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Abstract

With active IP geolocation, the position of an Internet host is estimated by measuring the network delay
from a number of other hosts with known position (usually called landmarks). In particular, after having
converted delays into distances, geometrical techniques like trilateration are used to provide the estimated
position on a global reference system. In this paper, we derive the Cramér-Rao Lower Bound (CRLB) of
IP geolocation. The CRLB defines a bound on the minimum mean squared error that affects any unbiased
estimator. From a practical point of view, the CRLB provides insights about the maximal theoretical
accuracy that can be achieved by IP geolocalization methods. The CRLB also provides conceptual tools
useful to understand how the position of landmarks and their distribution affect localization performance.
Results show that to obtain accuracy levels in the order of a few tens of kilometers, the number of landmarks

to be involved can be relevant and/or their distance from the target cannot be too large.
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1. Introduction

Knowing the geographical position of an Inter-
net host is useful in a wide range of distributed
applications and networking services. Examples in-
clude delivery of customized content based on users’
positions, and localization of sources of illegal con-
tent [1]. Detailed knowledge about the position of
hosts also provides the opportunity to include the
geographical domain in the study of large scale net-
works (e.g. for inferring the topology of the Inter-
net [2], or analyzing global routing policies). Un-
fortunately, the link between an IP address and its
geographical position is in general very weak.

Nowadays, Internet hosts are mainly localized
with the help of static sources of information, such
as registries and databases. In detail, the IP ad-
dress of the host is used to infer the identity of the
organization responsible for such device, then an
estimated position of the host is obtained via ad-
ministrative data. However, the accuracy of these
databases is in general not excellent, especially for
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very large institutions. Some studies made evident
that errors in the order of several thousand kilo-
meters are possible [3, 4]. In fact, when a very
large organization is involved, the registry may re-
ply with the administrative address of the company
headquarter, which can be far away from the real lo-
cation of the devices under its addressing umbrella.
Another problem of this approach is related to the
presence of possibly stale information, as database
entries are frequently filled by hand.

For this reason, in the last years, research on ac-
tive IP geolocation methods gained momentum [5,
6, 7, 8,9, 10, 11, 12]. With active IP geolocation
methods, the device to be localized (the target)
is georeferenced through network delay measure-
ments. First, the end-to-end delay between the tar-
get and a number of landmarks (hosts with known
position) is measured using active probes (e.g. by
using the ICMP protocol). Then, delays are con-
verted into distances according to a previously de-
fined delay-distance model. Finally, the coordinates
of the target are inferred using geometrical tech-
niques (e.g. trilateration) [13]. Nevertheless, also
with active IP geolocation, achieving good accu-
racy is not straightforward, as the localization pro-
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cess is characterized by errors and approximations.
In particular, some of these inaccuracies are in-
troduced by time-dependent factors, such as back-
ground traffic and processing delay incurred at in-
termediate routers, whereas others are systematic,
such as the assumption that the physical path tra-
versed by probes is the shortest one. To improve
localization accuracy, some studies tried to incor-
porate in the localization procedure also informa-
tion about intermediate nodes [5, 14]. Other work
also discussed the possibility of using smartphones
as landmarks (thanks to their self-positioning capa-
bility) [15]. Localization error achieved by current
techniques ranges from a few tens to a few hundreds
of kilometers. Results obtained by different meth-
ods are not easily comparable because of the sig-
nificantly different scenarios and conditions where
evaluation has been carried out.

An aspect that has been scarcely investigated
is the maximum theoretical accuracy that can be
achieved by active IP geolocation methods. In this
paper the Cramér-Rao Lower Bound (CRLB) of IP
geolocation is derived and analyzed, as far as we
know, for the first time. The CRLB represents the
theoretical lower bound on the variance of any un-
biased estimator of an unknown parameter (in this
case the position of the host to be localized). Un-
biased estimators that achieve this bound are said
to be fully efficient. The CRLB has been exten-
sively used during the last decades to evaluate nu-
merous positioning techniques, as well as the im-
pact of their parameters of operation on localization
accuracy. For instance, the CRLB has been used
to compute the maximum accuracy of localization
systems for mobile devices [16, 17], indoor localiza-
tion [18], and wireless sensor networks [19, 20, 21].
Gerzici provides an overview of the theoretical lim-
its, via CRLB, for a number of algorithms in the
context of wireless positioning [22].

The aim of this paper is to determine the maxi-
mum theoretical accuracy of active IP geolocation.
First, we characterize the delay-distance relation-
ship using a large existing dataset. Our analysis
shows that estimated distances are characterized
by a Gaussian error with a standard deviation that
linearly depends on the distance between the two
endpoints. Then, we derive the CRLB for IP ge-
olocation and we use it to compute the maximum
accuracy that can be achieved in some reference sce-
narios. In particular, we evaluate the impact of the
following factors: i) number of landmarks, i) dis-
tance from the target, #i) number of probes used
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o Estimated position

Figure 1: A simple localization scenario.

to measure the delay. Results show that to obtain
relatively small localization errors the number of in-
volved landmarks can be relevant and they cannot
be too far from the host to be localized.

The remaining of the paper is organized as fol-
lows: in Section 2, the assumed localization proce-
dure is presented together with the adopted system
model; Section 3 describes the delay-distance re-
lationship and characterizes the associated errors;
the Cramér-Rao Lower Bound derived from system
model and error characteristics is presented in Sec-
tion 4; the influence of the above mentioned factors
on localization accuracy is discussed in Section 5;
Section 6 presents the most relevant work in the
field; Section 7 discusses the impact of some pa-
rameters of operation and compares results with
the ones of a well-known geolocalization method;
Section 8 concludes the paper.

2. Localization procedure and system model

Many localization procedures consist of two
phases. In the first phase, usually called ranging,
the distances between the entity to be localized and
a number of points with known position are esti-
mated. In the second phase, three or more ranges
are used to infer the position of the entity to be lo-
calized. Figure 1 shows a simple example: the first
phase determines the radius of circles, whereas the
second phase produces the estimated position.

In an IP geolocation scenario, an Internet host
(the target, T') can be localized by estimating its
distance from a number of landmarks. A landmark



is just an Internet host with known geographical co-
ordinates that participates in the localization pro-
cess. Let I = [l1,...,In]T be the set of landmarks.
Also, let 8 = [xy]T be the coordinates of the target,
and 6; = [z;y;]T the coordinates of [;. The distance
between a given landmark and the target can be es-
timated by measuring the one-way communication
delay between the two hosts. Since the clocks of the
two hosts are not synchronized, a simple method
consists in measuring the Round Trip Time (RTT)
and halving the result. To measure the RTT, each
landmark sends a probe packet (usually an ICMP
echo request) and measures the time needed to re-
ceive the reply from the target (usually an ICMP
echo reply). Everything is done under the assump-
tion that the reply follows the same route of the re-
quest (this is not always true in the Internet, but it
is generally considered reasonable for the purposes
of IP geolocation)!.

To reduce the error that affects the ranging
phase, the delay between a given landmark and
the target is collected a number of times. In
fact, the experienced delay depends on a number
of factors such as background traffic, load of tra-
versed routers, processing load of the target, etc.
Let R be the number of values collected, and let
m; = [m;1, M2, ...,m; g] be the set of one-way de-
lay samples between [; and the target. To limit the
distortions introduced by cross traffic and variable
load levels, each landmark selects the minimum ob-
served value. Let us define 7h; = min(m;). Then
m; is used for computing the estimated distance
r; between [; and the target using a function that
models the delay-distance relationship.

Let us call @ = [ §]7 the estimated position of T.
Let us also define r = [r1,rs,...,rN]T the vector of
measured distances between T and the landmarks,
and d = [dy,ds, ...,dN]T the vector of real distances
between T and the landmarks. Ranging informa-
tion can be modeled as

r=d+e (1)

where e = [ey,ea,...,en]T is the vector of errors
associated to the ranging phase. A circle with ra-
dius r; is thus defined for the i-th landmark. In
the ideal case of perfect measurements (i.e. when
r =d), the N circles have a single intersection. In
the real world, the presence of noise in measure-
ments produces situations where the circles have

1This modus operandi has been adopted in all studies
about active IP geolocation.

no intersection or where their intersection is not
unique (as shown in Figure 1). When e is not a
zero vector, the estimated position () is generally
different from the actual one (0). The euclidean
distance between the actual position of the target
and the estimated position is used to evaluate the
performance of a localization system.

In summary, we assume that the localization pro-
cess operates as follows:

1. each landmark measures the communication
delay towards the target R times;

2. each landmark I; selects the minimum observed
value m;;

3. the estimated distance between [; and T is cal-
culated as r; = g(m;), where g() is the function
that models the delay-distance relationship;

4. the position of T is estimated using the known
positions of landmarks and previously com-
puted distances.

Note that in the considered model the elements of
e can be both positive and negative, as they repre-
sent the deviation from the average delay-distance
behavior. The function g() used to convert delays
into distances is based, as better explained in Sec-
tion 3, on a conversion factor that incorporates all
the differences that can be observed for the existing
end-to-end paths. For instance, let us consider the
circuitousness of a path, i.e. its deviation from the
shortest distance calculated along the surface of the
Earth. A very circuitous path is characterized by
a smaller delay-to-distance conversion factor with
respect to a more rectilinear path. The g() func-
tion can only incorporate the average level of cir-
cuitousness, as knowing the real value for the con-
sidered path would require to know the exact posi-
tion of all intermediate routers. The same applies
for other factors, such as the speed of the transmis-
sion medium or the number of intermediate nodes.

It is evident that characterizing the delay-
distance model (function g()) and the nature of
noise (e) is extremely important, as they have a
deep impact on localization accuracy.

3. Delay-distance model

As mentioned, distances between the target and
landmarks are estimated by measuring delays and
then using a conversion function. In this section
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Figure 2: Scatterplot of real distance against observed delay
(D dataset).
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Figure 3: Scatterplot of real distance against observed delay
(D’ dataset). Each distance is present only once. The line
represents the linear delay-distance model, with coefficient
obtained through regression.

we describe how the conversion function has been
calculated on a large existing set of end-to-end mea-
surements. We also studied the variance that affects
delay measurements for a given distance.

3.1. Ezperimental data

We built a dataset D using measurements col-
lected by the PingER project, a measurement in-
frastructure aimed at studying the end-to-end de-
lay on the Internet [23]. PingER comprises approx-
imately 39 probing machines and 430 probed hosts
(the number of both probing machines and probed
hosts may slightly vary depending on the considered
period). The position of both probing machines and
probed hosts is known, thus it is possible to com-
pute the real distance? between the two endpoints

2The distance has been calculated as the great circle dis-
tance, i.e. the the shortest distance between two points on

involved in delay measurements. The position of
probing machines and probed hosts is shown in Fig-
ure 4.

In PingER, each probing machine periodically
sends a sequence of ten probes towards a set of
probed hosts. Probes are based on ICMP. Collected
RTTs are stored on a database and are publicly
available through a Web interface. We extracted
from the PingER database all measurements com-
prised in a one year interval.

For each sequence of ten measurements, we se-
lected the minimum value as it corresponds to
the measurement affected by the smallest error (as
mentioned, errors due to queues and processing
loads are additive). The D dataset consisted of
more than 7 million measurements. A scatterplot of
D is shown in Figure 2 (actually, Figure 2 shows a
small fraction of all measurements, randomly sam-
pled, for the sake of image clarity). Several horizon-
tal bands are visible in the scatterplot. These bands
originate from the large number of delay measure-
ments associated to a single distance. It is evident
that some couples of hosts are much more repre-
sented than others. This, in turn, means that the
dataset is unbalanced in terms of distribution of
distances. An unbalanced dataset could be source
of possible distortions. For this reason we created
a new dataset D’ by purging over-represented dis-
tances from D.

More formally, let us define the jth element in D
as (0;, ;) where ¢; is the real distance between the
two hosts involved and p; is the minimum observed
delay in the sequence of ten measurements. In D, it
frequently happens that §; = 0 with j # k. In D',
if j # k then §; # J;. In addition, in D’ only mea-
surements where p; < 50 ms have been included.
We decided to remove all measurements character-
ized by “very large” delay values as they may be
affected by significant errors. It has been shown
that when the delay is large, the estimated distance
scarcely contributes to the localization process [15].
A scatterplot of D’ is shown in Figure 3.

To avoid possible biases depending on the spe-
cific subset of measurements extracted from D and
included in D’, we generated 500 instances of D’.
Each instance of D’ is generated by extracting a
randomly chosen set of measurement from D (but
still preserving the above properties). Results pre-
sented in the remaining of the paper have been ob-

the surface of the Earth measured along the surface of the
Earth.



(a) Probing machines

(b) Probed hosts

Figure 4: Position of probing machines and probed hosts.

tained averaging the output for all D’ instances (but
we refer to the generic D’ instance for the sake of
clarity).

3.2. Model

The relationship between distance and delay is
assumed to be linear. This assumption is motivated
by the fact that the only component of the end-to-
end delay that is dependent on the physical distance
is the propagation delay, which increases linearly
with the distance. Thus, the delay-distance model
we use can be defined by the following equation:

r=p-m (2)

where r is the vector of estimated distances, m is
the vector of observed minimum delays, and p is
a coefficient. We applied linear regression to the
D’ dataset, in order to compute p. Result of lin-
ear regression is represented by the red line in Fig-
ure 3. A value of p equal to ~ 62.7 km/ms has
been obtained. This value is in line with previ-
ous studies, such as [24]. As also discussed in Sec-
tion 2, Equation 2 captures the average behavior
of the delay-distance relationship. This means that
Equation 2 can produce both over-estimations and
under-estimations of real distances. For instance,
if a given path is characterized by the presence of
outdated communication technologies (say charac-
terized by larger than average communication la-
tency), then the estimated distance for a given ob-
served delay will be an over-estimation of the real
distance. On the contrary, if a path is character-
ized by a better than average communication la-
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Figure 5: The set of data is divided in eight bins; for each
bin the average value of the distances in the bin is depicted
as a black diamond, together with the standard deviation of
the distance estimation error obtained using the Equation 2.

Polynomial model | o(u) =c+s*pu
s 27.29 km/ms
¢ 32.46 km
R-square 0.9558

Table 1: Fitting results for standard deviation of e against
observed delay.

tency, then the real distance is going to be under-
estimated.

3.8. Analysis of dispersion

It is evident from Figure 3 that the dispersion of
measurements increases as the observed delay gets
larger. To better study this phenomenon we di-
vided D’ in eight equally spaced bins, according to
the value of the observed delay. The eight bins are
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Figure 6: Linear regression of the standard deviation against
observed delay (center of bins).

visible in Figure 5. For all elements of D’, we com-
puted the difference e; between the real distance
separating the two hosts involved in the jth mea-
surement and the estimated distance computed us-
ing Equation 2 (i.e. e; = d§; —p-p;). Figure 5 shows
the mean value of ¢ for each bin, and the standard
deviation of e values for the same bin. We used
the Kolmogorov-Smirnov test to verify if the set of
e values in each bin is compatible with the normal
distribution (at 5% significance level). For ~ 53%
of the bins the test does not reject the null hypothe-
sis, whereas for the other bins the null hypothesis is
rejected. For the sake of simplicity, we assume that
the distribution of e is normal in all bins. We then
performed weighted linear regression of the stan-
dard deviation of e against the delay corresponding
to the center of bin, with weights inversely propor-
tional to the variance of obtained samples. Figure 6
shows the data points used for regression and the
line obtained as result. Parameters obtained from
linear regression and the value of R-square are re-
ported in Table 1. In the end, e ~ N(0,0?) where

c=c+k-d (3)

with ¢ = 32.46 km and k = 0.44 (k is obtained
as s/p). In practice, this means that the standard
deviation of the error that affects measurements in-
creases linearly with distance.

4. Cramér-Rao Lower Bound for IP geoloca-
tion

The CRLB provides a lower limit for the co-
variance matrix of any unbiased estimator:

cov(0) > I(0)7* (4)

where cov(f) is equal to Eg{(6 — 6)(6 — 0)T},
and I(0) is the Fisher Information Matrix (FIM).

“X > Y” means that matrix (X —Y) is non-
negative definite, and Eg{} is the expectation con-
ditioned on 6. The inverse of FIM is also called
CRLB matrix.

Measured distances are assumed to be statisti-
cally independent. The measured distance between
T and the ith landmark is r; = d; + e;, with
di =+/(x — ;)2 + (y — v:)?, and ¢; a Gaussian er-
ror with zero mean and standard deviation equal to
0;. According to our model, standard deviation lin-
early depends from the distance between the target
and the landmark: o; = c+ k - d;.

If N is the number of landmarks, the likelihood
can be expressed as

Hrgz‘”p ) O

and the log-likelihood is equal to

log (710) =

Zlogfz (ri|0) = Z(log(mm) 2_022 )

The FIM I(0) has elements defined as follows:

[1(0)]u.0

& [[alog f(r|0)]} -

06,00,

with © and v € 1..2 for our bi-dimensional scenario
(and thus 6, = and 0, = y).

The ith component of Equation 6 can be ex-
panded as

log fi(ri|0) =
(e
(Ti V(@ —z)?+ (y— yi>2)2
p
i)

(8)

and its second partial derivative with respect to =
is:
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A= (22 —2x;)?
B = (r; - VE)?
C = 4D?E = 40?d?
D=c+kVE =c+kd; =0
E=(z—x)?+ (y—w)=d

Considering that E [r;] = d; and E [r?] = d?+0?2,
we obtain E [B] = d? + 0,2 + d? — 2d7 = 0;2. Then
it is easy to find that

02 log fi(r;|0) (- 7;)?(2k% + 1)
E [ Oz? ] T o 2d? (10)
Symmetrically, we can find that
8y2 Ui2dz2

The mixed partial derivative of the i¢th element
of Equation 6 can be expressed as

9? log f(r;|0) _

0zdy
&log f(r:|0)  kAB  AB N k*AB
Oyox  AEF3 C C
AB(ri —VF) 3k*ABD  kAB((ri —VF))
AE2F3 AFAF E3F
RABD (19)
4E3F32
where

A =2y —2y;

B =2x — 2z,

C = 4E*F = 402d?
D = (r; — VF)?

E:c—|—k\/l?zai
F=(@—z)+Wy—-w)’=d

Again, considering that E [r;] = d; and E [r?] =
d? 402, we obtain E[D] = d? + 0,2 +d? —2d? = 0,2
Then it is easy to find that

d%log f(r;10)]1  _ [9%log f(ri|0)]
R e Rl
_ (@ —w)(y — i) (1 + 2k%)

O'i2d?

(13)

In the end, the elements of I are the following
ones:

1 + 2k2 — X; 2
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The elements of I can also be expressed as fol-
lows:

N 2 2
I — Z (14 2k )QCOS () (17)
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ZN: (1 + 2k?) sin(a;) cos(ay)

(19)

i=1 2

where «; is the angle between the target and the
ith landmark.

The CRLB defines a lower bound on the mean
square error (MSE) of a position estimate:
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Figure 7: Accuracy when using 3 landmarks.

MSE = Eo{[|6-]} = trace{Eo{(6-6)(§—-6)"}}

> trace{I(0)"'} = MMSE (20)

where MMSE is the minimum mean square error.
Localization accuracy can be defined as the
square root of the minimum mean square error

(RMSE).

5. Numeric analysis

In this section we present a numerical analysis of
localization accuracy, as resulting from the CRLB
previously found. In particular, we studied how lo-
calization accuracy is influenced by the most impor-
tant parameters of operation: the number of land-
marks, the distance between target and landmarks,
and the number of probes

The area where both target and landmarks are
located is supposed to be 3000 km x 3000 km (for
a comparison we remind that the surface of USA is
approximately 9.8 millions km? and the area of EU
is approximately 4.5 millions kmz). The N land-
marks are randomly scattered over the considered
area.

5.1. General considerations

Figure 7 shows the value of RMSE in a scenario
with three landmarks. The two figures depict the
same results as a 3D mesh and as a level plot, to
make evident the location of the three landmarks

and the accuracy levels. It is straightforward to no-
tice that the area delimited by the three landmarks
is characterized by better localization accuracy (ap-
proximately 470 km). The regions characterized by
the worst RMSE values (~ 1800 km) are the ones
in proximity of these points: (1500 km, 0 km), (0
km, 3000 km), (3000 km, 3000 km). The average
value of accuracy on the whole region is ~ 750 km.
These values are due only to the geographical dis-
tribution of the considered landmarks and their dis-
tances from the considered points.

Inaccurate selection of landmarks may cause sig-
nificant degradation of accuracy values. For in-
stance, Figure 8 shows a scenario where the three
landmarks are almost collinear. In this case, the
maximum RMSE value, near the (3000 km, 0 km)
corner, is approximately 7770 km. This value of
RMSE is ~ 4.2 times higher with respect to the
maximum RMSE of the previously considered sce-
nario (depicted in Figure 7). Also the average value
of accuracy for the whole region worsens, as it be-
comes equal to 885 km.

RMSE values for the above three-landmark ex-
amples are rather high. This is due to the small
number of landmarks and to the large distances be-
tween landmarks and possible positions of the tar-
get (the errors that affect ranges increase with dis-
tance).

These considerations may seem obvious and some
of the guidelines for the selection of landmarks are
somehow intuitive. Nevertheless, the use of the
CRLB allows the designer of an IP geolocation sys-
tem to evaluate quantitatively the impact of land-



10000

5000

RMSE (km)

X (km) 3008

(a) Accuracy: 3D representation

3000 T

2000

£

<

>

1000
o e
0 1000 2000 3000

x (km)

(b) Accuracy: level curves

Figure 8: An example of inaccurate selection of landmarks.

10 |
—#— Minimum
’é\ 1 0+ Maximum
£ ay, Mean
W 102 Bv o ‘ 3
g 10 i\ O O o
x o
—— e _
————————— *
10° ; ‘ ‘ ‘
0 500 1000 1500 2000

Number of landmarks
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marks selection. For example, given a set of land-
marks, if the average localization accuracy is con-
sidered as not satisfactory, the localization system
may use the CRLB to select those additional land-
marks that provide the highest improvement (in-
stead of enrolling additional landmarks that may
bring only marginal gain).

5.2. Varying the number of landmarks

Increasing the number of landmarks that partic-
ipate to the localization procedure usually provides
better accuracy. Obviously, this comes at the cost
of additional traffic and complexity of coordina-
tion. Figure 9 shows how RMSE is influenced by
the number of landmarks. In particular, the mean
value of RMSE is shown when the number of land-
marks is in the {10, 20, 50, 100, 200, 500, 1000, 2000}
set. Results are averaged over 30 executions, where
each execution is characterized by a different and
randomly chosen placement of landmarks. Figure 9
also reports the average minimum and maximum
values of RMSE that are achieved with a given

number of landmarks. First, it can be noticed that
increasing the number of landmarks, not only pro-
vides better results in terms of average RMSE, but
it also reduces its variability. This is caused by the
fact that as the number of landmarks gets larger,
the area is covered more uniformly. Second, us-
ing a very large number of landmarks (say more
than 500) provides a marginal gain in terms of ac-
curacy (for the considered area). In fact, doubling
the number of landmarks (to one thousand), causes
the average RMSE to change from ~ 22 km to
~ 15 km. In this case, CRLB provides to the de-
signer of an IP geolocation system the opportunity
to quantitatively evaluate the possible benefits as-
sociated to the involvement of additional resources
(landmarks). Third, even when using a very large
number of landmarks, e.g. one thousand, the local-
ization error can be still be in the order of a few
tens of kilometers. These accuracy levels can be
incompatible with some applications. In addition,
they are reached using a number of landmarks that
could be unpractical to manage in a real system.
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5.3. Varying the distance between target and land-
marks

We studied how the CRLB is affected by the
distance between target and landmarks. In the
3000x3000 km? area previously considered, 500
landmarks have been randomly placed. We then
computed the RMSE value at point C' with coor-
dinates (1500 km, 1500 km), i.e. the center of the
region. The RMSE value has been calculated using
W landmarks belonging to an annulus, as depicted
in Figure 10. The inner radius of the annulus has
been varied to increase the distance between the
W landmarks and C. The whole procedure has
been repeated 100 times, each with a different ini-
tial placement of landmarks. Figure 11 shows three
curves, representing the average value of RMSE;,
computed for three values of W, respectively equal
to 10, 50, and 100. It is evident that when the
distance between target and landmarks increases,
the RMSE value increases as well. For the three
curves, the standard deviation of obtained values is
also reported.

5.4. Varying the number of probes

As mentioned, to measure the communication de-
lay between the target and a landmark, the latter
sends a sequence of probes (the number of probes
is equal to R) and selects the minimum value (77;).
This is done to remove, as far as possible, the ad-
ditional delay introduced by queues and processing
load. Increasing the number of probes may pro-
vide a better estimate of the distance between two
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Figure 11: Accuracy when varying the distance between tar-
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Figure 13: Average minimum delay when varying the num-
ber of probes; values are normalized against the average min-
imum value obtained when using 50 probes.

hosts. On the other hand, the use of large R val-
ues has negative effects as well: the duration of the
localization process increases, the global amount of
generated traffic gets larger, and the target has to
reply to a possibly suspicious number of probes (the
localization activity could be mistaken as a denial
of service attack).

Figure 12 shows the accuracy of localization when
the number of probes used by each landmark is



is varied between 10 and 50 (the number of land-
marks has been kept fixed and equal to 100). Lo-
calization accuracy does not improve significantly
when the number of probes is increased. Figure 13
shows the average minimum value obtained when
using a number of probes in the 10-50 interval; val-
ues are normalized using the average minimum ob-
tained when using 50 probes. Two considerations
can be made. First, the curve is almost flat on
the right-hand side of Figure 13: this means that
50 probes are sufficient to obtain a minimum value
that is reasonably close to the real one (using a
larger number would produce small changes in the
observed delay, according to our dataset). Second,
variations in the observed delay have a moderate ef-
fect on localization accuracy. The m obtained when
using 10 probes is ~ 30% higher than the one ob-
tained when using 50 probes, whereas the difference
in RMSE obtained when using 10 and 50 probes is
in the order of ~ 3%. This is due to the fact that in-
creasing the number of probes helps to alleviate the
distortions introduced by run-time factors, such as
queues and processing time. However, other sources
of error in the distance estimation process are not
affected by the use of a possibly larger number of
probes. Examples include the different degrees of
circuitousness of end-to-end paths and the hetero-
geneity in transmission technologies [25].

6. Related work

This section summarizes the most relevant ap-
proaches for geolocating an IP address using active
measurements. Also some related studies about
CRLB, but in other localization domains, are in-
cluded.

Constraint-Based Geolocation (CBG) is a lo-
calization method based on geographical con-
straints [6]. Each landmark measures the RTT
towards the target and estimates the distance be-
tween them. Then, a circular feasible region is de-
termined for each landmark. Finally, the intersec-
tion of these regions is used for obtaining a small
geographic area where the target must be located.
CBG includes a calibration phase aimed at deriv-
ing an accurate model of the delay-distance rela-
tionship. During calibration, each landmark mea-
sures the RTTs with respect to all other landmarks
and uses these measurements to define a landmark-
specific linear distance estimator.

GeoBuD is another geolocation method based on
constraints [14]. GeoBuD improves on CBG by es-
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timating the amount of buffering occurring at in-
termediate routers, and thus obtaining a more ac-
curate delay-distance model. This produces more
stringent constraints and, as a consequence, a
smaller intersection region. Experiments carried
out on PlanetLab show that GeoBuD is able to
obtain a smaller localization error with respect
to CBG. For instance, in one of the considered
datasets, the median error is 144 km for GeoBuD
and 228 km for CBG. Another geolocation systems
that uses information about intermediate routers is
Topology-based Geolocation (TBG) [5].

The Octant framework uses both positive in-
formation, i.e. information related to where a
node may be located, and negative information,
i.e. information about where a node cannot be lo-
cated [26]. Landmarks are calibrated by measuring
the delays towards all other landmarks. The con-
vex hull containing the delay-distance data points
is used to calculate both upper and lower bounds in
the delay to distance conversion. To cope with cir-
cuitousness of paths, Octant geolocalizes also inter-
mediate routers and uses them as secondary land-
marks. RTTs are measured by sending ten ICMP
probes and selecting the minimum value. An exper-
imental evaluation has been carried out using the
PlanetLab network in North America.

A technique based on Maximum Likelihood Es-
timation is presented in [27]. The authors collected
a set of delay-distance measurements using Planet-
Lab (limited to the North American region). Sam-
ples have been divided in bins, then the mean value
for each bin has been computed to obtain a linear
relationship between distance and latency. The ge-
olocation algorithm estimates the position of the
target by maximizing the likelihood function (on
the base of measured delays). The maximum is
found via exhaustive search on the considered area.

The relationship between delay and other geo-
graphic and network properties is discussed in [28].
The analysis is based on information theory and
evaluates the amount of information that network
and geographic variables provide about other prop-
erties. Data has been modeled as a 7-dimensional
discrete random variable. The conditional entropy
of a variable of interest with respect to observed
variables has been evaluated. This has been done
for both quantitative variables (such as distance
and RTT) and categorical variables (such as coun-
tries or subcontinental zones). According to the
authors, the strongest predictor for great circle dis-
tance is the pair of countries the hosts belong to.



This is however an information that cannot always
be available via network measurements. The anal-
ysis is based on a dataset comprising ~ 200M RTT
samples between ~ 54K DNS servers. The posi-
tion of the hosts involved in the study has been
extracted from IP geolocation databases.

Padmanabhan et al. [1] proposed three differ-
ent techniques: GeoTrack, which uses DNS based
information to infer the position of the target
host, GeoPing, which is based on delay measure-
ments collected from a number of landmarks, and
GeoCluster, which groups IP addresses and then
finds their positions using information from several
sources.

GeoGet is a geolocation system that uses HTTP
requests for evaluating the delay between the target
and the set of landmarks [9]. In detail, the target
plays the active role and initiates measurements to-
wards Web servers with known locations. Multiple
measurements towards a single server are executed,
then the minimum value is used for further process-
ing. The estimated position of the target is set to
the landmark with smallest RT'T (thus, in this case,
there is no delay-to-distance conversion).

The CRLB has been extensively used for eval-
uating the efficiency of position estimators in dif-
ferent localization scenarios. Qi et al. evaluated
via CRLB the accuracy of a number of positioning
methods (based on time of arrival, time difference
of arrival, angle of arrival, and signal strength) [16].
The properties of the CRLB for the time difference
of arrival localization technique is also discussed
by Yang et al. [29]. The CRLB of a localization
method based on received signal strength has been
refined to incorporate also the effects due to signal
power and frequency [30].

In the context of wireless sensor networks, a geo-
metric interpretation of the CRLB was given both
for anchored localization and for anchor-free local-
ization [20]. In the anchored localization model
there are at least three nodes with known posi-
tions. In anchor-free localization no nodes have
known positions and the only information available
is the inter-node distance measurement. Authors
show that local geometry can be used to predict
localization accuracy. The use of CRLB for local-
ization in wireless sensor networks is also discussed
by Savvides et al. [21].
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7. Discussion

As mentioned, circuitousness of paths is one of
the “confounding factors” in the delay-distance re-
lationship. It is known that the level of circuitous-
ness is not constant across the different regions of
the globe. For instance, some paths in the African
Internet are characterized by higher-than-average
levels of circuitousness [31]. This is due, in large
part, to the fact that local ISPs are often not
present at local exchange points or, when present,
they frequently do not have peering agreements.
This reduces the availability of direct paths between
network sources and destinations. Round trip times
are also influenced by the adopted policies for both
intra- and inter-domain routing: Zheng et al. [32]
presented cases of structural violations of trian-
gle inequality caused, for instance, by hot potato
routing (another source of violations is represented
by the use of link weights that are strongly diver-
gent from their geographical extension). In gen-
eral, different levels of circuitousness can be ob-
served depending on the economical, technologi-
cal, and geographical characteristics of the consid-
ered region. Similar considerations can be made
for the other factors influencing the delay-distance
model, such as the adopted communication tech-
nologies. In the end, the imperfect homogeneity of
all these influencing elements is the cause of pos-
sible geographically-dependent fluctuations of the
coefficients used in Equations 2 and 3.

However, the impact of these fluctuations on the
analysis presented in this paper is limited: an IP ge-
olocation method is supposed to operate on a global
scale, thus it makes sense to understand which can
be its average localization accuracy in such global
scenario. Obviously, in some regions the effectively
reachable accuracy will be better than the average,
whereas in others it will be worse than the aver-
age. Moreover, the main contribution of this work
is, in our opinion, represented by the analytical ex-
pression of the CRLB presented in Section 4. The
numerical analysis has then been carried out using
the parameter values we found for the global sce-
nario using the PingER dataset, as we felt this is
the most common way of operation. If a regional
analysis is of interests (e.g. for a system operating
only in Europe or in Africa), it is sufficient to re-
compute the parameters (e.g. the values of p and
k in Equations 2 and 3) for the considered region
and substitute the values into the provided CRLB
expression.
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Figure 14: Accuracy of localization in the USA when using
the hosts of NLARN AMP [33] as landmarks.

We compared the CRLB derived in this paper
with the results obtained by CBG. We chose CBG
because it has in turn been used as a comparison
term in several subsequent works. The performance
of CBG was originally evaluated using hosts with
known positions. In particular, the NLARN AMP
dataset [33] was used to compute the accuracy of
CBG on 95 hosts in the USA. CBG geolocated each
host one at a time, using the remaining hosts as
landmarks. The mean error distance of CBG on
such dataset is 182 km. The median error and the
80th percentile on the same dataset are 95 km and
277 km.

We evaluated the CRLB using the same locations
of targets and landmarks used for evaluating CBG.
In particular, we used Equations 17, 18, 19 with
the great circle distance as d. The median, mean,
and 80th percentile values of RMSE are equal to 44
km, 51 km, and 70 km, respectively. These values
are smaller than the ones obtained by CBG. This is
expected as the CRLB provides the maximum ac-
curacy that can be obtained by an ideal non-biased
estimator. These values suggest that some improve-
ments are still possible.

Since the delay-distance model we used has been
generated using only delays below 50 ms, we car-
ried out the same analysis taking into account this
factor. We re-evaluated the CRLB using only land-
marks whose distance from the target is below the
distance corresponding to the maximum considered
delay. Results (median, mean, and 80th percentile
of RMSE) changed minimally (fractions of km).
This also confirms that distant landmarks are able
to provide only limited information.
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Finally, we evaluated the CRLB on the entire sur-
face of the USA using the NLARN AMP hosts as
landmarks. Figure 14 shows the results as a 3D
mesh. The right-hand side of Figure 14 corresponds
to the the East coast of the US. The position of
some landmarks is visible, whereas others are hid-
den by the mesh. “Peaks” and “valleys” are just
caused by the non uniform distribution of land-
marks on the USA surface.

8. Conclusion

Literature discussing the importance of the
CRLB for localization purposes is rather abundant,
and attention generally focused on its adoption in
the context of wireless sensor networks or for local-
izing mobile terminals. Somehow surprisingly, as
far as we know, its use for a deeper understanding
of IP geolocation has never been considered.

Since the CRLB provides a measure of the max-
imum theoretical accuracy that can be achieved by
a localization system, we advocate its use as a base-
line for assessing the performance of future and ex-
isting localization systems. If a real implementa-
tion obtains accuracy results that are close to the
ones expressed by the CRLB, there is little reason
to continue research in such direction, as significant
improvements are difficult to achieve.

It is worthwhile to notice that the CRLB here
presented has been derived from the observation of
the minimum delay in a sequence of measurements,
and that changing the observed variable may lead
to different results. However, it is also important to
stress out that using the minimum of a sequence of
measurement is common practice in IP geolocation,
as it reduces the impact of additional noise found
at run-time.

Results show that obtaining a localization error
below 20 km requires the use of a number of land-
marks so large to be unpractical (when the area
of operation has the size of a continent). Thus,
measurement-based geolocation can be incompati-
ble with applications with very stringent require-
ments in terms of accuracy. Results obtained when
varying the distance between landmarks and target
can be useful for the design of future IP geolocation
systems. For instance, the analysis suggests that
a multi-stage approach can be beneficial: first, a
number of landmarks in proximity of the target are
identified (e.g. using non measurement-based infor-
mation), then the measurement-based phase takes



place using only these landmarks (which are char-
acterized by reduced distance from the target).
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