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A general formulation is proposed to control the integral amplification factor of har-
monic disturbances in weakly non-parallel amplifier flows. The sensitivity of the local
spatial stability spectrum to a base-flow modification is first determined, generalizing
the results of Bottaro et al. (2003). This result is then used to evaluate the sensitivity of
the overall spatial growth to a modification of the inlet flow condition. This formalism
is applied to a non-parallel Batchelor vortex which is a well-known model for trailing
vortices generated by a lifting wing. The resulting sensitivity map indicates the optimal
modification of the inlet flow condition enabling to stabilize the helical modes. It is shown
that the control, formulated using a single linearization of the flow dynamics carried out
on the uncontrolled configuration, successfully reduces the total spatial amplification of
all convectively unstable disturbances.
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1. Introduction

In the framework of linear stability analysis, open flows showing self-sustained os-
cillations, such as spiral vortex-breakdown (Ruith et al. 2003; Qadri et al. 2013), are
globally unstable and are called oscillators. In contrast, stable flows which exhibit a
strong response to external disturbances are named amplifiers. Trailing vortices gener-
ated by a lifting wing are a classical example of amplifier flows in aeronautics (Spalart
1998) and are commonly modeled by using the self-similar solution proposed by Batche-
lor (1964). In its parallel approximation the stability properties of the Batchelor vortex
have been well characterized in the literature. For instance, Lessen et al. (1974) and
Mayer & Powell (1992) found that inviscid helical modes are temporally unstable and
higher wavenumber modes are destabilized when the swirl increases (Duck & Foster
1980). These helical modes reach their maximum growth rate at a certain swirl number
(Leibovich & Stewartson 1983) before getting stable when the azimuthal velocity of the
vortex further increases. The mechanism underlying this destabilization is a generalized
centrifugal instability unravelled by Ludwieg (1962), Leibovich & Stewartson (1983) and
Eckhoff (1984). On the other hand, viscous modes have been investigated numerically
and asymptotically by Khorrami (1991); Heaton (2007); Fabre & Jacquin (2004); Fabre
et al. (2006), whereas Delbende et al. (1998); Olendraru et al. (1999); Olendraru & Sellier
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(2002) carried out a spatio-temporal analysis showing that in the case of strong advection
and moderate wake deficit (approximately less than 80% of the external flow) the flow is
convectively unstable. More recently, Heaton et al. (2009) carried out a global stability
analysis of a non-parallel Batchelor vortex with an inflow wake deficit of 90% that is
locally absolutely unstable close to the inlet and globally unstable. In the framework of
amplifier flows, Viola et al. (2016) investigated the response to harmonic inlet and body
forcing of a globally stable non-parallel vortex by a using local WKB approach and a
global resolvent analysis.

These studies suggest that the stability properties of swirling flows depend in a com-
plex way on multiple factors, such as the advection rate, the swirl number, the presence
of localized forces, turbulence level, fluid properties, domain geometry and boundary con-
ditions. Thus, a modification of one of these factors yields a variation of the linearized
operators of the stability analysis which turns into a modification of the eigenvalues in
the stability spectrum. The dependence of the stability properties on one or more of these
factors is commonly called sensitivity. Chomaz (2005) explained that the sensitivity may
become large when the linear stability operator is non-normal, which is usually the case in
hydrodynamics. For this reason several studies have been devoted over the years to sen-
sitivity analyses. Giannetti & Luchini (2007) defined the so-called structural sensitivity,
which is the sensitivity to a spatially localized feedback and showed that the combined
analysis of the global mode and its adjoint mode allows the identification of the wave-
maker of the stability, i.e. the core region where the self-excited instability mechanism
takes place. Bottaro et al. (2003) were the first to study the sensitivity to a base-flow
modification and they identified the regions of the parallel Couette flow where a base
flow modification has the most significative effect on temporal stability. Such base-flow
variations can be the result of a passive control acting on the flow. Using a variational
technique, Marquet et al. (2008) derived a general expression of the base-flow sensitivity
valid for oscillator flows.

In the case of amplifiers, the flow response to an external forcing is given by the resol-
vent analysis (Chomaz 2005) and its sensitivity with respect to a base-flow modification
was derived analytically by Brandt et al. (2011). They focused on the variation of the
resolvent norm in the case of the Blasius boundary layer subjected to a harmonic body
force where both component-wise and convective non-normalities are present. This analy-
sis was applied by Boujo & Gallaire (2015) to the backward-facing step flow and extended
to the case of inlet forcing and time-stochastic perturbation. However, when the base flow
evolves slowly in the advection direction these global approaches overlook the physical
amplification mechanism, which is the convective growth of perturbation that can be
related to the local stability properties of the flow. Indeed, by using both a local WKB
asymptotic analysis (Crighton & Gaster 1976) and a global resolvent approach (Åkervik
et al. 2008) for a non-parallel Batchelor vortex, Viola et al. (2016) showed that the linear
global amplification of perturbations in amplifier flows is well captured by the spatial
stability branches. This raises the question if it is possible to determine a systematic way
to control the spatial amplification of a given mode, i.e. its global amplification, resulting
from the integration of the local spatial growth along the streamwise direction.

The objective of this paper is to provide a general framework so as to solve the men-
tioned control problem. The method proposed here generalizes to the case of weakly
non-parallel amplifier flows the adjoint-based strategies usually employed for controlling
oscillators (see Camarri (2015) for a review). Noise amplifiers comprise many fundamen-
tal flows as for instance boundary layers, convectively unstable wakes, trailing vortices,
thus the proposed method is general and has many direct engineering applications. In
this paper we present only a particular prototypical application, which consists in con-
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Figure 1. (a) Velocity components of the parallel Batchelor vortex with wake and swirl pa-
rameters equal to α = 0.667 and S = 0.333, respectively. (b) Temporal growth rate maximized
over the streamwise wavenumber, maxk(ωi), for increasing swirl number at Re = 100, α = 0.667
and azimuthal modes m = 1, 2, 3. The vertical line depicts the swirl number used in the paper
(S = 0.333). (c) Local spatial stability properties of the flow, where the spatial growth rate, −ki
of the unstable helical perturbations m ∈ {−1, 1, 2, 3} is reported as a function of the frequency
ω. The red circle refers to the maximum −ki, which corresponds to m = 1 and ω = 0.6.

trolling the spatial instability of the non-parallel Batchelor vortex using a perturbation
of the velocity profile generating the vortex.

The particular selected test case, which is aimed at showing an example of flow control,
is loosely applicable to disturbances suppression in trailing vortices (Spalart 1998) and
in wind turbine wakes (Iungo et al. 2013). To this purpose we need first to address in sec-
tion 2 the sensitivity of the local spatial stability problem in the parallel flow framework.
The non-parallel Batchelor vortex flow and its local stability properties are presented in
section 3. Successively, on the basis of the previous result, the sensitivity of the integral
amplification factor of a single helical disturbance to a modification of the inflow vortex
velocity is derived in section 4. Furthermore, a strategy to design the passive inlet con-
trol to stabilize all helical modes amplified over the vortex flow is proposed in section 5.
Lastly, conclusions and possible applications are discussed in section 6.

2. Sensitivity of the local spatial stability spectrum

2.1. Parallel flow and spatial stability analysis

Although the formalism used here applies to all kind of convectively unstable shear flows,
we consider now a Batchelor vortex profile with dimensionless velocity components

Ur = 0, Uθ = S(1− e−r
2

)/r, Ux = 1− αe−r
2

, (2.1)

which are shown in Figure 1(a). Here, r, θ and x are the cylindrical coordinates and α,
S are the wake and swirl parameters and Re designates the Reynolds number, which is
based on the vortex core radius and on the free-stream axial velocity. The behaviour of
infinitesimal three-dimensional disturbances, q(x, r, θ; t) = (u, p), superimposed on top
of the base-flow is described by the linearized Navier-Stokes equations

∂u

∂t
+ U · ∇u + u · ∇U = −∇p+

1

Re
∆u, ∇ · u = 0, (2.2)

where u and p are the disturbance velocity and pressure. In the case of parallel axisym-
metric base-flow, these perturbations can be decomposed in the standard form

q(x, r, θ; t) = q̂(r)ei(kx+mθ−ωt), (2.3)
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where m is the azimuthal wavenumber and q̂(r) = (û, p̂).
The wake parameter and Reynolds number are here set to α = 0.667 and Re = 100

respectively, and the swirl parameter, S, is chosen in such a way to ensure the simulta-
neous amplification of different helical modes in the swirling wake. By recalling that in
temporal analysis framework k is real and ω is taken complex, figure 1(b) displays the
temporal growth rate, ωi, maximized over the streamwise wavenumber, k, for m = 1, 2, 3
and increasing swirl parameter. It shows strong competition between the first and second
helical mode at S = 0.333, which is further considered in this study. Such a competi-
tion is representative of several swirling jet/wake experiments (Gallaire & Chomaz 2003;
Iungo et al. 2013). The considered test-case vortex was shown to be convectively unstable
by Viola et al. (2016), calling for a spatial stability analysis, where the frequency ω is
real and wavenumber k complex. The real part of k, kr, corresponds to the streamwise
wavenumber of the traveling perturbation and the imaginary part of k, in particular
−ki, is the spatial amplification rate. The equations governing the linearized dynamics
of q̂, obtained by substituting the normal mode expansion (2.3) in equations (2.2), are
reported in appendix A. They can be recast in a quadratic eigenvalue problem of the
following type

k2C2(U, ω)q̂ + kC1(U, ω)q̂ + C0(U, ω)q̂ = 0, (2.4)

where the linear operators C0, C1, C2, together with boundary conditions are also reported
in the appendix A. The discretization is ensured through a Chebyshev spectral collocation
method including an algebraic mapping of the domain, as detailed in Viola et al. (2014),
where the influence of the radial extension of the domain is discussed in appendix B.
In Figure 1(c) the spatial growth rates are shown as a function of the frequency ω,
and the integer numbers at the curves’ peaks depict their azimuthal wavenumber mode,
m. In particular four helical modes are seen to be amplified in space and m = 1 at a
frequency approximately equal to 0.6 is the dominant mode. For this particular case,
(m = 1, ω = 0.6), the eigenvalue spectrum that is obtained by solving numerically equa-
tions (2.4), is reported in Figure 2(a): unstable perturbations propagating downstream
are characterized by a positive phase velocity, ω/kr, and a negative growth rate, ki. Thus,
the eigenvalues of interest are located in the fourth quadrant, i.e. kr > 0 and ki < 0. The
red circle depicts the non-spurious eigenvalue associated with the largest spatial growth
rate and whose imaginary part corresponds to the red circle in Figure 1(c). This eigen-
value was distinguished among many spurious eigenvalues (out of the figure’s visualization
axis) by using the Gaster transformation of the temporal analysis, which has been used
to obtain a target for the complex k+ spatial branches as explained in more detail in
Iungo et al. (2013).

2.2. Generic sensitivity analysis of the local stability problem

The sensitivity of a given eigenvalue k to generic perturbations of the linear operators in
equation (2.4) is here derived by a standard expansion procedure. A small variation of
the linear operators C′0 = C0 +δC0, C′1 = C1 +δC1, C′2 = C2 +δC2 yields a small variation of
the eigenvector q̂′ ∼ q̂+ δq̂ together with a small variation in the eigenvalue k′ ∼ k+ δk.
At first order we have:

δk = −< q†, [δC0 + kδC1 + k2δC2]q̂ >p
< q†, [C1 + 2kC2]q̂ >p

, (2.5)

where < · >p designates a suitable scalar product in the framework of parallel flows and
q† = (u†, p†) is the adjoint vector of the stability eigenproblem (2.4) associated with the
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Figure 2. In (a) the circles are the spatial stability spectrum of the parallel Batchelor vortex
with α = 0.667, S = 0.333, Re = 100, m = 1 and ω = 0.6. The red circle indicates the most
unstable physically meaningful eigenvalue. The blue asterisks mark the variation of the dominant
eigenvalue (red circle) due to a modification of the base-flow velocity components, see text. The
red line in (a) is the linear prediction of the eigenvalue variation based on the sensitivity map,
whose components are reported in (b).

defined scalar product. From now on we will use the Hermitian inner product defined as

< qA,qB >p=

∫ ∞
0

qHAqBrdr, (2.6)

where the symbol H indicates the trans-conjugate and qA and qB are two complex vector
fields. In this case, the adjoint vector satisfies the following adjoint eigenvalue problem:

k∗
2

C†2q† + k∗C†1q† + C†0q† = 0, (2.7)

where the superscript ∗ designates the complex conjugate and the adjoint operators
C†0, C†1 and C†2 are reported in appendix A. The adjoint vector q† is defined up to a
multiplicative factor and from now the chosen normalization is such that the denominator
of the expression (2.5) is equal to 1. Equation (2.5) is the generalization of the sensitivity
of a standard eigenvalue problem described in Chomaz (2005), which would correspond
to the case C2 = 0.

2.3. Sensitivity of the local spatial stability properties to base flow modifications

We are now interested in determining the sensitivity of k to a generic base-flow modifi-
cation δU = (δUr = 0, δUθ, δUx), where the restriction δUr = 0 is dictated by the local
analysis setting. A perturbation at the base-flow level in the linearized equation (2.2)
yields a perturbation of the linear operators δC0, δC1, δC2 such that δC2 = 0 and

[δC0 + kδC1]q̂ =


imûrδUθ/r + ikûrδUx − 2ûθδUθ/r

ûr∂δUθ/∂r + imûθδUθ/r + ikûrδUx + ûrδUθ/r
ûr∂δUx/∂r + imûxδUθ/r + ikûxδUx

0

 . (2.8)

Substituting equation (2.8) in equation (2.5) and integrating by parts we can transfer
the differential operators from the vector δU to the adjoint vector u†. If the base-flow
modification does not occur at the domain boundaries, the boundary terms coming from
the integration by parts are null and equation (2.5) reads:

δk = {∇Uk, δU}, (2.9)
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where the complex vector

∇Uk =

 0

im(u†xû
H
x + u†rû

H
r + u†θû

H
θ ) + ∂u†θ/∂r û

H
r + u†θ∂û

H
r /∂r + 2u†rû

H
θ /r

ik(u†xû
H
x + u†rû

H
r + u†θû

H
θ ) + ∂u†x/∂r û

H
r + u†x∂û

H
r /∂r + u†xû

H
r /r

 (2.10)

is the sensitivity of the considered spatial eigenvalue, k, to a base-flow modification.
The azimuthal and streamwise components of ∇Uk are the sensitivities of the complex
eigenvalue k to an azimuthal and streamwise base-flow modification. Their real (dashed
line) and imaginary (full line) parts are reported in Figure 2 (b) for the most unstable
spatial eigenvalue of the parallel Batchelor vortex in the case of α = 0.667 and S = 0.333,
i.e. m = 1 and ω = 0.6. Since ∇Uk is a complex vector and δU is a real quantity, the real
part of ∇Uθk and ∇Uxk, are the sensitivities of kr to a generic base-flow modification.
On the other hand, the sensitivity of the spatial growth rate is given by the imaginary
part of expression (2.10). The radial component of the sensitivity to base-flow is null
consistently within the parallel flow assumption of the local analysis.

From the sensitivity maps in Figure 2 (b), it is seen that a base-flow modification
with positive azimuthal and streamwise components superimposed to the reference base-
flow (2.1) leads kr to increase. Moreover, a swirl increase and a decrease of the wake deficit
yield a lower spatial growth-rate −ki. Hence, equation (2.9) allows us to determine the
direction of displacement of the spatial eigenvalues in the complex k−plane corresponding
to a given base-flow modification. In order to verify the sensitivity maps we study the
effect of a specific base-flow modification, i.e. δUx = ce−r

2

, on the most unstable spatial
eigenvalue in Figure 2 (a). The considered base-flow modification mimics a variation
or uncertainty on the wake parameter α in equation (2.1) and its effect on the spatial
stability is determined by solving the spatial stability analysis (2.4) with the modified

base flow component Ux+ ce−r
2

. Results are shown in Figure 2(a) for c ranging from 3%
to 30% of α. The true path followed by the selected eigenvalue in the complex plane as
the parameter c is varied is indicated with blue asterisks. The same path is approximated
by the red straight line using the sensitivity analysis carried out on the unperturbed flow.
It is seen that the perturbed eigenvalue positions, which migrates towards the stability
region as c is increased, are well aligned with the linear prediction provided by sensitivity
analysis, especially when c is small, thus validating the method and its implementation.
For larger base-flow modifications, nonlinearities neglected in the linearized relation (2.5),
become more important and lead to a progressively increasing discrepancy between the
predicted and the true eigenvalue trajectory.

Equation (2.10) is an extension to the spatial analysis of a concept that was originally
developed by Bottaro et al. (2003) for temporal analysis. It should be also noted that
the two non-null components of ∇Uk are equal to the azimuthal and axial components
of the vector

−u† · (∇û)H + û∗ · ∇u†, (2.11)

which is formally similar to the sensitivity to base flow modifications of a global mode
found by Marquet et al. (2008). The use of equation (2.11) in the framework of a local
stability analysis requires û to be the direct spatial mode, while u† is the spatial adjoint
vector which satisfies the spatial adjoint problem (2.7). Moreover, the streamwise and
azimuthal derivatives have to be replaced by the Fourier derivatives, according to the
modal expansion (2.3). Finally, the radial component of (2.11), which would give the
sensitivity to a radial velocity modification in a global framework, does not bear any
meaning in the local spatial analysis.



Flow control of weakly non-parallel flows 7

10 2 43 5 6 7 98 10

10 2 43 5 6 7 98 10

10 2 43 5 6 7 98 10

-2

 0

-4

-6

-8

x10
-3

0

1

2

3

0

1

2

3

0

1

2

3

0.15

0.2

0.1

0.05

0

0.8

1

0.6

0.4

Figure 3. (a) Radial, (b) azimuthal and (c) streamwise velocity components of the non-parallel
Batchelor vortex at Re = 100 with inlet condition given by the velocity profile in equation (2.1).

3. Uncontrolled trailing vortex prototype

Rather than parallel flows, we now consider weakly non-parallel amplifier flows which
slowly evolve in the streamwise direction, resulting in variations of the local stability
properties. The non-parallel Batchelor vortex represents a suitable prototype flow, where
its parallel approximation (2.1) considered in the previous section is here used as inlet
condition together with free-stress condition at the outlet and radial far-field boundaries.
Its velocity components and pressure Q = (U, P ) depend both an the radius r and the
streamwise distance x from the inlet and are found by solving the discretized Navier-
Stokes equations (3.1) in cylindrical coordinates:

N(Q,U0) =

(
U · ∇U +∇P − 1

Re∆U
∇ ·U

)
= 0, (3.1)

where the dependence from the inlet condition U0 is emphasized in the notation. For the
numerical solution of equations (3.1), we have used a Newton-Raphson method based on
a staggered pseudospectral Chebyshev-Chebyshev collocation method (Viola et al. 2016).
The computational domain is 0 < x < 20 and 0 < r < 10 and it has been discretized by
using 80 and 40 nodes in the streamwise and radial directions. The resulting velocity field
atRe = 100 is reported in Figure 3 (a,b,c). Note as in (a) the radial velocity is significantly
smaller than the other two velocity components, thus validating the assumption of weakly
non-parallel flow. Proceeding downstream the vortex core gets slightly diffused, as shown
in (b), and the axial velocity deficit in (c) gradually recovers. The flow is seen to be
locally convectively unstable and the resulting spatial growth rates, −ki, are reported in
Figure 4 as a function of the frequency, ω and the streamwise position, x. Consistently
with the spatial stability properties of the inlet section (see Fig. 1(c)) four helical modes
are amplified in the trailing vortex, namely m ∈ {−1, 1, 2, 3}. The largest amplification is
observed in the inlet region where the wake deficit is more pronounced. In particular, the
single helical mode, m = 1, has the largest spatial growth rate and is intense in the low
frequency band, whereas the double helical mode, m = 2, dominates for 0.8 < ω < 1.3.
In addition, m = 3 is the most amplified mode at high frequency and m = −1 is weakly
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Figure 4. Contours of the spatial growth rate −ki in the (ω, x) plane for the convectively
unstable helical modes, namely a) m = 1, b) m = 2, c) m = 3 and d) m = −1. Each colorbar
ranges from 0 (neutral amplification) to max(−ki(ω, x,m)). The horizontal dashed line in a)
corresponds to the spatial branch examined in section 4.

amplified at low frequency.
Asymptotic theory for a weakly non-parallel base flow (Huerre & Rossi 1998) prescribes

that the global disturbance with frequency ω and azimuthal wavenumber mode m takes
the following modulated wave form at leading order:

q(r, θ, x; t) ∼ q̂(r, x) exp

[
i

(∫ x

0

k(x′, ω)dx′ +mθ − ωt
)]

, (3.2)

where k(x, ω) is the local spatial eigenvalue at the flow location x and q̂(r, x) = (û, p̂) is
the corresponding spatial eigenvector. In particular, the perturbation (3.2) is amplified
or damped in space according to the local spatial growth rate −ki(x) and the integral
amplification factor

G(ω,m) = exp

(∫ xf

0

−ki(x′, ω,m)dx′
)
, (3.3)

is a measure of the ratio between the final, xf , and the initial, x = 0, disturbance
amplitudes, where xf has been set equal to xf = 10. G(ω,m), which is obtained by
integrating in x the spatial growth rates in Figure (4), is reported in Figure 9(b) by a black
line: the azimuthal geometry of the most amplified mode depends on the disturbance
frequency, with m = 1 well resonating around ω = 0.6 and m = 2 around ω = 1.1.

Furthermore, we define the total amplification factor as

Γ =
∑
m∈M

∫ ωmax

ωmin

G(ω,m)dω, (3.4)

where [ωmin, ωmax] is the frequency band of noise amplification (here equal to [0, 2.1],
see Fig. 9(b)) and M is the set of convectively unstable helical modes, namely M =
{−1, 1, 2, 3}. Γ represents the overall amplification of all modes at all frequencies after
they have undergone their entire amplification process in space between 0 and xf .

In what follows the sensitivity of the integral (3.3) and total (3.4) amplification factors
to an inflow modification is derived by using the results presented in section 2.3, thus
providing information for their control.
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Figure 5. Streamwise evolution of the (a) axialwavenumber, kr, and of the (b) spatial growth
rate, −ki, for the single-helix spatial branch at ω = 0.6.

4. Sensitivity of the integral amplification factor in weakly
nonparallel flows

4.1. Lagrangian formulation

In this section, specifically for control purposes, we are interested in determining the sen-
sitivity of the integral amplification factor (3.3) of a specific spatial mode. As a reference
case, we consider the streamwise evolution of the single helical mode m = 1 at frequency
ω = 0.6 in the evolving Batchelor vortex (see section 3) which is the most amplified
mode in the domain and which corresponds to the horizontal dashed line in Figure 4(a).
By carrying out the local spatial analysis at different positions in the x direction, it is
seen that both the axial wavenumber kr and the spatial growth rate, −ki, decrease while
moving downstream due to the reduction of the wake deficit, see Figure 5.

This control problem can be formulated as an optimization problem where the ob-
jective function is the integral amplification itself. Rather than a continuous approach
where the continuous optimization problem is defined and then discretized, we directly
apply the Lagrangian variational technique to the discretized governing equations:

LG(Q,U0) = G(Q) + λTN(Q,U0), (4.1)

where the superscript T stands for the transpose. The constraint is given by the dis-
cretized steady Navier-Stokes equations, N(Q,U0), and λ is the vector of Lagrange mul-
tipliers or discrete adjoint vector. Thus, the integral amplification factor (3.3) is written
in discretized form as follows:

G(ω,m) = exp

(
−

Nx∑
n=1

wnki(xn, ω,m)

)
. (4.2)

In equation (4.2) the coefficients wn are the integration weights of the standard trape-
zoidal formula and Nx is the number of locations used to discretize the streamwise
direction.

The gradient of the integral amplification factor G with respect to a base-flow inlet
modification is derived by considering variations of the Lagrangian LG. Imposing the
stationarity of LG with respect to λ reduces to the discrete state equation (3.1), which
is satisfied by the uncontrolled base-flow Q. Then, the stationarity of the Lagrangian
with respect to the state variable, Q, yields an equation which has to be satisfied by the
adjoint variable λ:

−λT∇QN = ∇QG, (4.3)

where ∇QN is the Jacobian matrix of the discrete Navier-Stokes operator. Recalling that
the local growth rates −ki(xn) depend only on the streamwise and azimuthal velocity at
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the location xn, the rhs of equation (4.3) can be rewritten as follows

∇QG = −G
Nx∑
n=1

wn [∇Uxki(xn)∇QUx(xn) +∇Uθki(xn)∇QUθ(xn)] , (4.4)

where the terms ∇Uxki(xn) and ∇Uθki(xn) are the local spatial sensitivities of ki to a
local base-flow modification and the related expressions have been already derived in
section 2.3. Specifically, ∇Uxki(xn) and ∇Uθki(xn) have to be evaluated by injecting the
local direct û(xn) and adjoint u†(xn) modes in equation (2.10). The terms∇QUx(xn) and
∇QUθ(xn) are the interpolation matrices which extract from a vector Q the streamwise
and azimuthal velocity components at the streamwise position xn. Hence, given the local
spatial sensitivity analyses, the adjoint vector λ can be determined by solving the linear
system (4.3).

Finally, the derivative of the Lagrangian LG with respect to the control variable gives
the variation of the integral amplification factor with respect to a small-amplitude generic
inlet modification δU0:

δG =
dG(Q)

dU0
δU0 = λT∇U0

N δU0 (4.5)

where ∇U0
N is a restriction matrix, which extracts the velocity components at the inlet

x = 0 from a velocity-pressure vector Q. Equation (4.5) can be formally rewritten as

δG =< ∇U0G, δU0 > (4.6)

where < uA,uB >= uTAMuB is the inner product in the discrete setting, and M is
the integration matrix containing the integration weights on its diagonal. The real vector
∇U0

G is the integral amplification factor sensitivity with respect to an inlet modification,
and is defined as:

∇U0G = M−1 (∇U0N)
T
λ. (4.7)

For the reference case of ω = 0.6 and m = 1, the three components of ∇U0G, which
correspond to the sensitivity maps to a radial, azimuthal and axial inlet velocity modifi-
cation, are reported in Figure 6(a). The sensitivity with respect Uθ0 reveals that in order
to increase the amplification, the azimuthal velocity, and therefore the swirl parameter,
has to be decreased. Similarly, ∇Ux0G shows that an increase of the wake deficit and
a higher streamwise velocity at the vortex periphery lead to a more intense response
to noise. Due to the nonparallelism of the base-flow U, the spatial amplification is also
sensitive to a variation of the radial velocity. This velocity component acts on the local
spatial stability properties of the flow solely through the coupling with the streamwise
and azimuthal velocity components in the base-flow governing equations (3.1). In par-
ticular it is seen that a positive inlet radial velocity, which increases the vortex core
diameter and consequently favors the axial deceleration, has a destabilizing effect.

Similar results on the sensitivity with respect to radial and axial velocity components
are observed for m = 2 and m = 3 at the frequency corresponding to the largest am-
plification factor, ω = 1.1 and ω = 1.6 respectively, see Figure 7. In contrast to m = 1
(Fig. 6(a)), however, the sensitivity with respect to the azimuthal velocity is positive
in the core region for both m = 2 and m = 3. This signifies that an increase of the
swirl has a destabilizing effect on the double and triple helical modes. This result can
be rationalized by recalling that, starting from a pure axial flow, helical modes are first
progressively destabilized by an increasing amount of swirl till S exceeds S∗(m), beyond
which a further increase of swirl starts to have a damping effect, until complete stabiliza-
tion of the flow for S ≈ 1.5α (Mayer & Powell 1992; Delbende et al. 1998). As illustrated
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Figure 6. In (a) the sensitivity maps of G(ω = 0.6,m = 1) to a radial (green), azimuthal (red)
and axial (black) inlet velocity modifications. In (b) the true amplification factor modification
is reported with blue asterisks as a function of the magnitude of the inlet control c. The red
dashed line shows the linear amplification modification according to the inlet sensitivity map.
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Figure 7. Sensitivity maps of a) G(ω = 1.1,m = 2) and b) G(ω = 1.6,m = 3) to a radial
(green), azimuthal (red) and axial (black) inlet velocity modifications.

in Figure 1(b) for the flow pertaining at the inlet section, the swirl value corresponding
to the maximum growth rate, S∗(m), depends on the helical mode and it is seen to in-
crease with m for the chosen flow parameters, thus yielding a different sensitivity to a
modification in the inlet azimuthal velocity.

4.2. Optimal inlet control

The sensitivity ∇U0
G not only predicts the linear modification of the integral amplifica-

tion factor due to an inlet modification through (4.6), but it also corresponds to the most
destabilizing infinitesimal inlet modification (Camarri 2015). For this reason, ∇U0G can
be used to design an inlet control which stabilizes the global spatial branch. Figure 6(b)
shows the amplification variation of the single-helix spatial branch at frequency ω = 0.6
due to an inlet modification of the type δU0 = −c∇U0

G, with c the magnitude of the con-
trol. The blue line in that figure represents the real amplification variation with respect
to the uncontrolled condition. More precisely, at a given c, the real amplification varia-
tion (blue asterisk) is computed by (i) solving the non-linear base flow equations (3.1)
with the inlet condition U0 − c∇U0

G, and (ii) carrying out the spatial stability analysis
on the obtained base-flow. Then, (iii) the associated integral amplification factor G(c) is
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Figure 8. (a) Full lines indicate the velocity components of the uncontrolled inlet condition,
which correspond to the Batchelor vortex profile (2.1) with α = 0.667 and S = 0.333. The veloc-
ity components perturbed by the application of the control δU0 = 7·10−4∇U0G(ω = 0.6,m = 1)
are shown with dashed line. (b) Isosurfaces of ±95% of the maximum axial vorticity of the global
spatial mode (3.2) in the (b) uncontrolled and (c) controlled case.

computed according to the definition (4.2) and its variation ∆G = 1−G(c)/G(c = 0) is
obtained, where G(c = 0) is the amplification factor of the uncontrolled condition. It is
seen that the linear amplification variation predicted by equation (4.6), which is depicted
by a red line in Fig. 6(b), correctly captures the amplification variation for small values
of c. In contrast, due to the nonlinear dependence of the amplification factor on the
magnitude of the perturbation the error increases as c is progressively increased. Still,
the linearization leading to the sensitivity analysis allows the prediction of even large
variations of amplification with reasonable accuracy.

As an application, Figure 8(a) shows the uncontrolled and the controlled velocity pro-
files at the inlet for c = 7 · 10−4 (see Fig. 6(a)). Although the inlet condition differs very
slightly form the uncontrolled case, the effect of this variation on the considered insta-
bility is substantial as shown in Fig. 8(b) and (c) where the axial vorticity of the spatial
branch given by equation (3.2) with ω = 0.6 and m = 1 is reported. In the first case the
helical perturbation is convectively unstable in all the flow domain and is continuously
amplified while propagating. When the control is applied, the spatial branch is damped
for x > 7 and the integral amplification factor experiences a significative reduction of
35% with respect to the uncontrolled flow.

5. Sensitivity of the total growth factor in weakly nonparallel flows

5.1. Lagrangian formulation

The control strategy illustrated in the previous section is based on the inlet sensitivity
of the integral amplification factor of a single helical mode at a given frequency. Hence,
a control is designed to reduce the amplification of the single spatial branch considered,
but it could dangerously increase the spatial growth of other helical modes and of other
frequencies. Therefore, we now turn to assess the sensitivity of the total amplification
factor Γ (see equation (3.4)) to a modification of the inflow conditions. Indeed, the
control of Γ requires to account for the local growth rates of all helical modes in their
entire frequency band of amplification.

Similarly to the analysis in section 4.1, the problem can be tackled by considering the
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following Lagrangian:

LΓ(Q,U0) = Γ(Q) + ξTN(Q,U0). (5.1)

The steady Navier-Stokes equations N(Q,U0) is the constraint, the Lagrange multiplier
ξ is the adjoint vector and the quantity to minimize is now the total amplification factor
Γ(Q), which in discrete form reads:

Γ =
∑
m∈M

Nω∑
l=1

αlG(ωl,m) =
∑
m∈M

Nω∑
l=1

αl exp

(
−

Nx∑
n=1

wnki(xn, ωl,m)

)
. (5.2)

As in equation (4.2), the coefficients wn are the integration weights of the standard
trapezoidal formula and Nx is the number of locations used to discretize the control
window in the streamwise direction. In addition, the coefficient αl are the integration
weights corresponding to the integral in the frequency domain, which is discretized using
Nω points and M = {−1, 1, 2, 3} is the set of convectively unstable helical modes.

When imposing the stationarity of LΓ with respect to ξ, the problem reduces to the
discrete state equation (3.1), which is satisfied by the uncontrolled base-flow Q and that
we have determined previously. Then, the stationarity of the Lagrangian with respect to
the state variable, Q, yields a governing equation for the adjoint variable ξ

−ξT∇QN = ∇QΓ, (5.3)

which is now forced at the right-hand-side by the variation of the total amplification
factor, Γ, with respect to a variation of the baseflow, Q. This term can be rewritten as
a function of the sensitivities to a base-flow variation of the helical modes’ amplification
factors at different frequencies,

∇QΓ =
∑
m∈M

Nω∑
l=1

αl∇QG(ω,m), (5.4)

which reduces, by using equation (4.4), to a weighted sum of the local spatial sensitivities
to a generic local base-flow modification (see section 2.3):

∇QΓ =
∑
m∈M

Nω∑
l=1

−αlG(ω,m)

Nx∑
n=1

wn [∇Uxki(xn)∇QUx(xn) +∇Uθki(xn)∇QUθ(xn)] .

(5.5)

Note that the local sensitivities ∇Uθki(xn) and ∇Uxki(xn) in equation (5.5) are mul-
tiplied by the integral amplification factor of the given spatial branch G(ω,m). Hence,
as reasonable, most amplified helical modes correspond to a higher contribution to the
forcing term ∇QΓ. Then, by solving the linear system (5.3) for the adjoint field ξ, the
sensitivity of the total amplification factor with respect a small-amplitude generic inlet
modification δU0 reads:

∇U0
Γ = M−1 (∇U0

N)
T
ξ. (5.6)

The three components of the sensitivity ∇U0
Γ are shown in Figure 9(a) and they

correspond to the sensitivity maps to a radial (green line), azimuthal (red line) and axial
(black line) inlet velocity modification.

Similarly to the sensitivity maps in Figure 6(a) and 7, where only one helical mode at
a given frequency was considered, an increase of the wake deficit and a higher streamwise
velocity at the vortex periphery leads to a more intense amplification of disturbances.
Moreover, a positive inlet radial velocity is positively correlated with δΓ. In contrast, the
sensitivity with respect to a modification of the azimuthal velocity has not a monotonic
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Figure 9. Full lines in (a) show the sensitivity maps of the total amplification factor Γ (see
equation (5.6)) to a radial (green), azimuthal (red) and streamwise (black) inlet velocity mod-
ifications. The + symbols correspond to the sensitivity maps computed with a finer mesh (see
appendix B), showing convergence with respect to grid resolution. The variation of the integral
amplification factor G(ω,m) obtained by using the sensitivity map as inlet control δU0 = c∇U0Γ
is shown in (b). Gray lines correspond to several forcing amplitudes c ranging from c = 0 (un-
controlled condition, black line) to c = 2 · 10−3 (red line) in equal intervals.

behaviour since it is the result of a compromise between the sensitivities of different
helical modes. As previously discussed in section 4.1, double and triple helical modes are
destabilized by an increase of the azimuthal velocity close to the centerline, see Figure 7.
On the other hand, the single helical mode requires a decrease in swirl to enhance the
amplitude of the response, as depicted in Figure 6(a).

5.2. Optimal inlet control

The sensitivity map (5.6) is now used as an inlet control to reduce the integral ampli-
fication factor G(ω,m) of all helical modes over the base-flow. Figure 9(b) shows the
variation of G(ω,m) due to an inlet modification of the type δU0 = −c∇U0

Γ, with c the
magnitude of the control. Gray lines depict the dependence of G(ω,m) on the control
amplitude ranging from the uncontrolled condition c = 0 (black line) to c = 2 · 10−3 in
equal intervals. At a given c, the integral amplification factor is obtained by (i) solving
the non-linear base flow equations (3.1) with the inlet condition U0 − c∇U0Γ, and (ii)
carrying out the spatial stability analysis on the obtained base-flow.

The figure demonstrates how with a single linearization of the governing equation is
possible to design a control strategy able to reduce the spatial amplification of all convec-
tively unstable disturbances. In particular, with an amplitude of the control of c = 2·10−3

(red line) the integral amplification factor is reduced by 50% for m = 1 and by 40% for
m = 2 and higher azimuthal wavenumber modes are seen not to be destabilized by the
control. Moreover, the high frequency mode m = 3 is completely stabilized and m = −1,
which was already weakly amplified, is slightly stabilized.

Note that the control is more effective on m = 1 rather than m = 2, which progres-
sively becomes the most amplified mode while the control amplitude c is increased. This
behaviour can be explained by recalling that the control is designed on the uncontrolled
base-state where m = 1 has the largest G(ω,m) and therefore has the highest contribu-
tion to the forcing term (5.5) and on the sensitivity map. However, the sensitivity maps
defined here can be used in an iterative shaping of the control as proposed by Camarri &
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Iollo (2010). This technique, which is based on successive linearizations of the governing
equations, allows to properly modify the control according to the new stability property
of the controlled base-flow.

6. Conclusions

In this work a general formulation is proposed which allows the application of system-
atic adjoint-based techniques for the control of the integral amplification factor in weakly
non-parallel amplifier flows. The method is based on the sensitivity analysis of the local
stability properties of the flow, which was here derived by adjoint methods.

Firstly the sensitivity of the spatial stability spectrum of a locally parallel flow to a
generic modification of the stability operators and to a base flow modification is found.
In the case of a parallel Batchelor vortex, the local sensitivity map is seen to correctly
predict the displacement of the spatial eigenvalues in the complex k−plane due to a spe-
cific base-flow modification.

Then, for the purpose of control in slowly evolving amplifier flows, these local results
are used to determine the sensitivity of the spatial growth of disturbances to a modifica-
tion of the inflow conditions. Although the method can be easily extended to cover very
general cases, we presented here its application to the control of the spatial instability in
an evolving Batchelor vortex that is traditionally used to model trailing vortices in aero-
nautics. The base-flow is obtained by axisymmetric direct numerical simulation starting
from the velocity profile of a parallel Batchelor vortex as inflow boundary condition,
and is seen to be locally convectively unstable to four helical modes, m ∈ {−1, 1, 2, 3}.
The largest amplification is observed in the inlet region where the wake deficit is more
pronounced and the single and double helical modes are the most amplified modes.

The sensitivity of the integral amplification factor, G(ω,m), of a single spatial branch
is formulated as an optimization problem where G(ω,m) is the objective function and
the Navier-Stokes equations are included in the Lagrangian formulation as a constraint.
Rather than a continuous approach where the continuous optimization problem is de-
fined and then discretized, we directly apply the Lagrangian variational technique to the
discretized governing equations. In this framework, we show that the local spatial sen-
sitivities are the building blocks of the sensitivity of the integral amplification factor to
generic modifications of the inlet velocity profile. The resulting sensitivity map indicates
the optimal modification of the inlet velocity profile so as to stabilize the considered
helical spatial mode of a non-parallel Batchelor vortex, which is locally convectively un-
stable. It is shown that the control, formulated using only one linearization of the flow
dynamics carried out on the uncontrolled configuration, successfully reduces the global
spatial amplification of a given spatial branch.

This analysis is then extended to determine the sensitivity to an inflow modification
of the total amplification factor which is a measure of the overall amplification of all
the convectively unstable spatial branches. Hence, the corresponding sensitivity map ac-
counts for all the amplified helical modes in the frequency band of amplification. It is
seen that, in order to increase the total amplification factor, the streamwise velocity has
to decrease close to center of the wake and to increase at the vortex periphery, thus en-
hancing the wake deficit. A positive variation of the azimuthal velocity has a destabilizing
effect close to the vortex centerline whereas it stabilizes the flow in the outer region. This
non-monotonous behaviour is seen to be the result of the different sensitivities to the
base-flow swirl of different helical modes. Furthermore, due to the non-parallelism of the
base-flow, also the radial velocity has an effect on the spatial amplification: a positive
inlet radial velocity increases the vortex core diameter favoring the axial deceleration and
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destabilizing the flow. This map is subsequently used as an inlet control to effectively re-
duce the integral amplification factor of all helical modes over the base-flow. We observe
that with a control of size c = 2o/oo the spatial amplification of all modes is significantly
reduced, and the amplification factor of m = 1 and m = 2 is almost halved.

The information provided by the control map is valid only for small control amplitudes
perturbing the uncontrolled configuration. However, the control design method proposed
here can be easily extended to include larger control amplitudes, by employing the sensi-
tivity map in a standard iterative gradient method, as done for instance by Bottaro et al.
(2003) for temporal analysis on parallel flow. We conclude underlying that the systematic
framework proposed here to control the integral amplification factor in amplifier flows
has potential impact in many cases of interest such as the control of the hub vortex in
wind turbines (Iungo et al. 2013), which has inspired this work. As a final note, in the
spirit of weakly non-parallel flows, the full Navier-Stokes equations in the Lagrangian
formulation (4.1) can be replaced by the parabolized equations in the streamwise di-
rection, allowing a marching technique for their numerical solution as for the boundary
layer equations, see Zuccher et al. (2006). In this case, both the base-flow and stability
problems are carried out in a weakly non-parallel setting.

Appendix A. Local stability analysis of swirling flows

The linear evolution of helical disturbances of the type (û, p̂)ei(kx+mθ−ωt) over a parallel
swirling flow Ux(r), Uθ(r) is governed by

− iωûr + Λm,kûr − 2
Uθûθ
r

= −∂p̂
∂r

+
1

Re

[
∂

∂r

(
1

r

∂rûr
∂r

)
− (m2/r2 + k2)ûr − 2im

ûθ
r2

]
− iωûθ + Λm,kûθ +

ûr
r

∂rUθ
∂r

= − im
r
p̂+

1

Re

[
∂

∂r

(
1

r

∂rûθ
∂r

)
− (m2/r2 + k2)ûθ + 2im

ûr
r2

]
− iωûx + Λm,kûx + ûr

∂Ux
∂r

= −ikp̂+
1

Re

[
1

r

∂

∂r

(
r
∂ûx
∂r

)
− (m2/r2 + k2)ûx

]
1

r

∂rûr
∂r

+
im

r
ûθ + ikûx = 0,

(A 1)

where Λm,k = Uθim/r + Uxik is the base-flow advection operator. Homogeneous Neu-
mann boundary conditions are imposed at the lateral boundary rmax together with the
regularity conditions on the axis proposed by Batchelor & Gill (1962):

ûr = ûθ =
∂ûx
∂r

= 0 for m = 0,

∂ûr
∂r

=
∂ûθ
∂r

= ûx = 0 for |m| = 1

ûr = ûθ = ûx = 0 for |m| > 1.

(A 2)

Temporal stability analysis allows the investigation of the temporal evolution of the heli-
cal disturbances, see Schmid & Henningson (2012). In this framework, the axial wavenum-
ber k is real and ω is complex. Its real part, ωr, is the frequency of the perturbation and
its imaginary part, ωi, is the temporal growth rate. Given the azimuthal, m, and stream-
wise, k, wavenumbers, equations (A 1) reduce to a generalized eigenvalue problem,

Aq̂ = ωBq̂, (A 3)
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where ω is the eigenvalue and the linear operators are defined as follows:

A =


Λm,k − 1

Re∆∗m,rθx −2Uθ/r + 1
Re

2im
r2 0 ∂

∂r
∂Uθ
∂r + Uθ/r − 1

Re
2im
r2 Λm,k − 1

Re∆∗m,rθx 0 im
r

∂Ux
∂r 0 Λm,k − 1

Re∆m,rθx ik
1
r + ∂

∂r
im
r ik 0

 ,

B =


i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

 ,
with ∆m,rθx =

(
1
r
∂
∂r + ∂2

∂r2 − k
2 − m2

r2

)
and ∆∗m,rθx = ∆m,rθ − 1

r2 .

On the other hand, the spatial stability analysis allows the investigation of the spatial
evolution of the helical disturbances (Schmid & Henningson 2012) and the frequency ω
is a real number whereas the wavenumber k is complex. In particular, its real part, kr,
corresponds to the axial wavenumber and its imaginary part, −ki, is the spatial growth
rate. Therefore equations (A 1) can be recast as the quadratic eigenvalue problem (2.4)
where the linear operators are defined as follows:

C0 =


imUθ/r − 1

Re∆∗m,rθ − iω −2Uθ/r + 1
Re

2im
r2 0 ∂

∂r
∂Uθ
∂r + Uθ/r − 1

Re
2im
r2 imUθ/r − 1

Re∆∗m,rθ − iω 0 im
r

∂Ux
∂r 0 imUθ/r − 1

Re∆m,rθ − iω 0
1
r + ∂

∂r
im
r 0 0



C1 =


iUx 0 0 0
0 iUx 0 0
0 0 iUx i
0 0 i 0

 , C2 =


1
Re 0 0 0
0 1

Re 0 0
0 0 1

Re 0
0 0 0 0


with ∆m,rθ =

(
1
r
∂
∂r + ∂2

∂r2 −
m2

r2

)
and ∆∗m,rθ = ∆m,rθ − 1

r2 .

Integration by parts of the spatial stability problem using the hermitian scalar product
(2.6) yields the adjoint spatial stability problem (2.7), where

C†0 =


−imUθ/r − 1

Re∆∗m,rθ + iω ∂Uθ
∂r + Uθ/r + 1

Re
2im
r2

∂Ux
∂r

∂
∂r

−2Uθ/r − 1
Re

2im
r2 −imUθ/r − 1

Re∆∗m,rθ + iω 0 im
r

0 0 −imUθ/r − 1
Re∆m + iω 0

1
r + ∂

∂r
im
r 0 0



C†1 =


−iUx 0 0 0

0 −iUx 0 0
0 0 −iUx i
0 0 i 0

 , C†2 = C2

and that satisfies the same boundary conditions of the direct problem.

Appendix B. Convergence of the results to grid and computational
domain

We show here the numerical independence of the results from the size of the domain
and grid refinement.
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Figure 10. a) Temporal and b) spatial growth rates computed with radial extension of the
domain equal to rmax = 10 and N = 40 (black line) and rmax = 15 and N = 60 (red line).

10 2 43 5 6 7 98 10
0

1

2

3

0.8

1

0.6

0.4

0.8

1

0.6

0.4

10 2 43 5 6 7 98 10
0

1

2

3

0 1 20.5 1.5
1

1.2

1.4

1.6

1.8

2

2.2

-1

1 2

3

Figure 11. Streamwise velocity field Ux computed using the computational domain a) D1 and
b) D2 (see text). The corresponding integral amplification factor G(ω,m) is shown in c) by black
line for D1 and red line for D2

B.1. Local stability analysis

Figure 10 shows the insensitivity of the (a) temporal and (b) spatial stability analysis of
the parallel Batchelor vortex (2.1) on the radial extension of the domain, rmax, and on
the number of Gauss-Lobatto-Chebyshev (GLC) nodes, N . Black line stands for rmax =
10, N = 40 whereas red line indicates rmax = 15, N = 60.

B.2. DNS

Similarly to Figure 3 (c), Figure 11(a) reports the streamwise velocity obtained by using
the domain D1 in the DNS, which consists in: rmax = 10, axial extension of the domain
xmax = 20 and 80 x 40 GLC nodes for the velocity components. In (b) the same quantity
is obtained by using the larger domain D2 (rmax = 15, xmax = 25, 100 x 60 GLC nodes),
thus revealing the null influence of the radial and axial extension of the domain and of
the free-stress constraint on the base-flow in the region of interest for this study.

B.3. Amplification factor and sensitivity map

Similar independence on the radial and streamwise extension of the domain is found for
the integral amplification factor that is shown in Figure 11(c) by black line in the case
of rmax = 10, N = 40 GLC nodes, Nx = 30 and using the D1 base-flow (in the range
x ∈ [0, 10]). Red line stands for G(ω,m) computed with rmax = 15, N = 60 GLC nodes,
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Nx = 40 and using the D2 base-flow (for x ∈ [0, 10]).
In addition, the sensitivity map of the total amplification factor with respect to an

inflow base-flow modification is shown in Figure 9(a) by full line when using rmax = 10,
N = 40 GLC nodes, Nx = 30, D1 base-flow and Nω = 210, and by symbols in the case
of rmax = 15, N = 60 GLC nodes, Nx = 40, D2 base-flow and Nω = 420. The very good
agreement between the sensitivity maps computed with different domain size and grid
represents a significant convergence test because all the numerical tools of the analysis
are involved: the local spatial analysis, the DNS, integration in x and ω.
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