achieve a high productivity. Furthermore, a higher scale of operations

allows the adoption of more advanced technology and therefore a higher removal

rate is obtained.

A different reasoning applies for the aspects related to the adopted technologies:

the Mann-Whitney U test results do not lead to reject the null hypothesis. In

fact, the distinction between secondary or tertiary, combined or separate, acti-

vated sludge process usage or not usage, does not suggest statistically significant

differences and therefore these variables cannot be considered as a determinant

explanatory factor for the efficiency assessment in this context. For example,

the lack of significance between secondary and tertiary treatment might rely on

the opposite effects exerted by high advanced treatment process (as tertiary) on

costs and quality: as a matter of fact, costs grow up for the relevant capital ex-

penditure as well as the water quality is improved. In general, these evidences

are in line with other applied studies: one explanation can be related to the

WWTPs sample choice. In fact, to perform an efficiency analysis, the units

have to be rather homogeneous in the treatment process: looking at the spe-

cific features of the sample under analysis, this requirement is fulfilled despite

the different classification. However, exploring these factors has at least two

advantages: firstly, it is useful to double check the selected sample in the first

stage of the analysis. Secondly, it is possible to observe the characteristics of

the most efficient WWTPs: on average, there are higher efficiency scores and

higher presence of efficient plants in the group that shares a tertiary, separate

technology and does not use activated sludge process.

Then, an interesting consideration stems from the feature related to the wastew-

ater discharged by the industrial and agricultural activities: the efficiency score

averages increase as the percentage of the efficient WWTPs increases, but the

rejection of the test null hypothesis depends on the model specification. In fact,

the null hypothesis is rejected for both the weighting schemes only when the

undesirable output is considered: this might suggest that the efficiency assess-

ment can be conditional upon the main target of the WWTP operators. The

result is in conflict with prior literature that shows a poor performance among
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the plants treating the sewage from factories and farms (Guerrini et al., 2016).

The novelty of the result obtained in the current paper can be attributed to

the measurement of the nitrogen as undesirable output in the efficiency model,

mainly for two reasons. First of all, the sewage produced by some farms and

factories (mainly paper mills in the Pisa area) is poorer of nitrogen than the do-

mestic wastewater: accordingly, the residual amount of this pollutant after the

treatment process is rather low, making the plants performance better. More-

over, the plants treating sewage from factories generally turn out to be more

“environmentally” oriented.

Instead, referring to the year of the plant, the Mann-Whitney U test results

do not enable to reject the null hypothesis in most of the cases. Consistently

with other studies (e.g. Hernández-Sancho et al., 2011b; Molinos-Senante et al.,

2014b,a), age cannot be considered as a determinant factor in the efficiency as-

sessment.

Lastly, it is possible to observe that the two groups obtained following the con-

centration limit set by the Italian legislator are statistically different whenever

the undesirable output is taken into account. This information provides useful

insights: in fact, even if few efficient WWTPs are found among those above the

set threshold, the efficiency score average is way larger in the case the plants

manage to keep the outgoing concentration below the limit. Accordingly, this

evidence suggests that the “environmentally focused” WWTPs benefit in terms

of performance assessment rather than being damaged, despite their water qual-

ity commitment and the incurred high costs to develop a good treatment with

high pollutant removal rate.

In terms of policy implications, the obtained results could provide useful

suggestions for the water utilities, the environmental agencies and the regulators.

For example, since “big is better” for the wastewater treatment, the utilities’

managers should plan to exploit larger scale economies: this would imply higher

cost savings, but at the same time higher environmental standards achievement.

From the point of view of the environmental agencies, the highest efficiency

scores obtained by the plants serving factories and farms suggest to perform an

inspection activity on small plants treating only domestic sewage. Moreover,

the environmental controls concerning the nitrogen concentration regulatory
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limit should also be increased, so to stimulate a better functioning of those

plants that do not respect the set threshold and show a lower performance

level. Finally, the evidences show the water authorities the benefits that could

arise from an integrated performance assessment that penalizes WWTPs aiming

only at getting cost savings and achieving poor environmental standards. The

results obtained by the adoption of the “environmental performance index”

might suggest the water regulators a benchmarking model for the WWTPs and

a yardstick competition to water utilities regulation.
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Table 5: WPIs by explanatory factors and Mann-Whitney U/Kruskal-Wallis test results
Non-radial WPI1 WPI2 WPI3

Explanatory factor
Total

WWTPs
% Eff. Mean Std. Dev. Test % Eff. Mean Std. Dev. Test % Eff. Mean Std. Dev. Test

Year

<1985 44 36% 0.677 0.278 0.5185 36% 0.611 0.322 0.0637 34% 0.626 0.311 0.0584

≥ 1985 52 33% 0.634 0.277 33% 0.510 0.366 31% 0.511 0.353

PE

<2,000 57 32% 0.644 0.269 0.0536 32% 0.510 0.355 0.0577 28% 0.497 0.343 0.0138

2,000 - 10,000 29 31% 0.606 0.288 31% 0.560 0.324 31% 0.601 0.303

10,000 - 150,000 10 60% 0.852 0.220 60% 0.812 0.289 60% 0.837 0.271

Estimated Dry Weather Flow

<100.000 63 29% 0.625 0.264 0.045 29% 0.497 0.342 0.0207 25% 0.486 0.329 0.0027

100,000 - 500,000 25 40% 0.651 0.307 40% 0.610 0.348 40% 0.656 0.318

>500.000 8 63% 0.889 0.170 63% 0.861 0.227 63% 0.888 0.200

Sewage System

Combined 39 28% 0.608 0.280 0.2103 28% 0.487 0.356 0.0741 26% 0.491 0.340 0.0657

Separate 57 39% 0.686 0.273 39% 0.604 0.339 37% 0.613 0.330

Level of Treatment

Secondary treatment 92 34% 0.644 0.277 0.0885 34% 0.542 0.348 0.0885 32% 0.548 0.336 0.0704

Tertiary treatment 4 50% 0.892 0.125 50% 0.881 0.139 50% 0.918 0.106

Technologies

Others 6 50% 0.778 0.276 0.3619 50% 0.731 0.347 0.2726 33% 0.642 0.356 0.7348

Activated sludge 90 33% 0.646 0.277 33% 0.545 0.348 32% 0.558 0.338

% industrial WW

No activity 60 30% 0.628 0.267 0.1144 30% 0.509 0.341 0.0366 27% 0.508 0.330 0.0102

≤ 10% 26 40% 0.650 0.317 40% 0.599 0.366 40% 0.636 0.339

>10% 10 60% 0.845 0.231 60% 0.826 0.262 60% 0.852 0.238

N Concentration regulatory limit

Below (≤30 mg/L) 69 39% 0.668 0.291 0.6805 39% 0.601 0.349 0.0419 39% 0.631 0.333 0.0015

Above (>30 mg/L) 27 22% 0.619 0.239 22% 0.443 0.326 15% 0.391 0.289

AHP-non-radial WPI1 WPI2 WPI3

Explanatory factor
Total

WWTPs
% Eff. Mean Std. Dev. Test % Eff. Mean Std. Dev. Test % Eff. Mean Std. Dev. Test

Year

<1985 44 36% 0.692 0.277 0.1495 36% 0.628 0.312 0.0434 34% 0.677 0.278 0.0953

≥ 1985 52 33% 0.609 0.297 33% 0.524 0.354 31% 0.577 0.323

PE

<2,000 57 32% 0.634 0.286 0.1142 32% 0.518 0.347 0.0242 28% 0.540 0.320 0.0009

2,000 - 10,000 29 31% 0.605 0.291 31% 0.586 0.306 31% 0.694 0.240

10,000 - 150,000 10 80% 0.840 0.251 80% 0.833 0.266 60% 0.889 0.180

Estimated Dry Weather Flow

<100.000 63 29% 0.615 0.281 0.0777 29% 0.506 0.334 0.0071 25% 0.539 0.308 0.0003

100,000 - 500,000 25 40% 0.651 0.308 40% 0.637 0.321 40% 0.741 0.240

>500.000 8 63% 0.883 0.200 63% 0.878 0.209 63% 0.916 0.156

Sewage System

Combined 39 28% 0.581 0.295 0.0659 28% 0.513 0.339 0.114 26% 0.575 0.308 0.2261

Separate 57 39% 0.691 0.280 39% 0.611 0.334 37% 0.656 0.303

Level of Treatment

Secondary treatment 92 34% 0.636 0.290 0.1074 34% 0.557 0.337 0.092 32% 0.609 0.305 0.0734

Tertiary treatment 4 50% 0.899 0.144 50% 0.898 0.147 50% 0.938 0.099

Technologies

Others 6 50% 0.788 0.304 0.3078 50% 0.751 0.350 0.2794 33% 0.674 0.358 0.8534

Activated sludge 90 33% 0.637 0.288 33% 0.560 0.336 32% 0.620 0.304

% industrial WW

No activity 60 30% 0.619 0.281 0.0727 30% 0.527 0.330 0.0631 27% 0.569 0.307 0.0073

≤ 10% 26 40% 0.637 0.327 40% 0.615 0.345 40% 0.716 0.253

>10% 10 60% 0.857 0.220 60% 0.821 0.286 60% 0.870 0.222

N Concentration regulatory limit

Below (≤ 30 mg/L) 69 39% 0.660 0.301 0.5191 39% 0.625 0.329 0.005 39% 0.719 0.262 0.0001

Above (>30 mg/L) 27 22% 0.612 0.261 22% 0.434 0.327 15% 0.378 0.277
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7. Conclusion

In this paper 96 wastewater treatment plants located in Tuscany (Italy) are

evaluated through a novel integrated AHP/NDDF approach. The wastewater

treatment plants production process is described by the following variables:

material and energy costs, staff and maintenance costs and sludge transport

and disposal costs are chosen as inputs; treated water and kg of removed sludge

are the desirable outputs while the undesirable output is represented by the

quantity of nitrogen in the outgoing wastewater. The selection of nitrogen as

undesirable output is related to the environmental quality of the outgoing water

and adds a new dimension to the literature on the WWTP efficiency analysis.

From a methodological point of view, the paper goes a further step along

the path traced by Zhou et al. (2012). The vector directional distance function

allows a new formulation for the simultaneous reduction of inputs and bad out-

puts together with the expansion of good outputs. According to the specification

of the non-radial distance function and the explicit directional vector, different

combinations of inputs/outputs can be analysed and thus different efficiency

indicators can be constructed. The normalized weight vector is selected by tak-

ing into account the decision makers’ preferences (water utility managers, water

authorities) and following the AHP methodology. In this regard, the suggested

model encompasses the one proposed by Zhou et al. (2012). In the empirical

analysis, two different sets of weights are specified presenting thus two models.

In the first case (Non-radial model), the associated weight vector coincides with

the one in Zhou et al. (2012). In the second case (AHP-non-radial model), the

set of weights is constructed starting from the water utility staff suggestions.

The computed environmental indexes differ across the two models, although the

efficient units are the same.

The environmental efficiency is explained by means of several variables re-

lated to the technical features of the WWTP. Irrespective of the model specifi-

cations, the population equivalent size and the estimated dry weather flow have

a significant impact on the WWTP performance. This evidence represents a

clear indication for water utilities in term of WWTPs’ size. On the other hand,

whenever the expansion of outputs and the contraction of undesirable output are

allowed, the efficiency scores for both the Non-radial and the AHP-non-radial

25



model are affected by the percentage of the discharged industrial wastewater

and by the plants’ ability to respect the legal nitrogen concentration threshold.

From the environmental agency side, the introduced performance indexes sug-

gest inspection activities to control those plants that treat only domestic sewage

and/or do not respect the nitrogen concentration regulatory limit.

As a concluding remark, in this paper the WWTP efficiency is addressed to-

gether with the environmental sustainability issue which is specifically related to

the quantity of nitrogen in the outgoing water. The analysis of the environmen-

tal quality of the treated water might take into account other relevant residuals

such as phosphorus, pharmaceutical pollutants, toxic metals and therefore fur-

ther undesirable outputs might be chosen. In this context, the methodology of

this paper might be very promising for further inspections on the environmental

efficiency of the wastewater treatment plants.
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Appendix - Some essential notions of wastewater treatment

To understand the background of the present analysis, a short description

of the wastewater treatment is provided. Due to the great extent of the sub-

ject, only the information strictly related to those technical features, explicitly

recalled in the previous sections is provided. For a comprehensive and detailed

presentation the reader can refer for example to Metcalf & Eddy et al. (2003).

Wastewater may be defined as a mix of liquid or water-borne wastes discharged

by houses, commercial properties, factories, farms and public institutions. Ground,

surface and stormwaters may be also included as components of the wastewa-

ter flow. As a preliminary step, the wastewater is collected in sewers and then

conveyed to treatment or disposal facilities. Regarding the sewerage, two dif-

ferent systems can be identified: combined or separate sewerage. The first one

transports both stormwater and wastewater, while separate sewerage is designed

either to convey wastewater (sanitary sewers), or to drain surface runoff (storm

sewers). For both combined and separate sewerage, the estimated dry weather

flow is a relevant value. In fact, during the period of dry weather, infiltration

and surface runoff have a minimum influence in combined sewerage. There-

fore the estimated dry weather flow provides a basis for works design. The

wastewater entering in the treatment plant is called influent or ingoing water

and it is characterized by the presence of several physical, chemical and biolog-

ical constituents such as suspended solids (Ss), nitrogen (N), phosphorus (P),

carbon (C) and biodegradable organics; the latter is usually measured in terms

of biochemical oxygen demand (BOD) and of chemical oxygen demand (COD).

Together with constituents, pathogens and priority pollutants (e.g. heavy met-

als, pharmaceutical molecules) can be found in the influent wastewater. One of

the main objective of a wastewater treatment plant (WWTP) should be the re-

moval of as many contaminants as possible and the purification of the water for

further reuse. A suitable wastewater treatment should guarantee an acceptable

level of overall water quality and this can be done by using different methods.

The treatment methods which exploit physical phenomena are referred as Unit

Operations (UO); on the other hand, if the removal of contaminants is based

on chemical reactions, then the process is called Unit Process (UP).

To ensure a certain level of contaminant removal, unit operations and processes
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are jointly performed according to different wastewater treatment technologies:

• preliminary treatment removes gross solids (large objects, rags, grit);

• primary treatment eliminates floating and settable materials;

• advanced primary treatment allows the removal of suspended solids;

• secondary treatment eliminates organic contaminants thank to biological

and chemical processes which are carried on;

• tertiary treatment eliminates other pollutants that cannot be removed by

means of primary and secondary treatments.

The secondary treatment removes also nitrogen and phosphorus (in this con-

text they are also referred as nutrients) together with other pathogens and some

heavy metals (Metcalf & Eddy et al., 2003). Among the different technologies

that can be used in the secondary treatment, it is worth mentioning the acti-

vated sludge process. This can be considered as the main biological process in

secondary treatment and it basically refers to a mass of microorganisms me-

tabolizing the suspended and soluble matter in an aeration basin. Solids and

in particular biosolids can be considered by-products of the wastewater treat-

ment; they are often referred to as “sludge” and they are by far the largest

removed constituents. After a primary treatment, solids can be further biologi-

cally, chemically or by heat treated (e.g. stabilization, composting, dewatering,

drying, thickening) so to get them suitable for further reuse (agriculture, home

gardens...). The term biosolids indicates that solids are further treated and an

important distinction between class A biosolids and class B biosolids has to be

made (Metcalf & Eddy et al., 2003). Biosolids belonging to the first class are

also known as “clean sludge” while Class B biosolids have a reduced concen-

tration of pathogens and other unhealthy contaminants (mainly metals), but

they do not satisfy specific legal requirements and therefore their application

to land is strictly regulated. Sludge which is not eligible for further use, is

then transported to either landfill or incinerators. Moreover, among the other

constituents, nitrogen occupies a preeminent position in wastewater treatment

activities; excessive concentrations of nitrogen can actually be harmful to hu-

mans and wildlife. Nitrogen can be found in the wastewater under various

forms, namely organic nitrogen and inorganic nitrogen which is in turn divided

into ammonia nitrogen, nitrite nitrogen and nitrate nitrogen. Ammonia con-
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centrations can affect hatching and growth rates of fish. If excessive amounts of

nitrates are discharged into the aquatic environment, it can lead to the growth

of undesirable aquatic life and then to the eutrophication. Nitrate can even

affect human health if it is present in drinking water. Moreover, a great dis-

charged of total nitrogen onto land can lead to the pollution of groundwater,

causing excessive vegetative growth and a reduction of crop quality. Due to

this, many alternative technologies have been designed to remove total nitrogen

from wastewater (suspended growth nitrification and denitrification variations,

attached growth nitrification and denitrification variations, biological nutrient

removal variations). On the other hand, it is almost impossible to completely

remove nitrogen from wastewater and it is still present in the effluent flow.
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