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An On-Node Processing Approach
for Anomaly Detection in Gait

Guglielmo Cola, Marco Avvenuti, Alessio Vecchio, Guang-Zhong Yang, and Benny Lo

Abstract—A novel method is proposed for capturing deviation
in gait using a wearable accelerometer. Previous research has
outlined the importance of gait analysis to assess frailty and
fall risk in elderly patients. Several solutions, based on wearable
sensors, have been proposed to assist geriatricians in mobility
assessment tests, such as the Timed Up-and-Go test. However,
these methods can be applied only to supervised scenarios and
do not allow continuous and unobtrusive monitoring of gait. The
method we propose is designed to achieve continuous monitoring
of gait in a completely unsupervised fashion, requiring the use of
a single waist-mounted accelerometer. The user’s gait patterns are
automatically learned using specific acceleration-based features,
while anomaly detection is used to capture subtle changes in the
way the user walks. All the required processing can be executed
in real-time on the wearable device. The method was evaluated
with 30 volunteers, who simulated a knee flexion impairment. On
average, our method obtained ⇠ 84% accuracy in the recognition
of abnormal gait segments lasting ⇠ 5 s. Prompt detection of gait
anomalies could enable early intervention and prevent falls.

Index Terms—Activity Monitoring, Anomaly Detection, Fall-
risk assessment, Gait Analysis, Wearable sensors.

I. INTRODUCTION

Gait changes, such as reduced stability or speed variations,
are often used as early indicators of cognitive impairment [1]–
[3]. In addition, reduced gait ability plays an important role in
fall risk assessment [4]–[6]. These findings have brought in-
creasing interest into the design of systems and algorithms for
gait analysis. Several methods have been proposed to estimate
the most relevant gait parameters and to assist geriatricians in
the assessment of gait ability [7]–[10]. However, most of these
solutions can only be applied to short walks or to specific tests
such as the Timed Up-and-Go (TUG) test [8]. Though these
systems offer significant help in making the assessments less
subjective, they do not allow continuous monitoring of gait
during daily activities.

One common approach to continuously monitor gait con-
sists in instrumenting the environment with vision-based sys-
tems and/or passive infrared motion sensors [11]–[13]. These
systems achieve high precision in capturing important gait
parameters, such as stride duration and walking speed. On the
other hand, the major drawbacks are the prohibitively expen-
sive set-up costs, some privacy concerns, and the limitation of
laboratory based assessment. These issues have hindered the
widespread use of these approaches.
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Another approach is the one based on wearable devices
equipped with inertial sensors like accelerometers and gyro-
scopes [14]–[18]. Wearable devices enable continuous moni-
toring of users regardless of the environment, and offer fast
system set up at relatively low costs [19], [20]. Nevertheless,
wearable systems are often affected by usability issues, which
make their adoption impractical for continuous monitoring. A
relevant example is the number of sensors that the user is
required to wear at different body positions: wearable systems
that aim to precisely estimate gait parameters usually require
the use of two or more sensors [21]. Another issue is caused by
the limited computational resources of miniaturized devices.
Most of the algorithms used for analyzing raw sensor signals
cannot be executed in real-time on the wearable device. Hence,
the user must always be in the transmission range of some
external device or server, to which the collected samples are
streamed via radio.

This paper presents a method to continuously monitor and
capture changes in the user’s gait patterns. Tri-axial accelera-
tion samples are collected and analyzed using a single wear-
able device placed at the waist. Instead of directly estimating
all the relevant gait parameters, which may be impractical
using one accelerometer, our method aims to detect deviation
in the gait patterns. To this purpose, eleven acceleration-
based features are extracted and provided as inputs to an
anomaly detection algorithm. The anomaly detection algorithm
can be trained without any supervision, and is designed to
automatically learn the user’s gait patterns during the first few
days of use. After the gait patterns are learned, the algorithm
is able to detect if previously unseen patterns (anomalies)
occur. The on-node processing algorithms that compose our
method were designed with low complexity and computational
requirements for real-time analysis. Hence, these algorithms
can be executed on the wearable device without the need or
support of another device or a backend server. Early detection
of subtle gait changes could prompt geriatricians to introduce
preemptive measures to reduce the risk of falling and prevent
future falls. In addition, gait changes could be used to monitor
degenerative diseases.

The rest of the paper is organized as follows. Section II
summarizes the state of art related to the use of wearable
inertial sensors for fall risk assessment and abnormal gait
detection. The major contributions of this work are also
highlighted. The proposed method is described in detail in
Section III, while the experimental setting and the evaluation
procedure are described in Section IV. Results are then pre-
sented and discussed in Section V. The energy consumption
on the wearable device is evaluated in Section VI, using
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different implementation strategies. Finally, conclusions and
future work are presented in Section VII.

II. RELATED WORK AND CONTRIBUTIONS

The use of inertial sensors to help clinicians to assess the
risk of fall has been widely studied [9], [22]–[24]. These
systems generally derive a model to classify users as fallers
or non-fallers, on the basis of some relevant gait parameters.
Gait parameters are estimated from the data collected while
users are walking or performing some specific and predefined
activity, such as, for example, the Timed Up-and-Go (TUG)
test [8].

An extensive review related to this area of research is found
in [25], where 40 systems based on wearable accelerometers
and/or gyroscopes have been compared. According to this
study, the use of accelerometers is more common compared to
gyroscopes: accelerometers have been the only inertial sensor
in 70% of the reviewed articles. The most common body
position for attaching the sensor is at the subject’s lower
back, which is an approximation of the center of mass and
is considered an acceptable location for long-term use [26].
Typically, the evaluation of fall risk predictions has been
performed using clinical assessment tools or past fall history.
Both of these approaches have relevant flaws according to [25].
The clinical assessment, which is observational-based, may
include incorrect evaluations, thus leading to an incorrect
validation of the fall risk classifier. On the other hand, an
evaluation based on patients’ fall history may be affected by
inaccurate reports or by gait changes occurred in the patient
because of the fall itself. The most robust evaluation method
relies only on the falls occurring after fall-risk assessment.
This approach, however, has been used only in 15% of the
reviewed studies.

A framework to detect abnormal gait is presented in [27].
This system is characterized by the use of an ear worn sensor
and does not rely on predefined gait parameters. Instead, multi-
resolution wavelet analysis with margin feature selection has
been proposed to distinguish normal walking from impaired
walking. Different experiments have been performed using
a treadmill: mild impairment has been simulated with a
lower limb involvement (tubigrip), while moderate impairment
has been simulated using a knee brace or abdominal brace
system. The k-Nearest Neighbors algorithm has been used for
classification, using both normal and impaired gait segments
for training the classifier. Results from the ten subjects study
have shown that normal walking and mild impairment classes
tend to merge, while a clear separation is achieved between
the moderate trunk and lower limb impairment classes.

The idea of continuous monitoring of gait for detecting
abnormal changes has been suggested in [28]. Dynamic Time
Warping has been used to obtain two indexes related to
stability and symmetry of gait. The proposed system requires
to stream the samples to a base station for off-line analysis.
Moreover, no validation of the method on abnormal gait
detection has been supplied.

The main characteristics of our method and the major
contributions with respect to the the state-of-the-art techniques
mentioned above can be summarized as follows:

Fig. 1. Schematic view of the proposed method. The device (Shimmer 2r)
is worn at the user’s lower back. All the processing is executed on-node.
Acceleration segments containing gait patterns are automatically detected by
the gait detection algorithm. Feature extraction is applied to each gait segment,
in order to obtain a vector with acceleration-based features (gait instance).
Finally, the anomaly detection algorithm classifies each gait instance as normal
or abnormal.

• A method is proposed to continuously monitor deviation
in gait using a single wearable accelerometer. Instead of
predicting fall risk, the proposed approach detects subtle
changes in the way the user walks. Early detection of
gait changes may be used to introduce preemptive inter-
ventions to prevent falls, and/or to monitor degenerative
diseases.

• The method consists of three algorithms: gait detection,
feature extraction, and anomaly detection. These algo-
rithms were designed for miniaturized sensor devices with
low computational resources. Hence, they can be executed
directly on the wearable device, eliminating the need of
any gateway or server for post processing or detection.

• The anomaly detection algorithm learns the user’s gait
patterns and detects if an anomaly is emerging. The
algorithm is able to learn gait patterns in an unsupervised
fashion and no prior training is required with abnormal
gait examples. The classification accuracy was tested by
off-line analysis to ensure repeatable evaluation. As a
corollary contribution, the efficacy of the proposed feature
set was evaluated also with supervised classification,
where both normal and abnormal gait patterns were used
to train the classifier.

• The method was implemented entirely on the wearable
device to prove that real-time detection of anomalies
can be performed on-node. The energy consumption was
then estimated: a comparison was made between per-
forming all the processing on-node and transmitting the
raw acceleration samples to an external device. Results
demonstrated that on-node processing is key to preserve
battery life.

III. PROPOSED METHOD

A schematic description of the proposed method is given in
Figure 1. For capturing acceleration reliably and continuously
during daily activities, the wearable device is equipped with a
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TABLE I
SHIMMER 2R: DEVICE CHARACTERISTICS

Subsystem Model Characteristics Current consumption
Microcontroller TI MSP430F1611 • 16 bit, up to 8 MHz

• 10 Kbyte RAM, 48 Kbyte Flash
• 2 DAC outputs, 8 12 bit A/D inputs

• High load: 5mA
• Idle: 0.02mA

Communication CC2420 • IEEE 802.15.4 compliant
• Max data rate: 250 kbit/s

• Active (tx/rx): ⇠ 20mA
• Idle: 426 µA

Sensing Freescale MMA7361 Accelerometer • Three-axial
• Range: ± 1.5 / 6 g

• Active mode: 400 µA
• Sleep Mode: 3 µA

Storage Micro SD card • Up to 2GB • Peak: 47mA
• Typical: 3mA

Battery Li-ion • Capacity: 450mA h
• Voltage: 3.7V
• Regulator output: 3.0V

tri-axial accelerometer and it is fixed with a belt at the subject’s
lower back (i.e. near the person’s center of mass). Gait
patterns are detected in real-time by a gait detection algorithm.
Whenever a new segment of acceleration data containing
gait patterns (gait segment) is detected, a feature extraction
algorithm is executed directly on the wearable device. The
result of feature extraction forms a gait instance, which is a
vector with eleven features. The gait instance is then classified
as normal or abnormal, using an anomaly detection algorithm
based on k-Nearest Neighbors analysis. Anomaly detection is
designed as an unsupervised method, where the user’s typical
gait patterns (normal class) are learned automatically from the
gait instances collected during the first few days of use. The
following subsections describe the wearable device and the
algorithms that compose our method.

A. Wearable device

A Shimmer 2r device was used for the experiments pre-
sented in this paper. The Shimmer is equipped with a TI
MSP430 microcontroller, a tri-axial accelerometer, and an
IEEE 802.15.4 radio. The device also includes a Micro SD slot
for up to 2 GB of data storage. The hardware characteristics of
the device are summarized in Table I. The size of the device
is 53x32x15 mm, weight is 25 g. Additional details about the
Shimmer 2r architecture can be found in [29].

B. Gait detection

To the purpose of real-time gait detection, a modified
version of the walking recognition algorithm proposed in [30]
was used. This algorithm was specifically designed for minia-
turized wearable devices with limited resources. Tri-axial ac-
celeration is sampled continuously at 51.2 Hz. Gait is detected
by analyzing the peaks in the acceleration magnitude, which
are generated by the ground reaction force when the foot hits
the ground. A new gait segment is detected when 8 consecutive
steps are found. The algorithm ensures that only homogeneous
gait segments are detected: a filter based on standard deviation
is applied using the duration of even and odd steps as inputs.
In addition, the first two and the last two steps in a sequence
of consecutive steps are discarded, as they tend to be highly
irregular.

TABLE II
SELECTED FEATURES

AC C1 AC DP2 AAV
vertical

AAV
horizontal

Duration Mean Median P2P

RMS Standard Deviation ZCR

C. Preprocessing

To reduce noise, the acceleration signal of each gait segment
is low-pass filtered at 20 Hz using a second-order Butterworth
filter. After, three values are found for each tri-axial accelera-
tion sample: (i) the Euclidean norm of the acceleration vector
(acceleration magnitude), (ii) the acceleration along the direc-
tion of gravity (vertical acceleration), (iii) the Euclidean norm
of the acceleration vector on the horizontal plane (horizontal
acceleration magnitude). Vertical acceleration and horizontal
acceleration magnitude are calculated as indicated in [31].

D. Feature extraction

The features used are listed in Table II. Feature selection
was performed by means of a greedy heuristic approach,
starting from a set of 43 features. The optimized metric was
the average classification accuracy obtained by the anomaly
detection algorithm.

Mean, median, Peak-to-Peak amplitude (P2P), RMS, stan-
dard deviation, and Zero Crossing Rate (ZCR) are statistical
measures which have been widely used for activity recognition
purposes [32]. Duration is the duration of the gait segment.

The Average absolute Acceleration Variation (AAV) has
been previously proposed to improve the accuracy of fall
detection systems [33], [34]. It is found according to the
following equation:

AAV =
N�1X

i=1

|x
i+1 � x

i

|
N

,

where N is the number of samples in the segment; x
i

is the
i-th sample in the segment.

AC C1 is the autocorrelation coefficient at the first dom-
inant period, while AC DP2 is the second dominant period
of autocorrelation. Unbiased autocorrelation coefficients are
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calculated as follows:

AC
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where AC
k

is the k-th unbiased autocorrelation coefficient;
N is the number of acceleration samples in the gait segment;
x
i

is the i-th sample minus the average of the samples in the
gait segment. After the autocorrelation coefficients have been
found, a peak detection algorithm is used to find the dominant
periods in the autocorrelation signal.

AC C1, AC DP2, median, and RMS are calculated on the
acceleration magnitude of the gait segment samples. Mean and
standard deviation are calculated on the horizontal accelera-
tion. P2P and ZCR are calculated on the vertical acceleration.
AAV is calculated on both vertical and horizontal acceleration.
In total, a gait instance is a vector with eleven features. Since
vertical acceleration and horizontal acceleration are estimated
using an orientation-independent technique, the user can wear
the device without caring about its orientation.

Hereafter we use the term gait instance or simply instance
to refer to the vector of features obtained from a gait segment
through the above described feature extraction process.

E. Anomaly detection
The proposed anomaly detection algorithm is a binary

classifier based on k-Nearest Neighbors (k-NN) analysis. Gait
instances are either classified as abnormal (positive) or normal
(negative). In this study, the term normal denotes the user’s
typical gait patterns when he/she starts wearing the device.
These patterns are learned by the system in a totally unsu-
pervised fashion: a personalized training set is created with
the gait segments detected in the first few days of use. This
unsupervised approach for generating the training set relies
on the implicit assumption made by unsupervised anomaly
detection systems: normal instances are far more frequent
than anomalies [35]. In our application scenario, the user
starts wearing the device after that a clinical assessment has
been performed by a geriatrician. If the user is not currently
recovering from an injury, it is reasonable to expect that
his/her gait ability will not change significantly in a few days
following the assessment. Hence, the instances obtained in the
training period represent a reliable picture of the gait ability
assessed by the geriatrician.

At the end of the training phase, the instances in the training
set are used as model to identify anomalies. Firstly, for each
gait instance g

i

in the training set, an anomaly score AS
i

is
found as

AS
i

=
kX

j=1

distance (g
i

, n
j

),

where n
j

is the j-th nearest neighbor of g
i

in the training set.
The distance between two gait instances is found using the
Euclidean distance. Let f

ij

be the j-th feature of gait instance
g
i

, the distance between two instances g
x

and g
y

is defined as

distance (g
x

, g
y

) =

vuut
11X

j=1

(f
xj

� f
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)2.

TABLE III
GAIT EXPERIMENTS CHARACTERISTICS (AVG. ± STD.DEV.)

Experiment Duration [s] Speed [m/s] Stride [s] Steps

Normal 106.9 ± 14.3 1.33 ± 0.19 1.12 ± 0.08 190 ± 21

Mild 113.9 ± 16.5 1.26 ± 0.19 1.15 ± 0.08 198 ± 23

Severe 117.2 ± 17.8 1.22 ± 0.19 1.16 ± 0.09 201 ± 24

Mild Both 117.7 ± 18.3 1.22 ± 0.20 1.16 ± 0.09 203 ± 24

Fig. 2. Each volunteer simulated three different types of impaired gait: mild
knee condition, severe knee condition, and mild condition in both knees. Mild
condition was simulated using a Neo-G thigh support strap wrapped around
one knee. Severe condition was simulated wrapping two straps at the same
knee. Finally, to simulate mild problems in both knees, a strap was wrapped
around each knee.

Before this calculation, the features are normalized using
the minimum and maximum values in the training set. This
ensures that different features contribute to the distance with
equal importance.

Afterwards, a threshold TH is defined to discriminate
between normal and abnormal instances. Given a coverage
index c 2 [0, 1], TH is chosen such that the proportion of
instances in the training set having an anomaly score smaller
than TH is equal to c. Whenever a new gait instance g

new

is
found, its corresponding anomaly score AS

new

is calculated,
and the new instance is classified as abnormal if and only if

AS
new

> TH.

The behavior of the anomaly detection algorithm is de-
termined by the choice of the parameters k (number of
neighbors) and c (coverage index). In particular, c represents
the specificity obtained by the classifier on the training set, and
is used to define the threshold TH . For example, if c = 0.5,
the threshold TH is set as the median among the AS values
of the training instances, so that 50% of the instances in the
training set are classified as normal. A higher choice for c is
likely to produce a system less prone to false alarms (high
specificity). On the other hand, increasing c may decrease the
sensitivity of the classifier, leading to detect several abnormal
instances as normal. The method used to select k and c is
discussed in Section IV-C.
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IV. EXPERIMENTAL SETTING AND EVALUATION

In order to validate the proposed method, a gait dataset
was created with the help of volunteers. Experiments were
performed both in controlled and uncontrolled environment.
During data collection, the volunteers carried a Shimmer
device at their lower back using a belt. Acceleration samples,
collected with 51.2 Hz frequency, were saved into the device’s
Micro SD card to ensure repeatable evaluation of the method.
Then, an evaluation procedure was applied to the dataset to
verify the performance of the method.

A. Controlled experiments
30 healthy volunteers (18 males, 12 females, age

32.9 ± 12.2, height 171.1 ± 9.6 cm, weight 69.8 ± 15.2 kg)
performed gait-related experiments in a corridor measuring
⇠ 35 m. The following four types of gait were collected:
normal, mild knee condition, severe knee condition, and mild
condition in both knees. Each experiment was repeated four
times. In order to simulate gait changes due to limitation in
knee flexion, the volunteers were asked to wrap Neo-G thigh
support straps around their knees as shown in Figure 2. In
the mild condition simulation, one strap was wrapped around
one knee. In the severe condition simulation, instead, two
straps were wrapped around the same knee to emulate a
severe impairment. Finally, to simulate mild problems with
both knees, one strap was wrapped around each knee. In
the following we refer to these experiments using the terms
normal, mild, severe, and mild both.

In total 2673 gait segments were collected. Additional statis-
tics about these gait experiments are presented in Table III. For
each experiment, the average and standard deviation values
of the duration, speed, stride time, and number of steps are
shown. It is interesting to note that the average speed variation
between normal gait and mild knee condition gait was only
0.07 m/s. Such a difference cannot be easily detected relying
only on a single accelerometer [36].

B. Uncontrolled experiments
Four users who participated in the controlled experiments

were also involved in uncontrolled experiments, where about
48 hours of acceleration data was collected in total. During
these experiments, the users performed their habitual activities
and were allowed to change their footwear during the day. The
collected traces include different activities, such as climbing
stairs and walking outdoors on uneven terrain.

C. Evaluation procedure
The acceleration traces were transferred onto a PC for off-

line analysis. The first two parts of the method, gait detection
and feature extraction, were applied to the raw acceleration
signals to obtain gait instances. To evaluate the controlled
experiments, the following steps were taken for each user
u: (i) the anomaly detection algorithm was trained using all
the normal gait instances belonging to the user u except one
instance x, which was left out for validation; (ii) specificity
was estimated using the normal instance x; (iii) sensitivity

was estimated with respect to each simulated condition (mild,
severe, and mild both). This procedure was repeated N times,
where N is the number of normal instances belonging to u:
each time, a different normal instance was left out for vali-
dation (leave-one-out cross-validation). The overall specificity
and sensitivity values for the user u were calculated averaging
the results obtained for each different training set.

A similar analysis was carried out on the uncontrolled
experiments data. Ten-fold cross-validation was used to train
the classifier with a user’s normal instances: specificity was
estimated on the left-out normal instances, while sensitivity
was estimated on the simulated conditions performed by the
same user in the controlled experiments. In order to limit the
growth of the training set, a filter based on autocorrelation
was used. For each gait instance, the highest autocorrelation
peak (AC HP) was found: only the 100 most regular gait
instances detected during the training phase were actually
included in the training set. Also, the lowest AC HP value
in the training set AC HP

min

was used to reduce the number
of validation instances: gait instances having an AC HP value
lower than AC HP

min

were discarded. These highly irregular
gait segments, indeed, may have been produced while climbing
stairs or on highly uneven terrain and are unlikely to offer a
proper representation of the user’s gait patterns.

As a corollary contribution, we verified the efficacy of
the proposed feature set in representing gait patterns with
supervised classification. In this case, some standard classifiers
were used, such as Neural Networks and Random Forests. The
classifiers were trained using the user’s typical gait as well
as instances belonging to the anomalies to be detected. The
performance of the classifiers was evaluated using ten-fold
cross-validation on the controlled experiments. This analysis
allowed a partial comparison with the system presented in [27].

D. Selection of parameters

Before performing the procedures described above, the
parameters of the anomaly detection algorithm, k and c, were
set using the controlled experiments data. The value of k was
selected using Receiver Operating Characteristic (ROC) plots
and Area Under Curve (AUC) analysis. Then, c was selected
in order to maximize the following performance index: the
average between the mean and the worst case accuracy. The
worst case accuracy was included with the aim to have a more
conservative choice of c.

Figure 3a shows the ROC plot obtained by setting k = 3
and averaging the results obtained among different users. As
expected, the algorithm is more accurate in detecting the severe
and mild both conditions with respect to the anomaly produced
wrapping just one strap around a knee (mild condition).
ROC plots were generated for several k values (1-10), then
the respective AUC values were calculated and used as the
performance metric of the classifier (Figure 3b). The AUC
value shows negligible variations in the [3,7] interval: k = 3
was selected as a trade-off between accuracy and processing
requirements. According to that choice for k, the coverage
index c maximizing the overall accuracy was 0.80.
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Fig. 3. (a) ROC plot of the anomaly detection algorithm for each gait anomaly, using k = 3; (b) AUC of the anomaly detection algorithm (based on k-NN
sum) for different values of k and for each gait anomaly.

TABLE IV
CONTROLLED EXPERIMENTS AVERAGE AND WORST-CASE RESULTS

Class Anomalies (%) Accuracy (%)
average (worst) average (worst)

Normal 23.0 (26.9) N/A

Mild 84.5 (48.0) 80.8 (63.5)

Severe 96.1 (55.7) 86.5 (67.4)

Mild Both 93.1 (55.8) 85.1 (66.1)

TABLE V
UNCONTROLLED EXPERIMENTS AVERAGE AND WORST-CASE RESULTS

PLUS COMPARISON WITH CONTROLLED EXPERIMENTS

Class Anomalies (%) Accuracy (%)
avg (worst) controlled avg (worst) controlled

Normal 28.7 (35.4) 24.1 N/A

Mild 87.8 (52.7) 86.1 79.6 (63.5) 81.0

Severe 99.3 (97.1) 99.0 85.3 (67.4) 87.4

Mild Both 100 (100) 100.0 85.7 (66.1) 87.9

V. RESULTS AND DISCUSSION

This section reports and discusses the results obtained in
the controlled and uncontrolled experiments.

A. Results of controlled experiments

Table IV shows the results related to the controlled ex-
periments, which were performed by 30 users in a corridor.
The first row shows the rate of normal instances that were
mistakenly detected as anomalies. The remaining rows of
Table IV show the results related to the simulated impairments:
the second column shows the rate of abnormal instances which
were correctly detected (i.e. the sensitivity of the method),
while the third column shows the accuracy obtained for
each impairment. The accuracy was calculated as the average
between specificity and sensitivity.

On average, 23% of the gait instances are classified as
abnormal when the user is walking normally. Instead, when the
user’s gait pattern is abnormal, the rate of detected anomalies
raises up to 84.5% in the mild condition, 96.1% in the severe
condition, and 93.1% in the mild both condition. These results
meet the requirements of the novel application that we are
proposing, since the aim is to detect long-term changes in gait
patterns. Indeed, a predefined threshold on the detection rate
of anomalies could be used to classify a set of gait instances as
normal or abnormal, for example the instances collected during
a day. Only if an abnormal condition is detected for multiple
consecutive days an alarm should be raised, alerting the user
and his/her carer to take preemptive actions. For example,
according to the results presented in Table IV, in the controlled
experiments it is possible to successfully distinguish the whole
set of normal instances belonging to a single user from the set
of abnormal instances by using a threshold equal to 45%.

B. Results of uncontrolled experiments

Table V presents the results obtained in the uncontrolled
environments, where four users collected acceleration data
without supervision and during their habitual activities. For
each condition, it is shown the average rate of anomalies
detected and the average classification accuracy. Table V also
shows the average result obtained by the same four users in
the controlled experiments performed in the corridor. It is thus
possible to compare the results obtained in controlled and
uncontrolled environments by the same group of volunteers.

As expected, due to the higher variability of the gait pattern
during unsupervised activities, the classifier detected a higher
rate of anomalies during normal walking (+4.6%). Average
sensitivity, instead, was not affected significantly by the use
of a larger training set. In terms of average accuracy, there
was a 1.4% reduction in the mild condition, a 2.1% reduction
in the severe condition, and a 2.2% reduction in the mild both
condition experiment. However, a threshold equal to 45% can
be still used to successfully discriminate a user’s set of normal
gait instances from each set of abnormal instances.
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TABLE VI
SUPERVISED CLASSIFICATION ACCURACY (%)

Classifier Mild Severe Mild Both

Neural Network 91.2 97.2 96.5

Random Forest 88.6 93.8 94.2

Rotation Forest 91.1 96.7 94.9

M. Logistic 89.3 95.7 93.7

3-NN 89.9 96.6 94.6

C. Discussion

In all of the experiments described above, the anomaly
detection classifier was trained using only the user’s typical
gait. This is key for the application we are proposing, since
in practice abnormal gait examples (anomalies) will not be
available when the user starts wearing the device. In the
proposed approach, unsupervised and user-specific training of
the classifier can be obtained using the gait instances detected
in the first few days of use.

In these experiments, the number of instances used for the
training phase is not dynamically set. In a real deployment, the
system may terminate the training phase automatically when
the classifier’s specificity proves to be relatively stable, despite
new instances being detected and added to the training set.

Long term users complained that wearing a Shimmer at the
lower back for long periods is uncomfortable, mostly because
of its thickness. To overcome this issue, we envisage that
devices that can be attached to the skin as patches will be
commonly available to allow continuous and unobtrusive mon-
itoring of gait [37]–[40]. In addition, we plan to investigate
the use of the proposed technique on an ear-worn sensor.

To further verify the efficacy of the feature set, we com-
puted the classification accuracy also in a supervised fashion.
Five standard classifiers were used, and the average accuracy
among the users is shown in Table VI. Each column of the
table indicates the average accuracy achieved in distinguishing
normal gait from a specific gait anomaly. The classifiers were
trained using normal gait instances as well as examples of
the anomaly to be detected, thus achieving higher accuracy
with respect to the unsupervised anomaly detection algorithm.
As previously explained, this approach cannot be used in the
proposed application, since anomalies are totally unknown
when the user starts using the system.

Nevertheless, these results allow a partial comparison with
the system presented in [27]. In that work, an ear-mounted
sensor has been used to distinguish moderate knee impairment,
simulated using a knee brace, from normal gait. The average
accuracy is similar to the results presented in Table VI, but
the method presented here offers two main advantages: (i) the
use of a reduced number of features with low computational
requirements, enabling on-node feature extraction, (ii) success-
ful recognition of a mild condition, in which the reduction of
knee flexion capability and average speed were minimal for
most of the users in the dataset.

VI. ESTIMATION OF ENERGY CONSUMPTION

Being characterized by low computational requirements, the
proposed method can be implemented on a wearable device
like the Shimmer 2r (8 MHz CPU, 10 Kbyte RAM). This
aspect is key for continuous monitoring applications, as it
makes the wearable device totally independent from external
devices. On the other hand, it must be verified that on-
node processing is feasible and does not exhaust the device’s
battery. We thus estimated how energy consumption is affected
if the method is partially or entirely distributed. More pre-
cisely, we evaluated four different implementation strategies:
(i) the wearable device only performs acceleration sampling
and streams data to a base station, (ii) the wearable device,
beside acceleration sampling, also performs gait detection
and transmits acceleration samples only during gait periods,
(iii) the wearable device samples acceleration, performs gait
detection, extracts features and sends the latter ones to the base
station, (iv) all processing is executed on-node (sampling, gait
detection, feature extraction, and classification). In practice,
we identified two extreme strategies (complete off-loading
of computation vs all computation on-node) and two hybrid
strategies (with increasing amount of on-node computation).

The four implementation strategies can be built by combin-
ing the six tasks described in Table VII. Each strategy was
first implemented and executed on a Shimmer node in order
to verify that the wearable device is capable of performing
the required tasks in real-time. After, it was estimated the
power consumption determined by the strategy as well as the
expected battery duration on the Shimmer.

A. Tasks
The first task, Acceleration Sampling (AS), consists in sam-

pling acceleration with 51.2 Hz frequency: raw ADC readings
are saved into a ring buffer without further processing. Ac-
cording to our experiments, the power consumption generated
by AS was ⇠ 3.0 mW.

The second task, Radio Streaming (RS), consists in trans-
mitting the raw acceleration samples to a base station. RS
was implemented using the CC2420 IEEE 802.15.4 radio
module of the Shimmer. A simple communication protocol
was defined to ensure reliability. The radio is switched on
every 5 s to send the acceleration samples collected in the last
5 s interval. The receiver is supposed to be always listening,
and must acknowledge the beginning as well as the end of each
communication. When no retransmissions are required, the
transmission of the last 5 s of samples is executed in ⇠ 280 ms.
The average power required was estimated using CC2420
specifications, and thus considering a 52.2 mW consumption
while transmitting. Taking into account idle intervals, the
average consumption was ⇠ 2.9 mW.

The third task is Gait Detection (GD), which requires
⇠ 0.6 ms of processing for each acceleration sample. The
average power consumption was estimated considering a con-
sumption equal to 15.0 mW while processing (worst case in-
dicated in the Shimmer 2r manual). The result was ⇠ 0.5 mW.

The fourth and fifth tasks are Feature extraction (FE) and
Feature Streaming (FS) respectively. FE, applied to a gait
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TABLE VII
POWER REQUIRED FOR EACH TASK

Task Description Consumption

Acceleration Sampling (AS) Sampling acceleration with 51.2 Hz freq. 3.0 mW

Radio Streaming (RS) Streaming samples via radio (802.15.4) 2.9 mW

Gait Detection (GD) Real-time detection of gait segments 0.5 mW

Feature Extraction (FE) Feature extraction applied to a gait segment 2.7 mW

Feature Streaming (FS) Features are sent via radio to the base 0.5 mW

Classification (CL) Classification of a gait segment (anomaly detection) < 0.1 mW

TABLE VIII
POWER CONSUMPTION ACCORDING TO DIFFERENT IMPLEMENTATION STRATEGIES

Implementation strategy Idle user Walking user Average consumption Battery duration (days)
Tasks Power Tasks Power

Streaming samples continuously AS+RS 5.9 mW AS+RS 5.9 mW 5.90 mW 9.5

Streaming only during gait AS+GD 3.5 mW AS+GD+RS 6.4 mW 3.74 mW 15.0

On-node feature extraction AS+GD 3.5 mW AS+GD+FE+FS 6.7 mW 3.77 mW 14.9

Everything is done on-node AS+GD 3.5 mW AS+GD+FE+CL 6.2 mW 3.73 mW 15.1

segment, is executed in about 18% of the duration of the
gait segment itself. The average consumption, in this case,
was calculated with respect to a gait segment lasting 5 s. The
result was an average consumption of ⇠ 2.7 mW. FS, instead,
consists in transmitting the calculated features via radio (11
values, 22 bytes). The result was ⇠ 0.5 mW.

The last task is Classification (CL). For a training set made
of 100 gait instances, the time required to classify a gait
segment was ⇠ 13 ms. The impact on overall consumption
was negligible.

B. Energy consumption of the four implementation strategies

The evaluation of the different implementation strategies is
described in Table VIII. The second column reports which
tasks are executed when the user is idle (not walking) accord-
ing to each strategy. The third column indicates which tasks
are executed during walking activity. In both situations (idle
and walking), the power required was found by summing up
the consumptions due to each task. The fourth column reports
the average consumption according to the assumption that the
users walks two hours per day. Finally, the last column reports
the expected battery duration when a 450mA h battery is used
(the one available on Shimmer 2r).

In the first implementation strategy (first row of Table VIII),
the device does not perform any processing on sampled data:
samples are streamed via radio to an external device (AS+RS
tasks). Consequently, the average consumption is ⇠ 5.9 mW
regardless of the user’s activity. In all of the remaining
strategies GD is executed on-node. This allows to identify idle
intervals, which do not require further processing: when the
user is not walking the consumption is ⇠ 3.5 mW. During
gait, instead, samples can be alternatively sent to a base (RS),
partially analyzed on-node (FE+FS), or completely analyzed
on-node (FE+CL). If gait samples are transmitted via radio, the

power required is ⇠ 6.4 mW (AS+GD+RS). If feature extrac-
tion is done on-node and only the features are sent via radio,
the consumption is ⇠ 6.7 mW (AS+GD+FE+FS). Finally, if
everything is done on-node, there are no radio transmissions
and the power required is ⇠ 6.2 mW (AS+GD+FE+CL).

These results confirmed that executing the whole method
on the Shimmer device is feasible in terms of computational
power. At the same time the battery duration, when the
whole method is executed on-board, is much better than the
solution where computing is executed completely on the base
station. Hybrid solutions have approximately the same energy
requirements with respect to the completely on-board solution,
as in these cases the battery duration is always ⇠ 15 days.
However, the completely on-board solution is much more
flexible than the others and it is thus the one to be preferred: it
does not require to be in the communication range of the base
station and the device can operate autonomously. It should be
also noted that we considered a basic radio protocol, in which
the receiver is always listening and does not establish a secure
connection with the wearable device. Therefore, in practice the
consumption due to radio transmissions is likely to be higher
than the estimation we have just presented.

VII. CONCLUSIONS

A novel method to detect deviation in gait using a wearable
accelerometer has been presented. The proposed approach is
based on a specific set of acceleration features and unsu-
pervised anomaly detection. The results of the experiments
with 30 volunteers have demonstrated the robustness and ac-
curacy of the proposed method. An evaluation in uncontrolled
environments was performed with four volunteers, and the
results obtained in the respective controlled experiments were
confirmed. It was proved that all the required processing can be
executed on the wearable sensor node with limited resources,
enabling low-cost and continuous monitoring of gait. Early
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detection of gait changes could be used to reduce the risk
of falls, capture early signs of deterioration, and monitor the
progression of degenerative diseases.

In future work, we plan to investigate the use of clustering
to improve the performance of the anomaly detection process:
firstly, clusters may be used to merge similar instances and
make classification more efficient; secondly, clusters’ density
may be used as an additional indicator for detecting changes
in gait and suggest when a new clinical assessment would be
advisable.
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