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SUMMARY

Power consumption of current High Performance Computing systems has to be reduced by at least one
order of magnitude before they can be scaled up towards ExaFLOP performance. While we can expect
novel hardware technologies and architectures to contribute towards this goal, significant advances have to
come also from software technologies such as proactive and power-aware scheduling, resource allocation
and fault-tolerant computing. Development of these software technologies in turn relies heavily on our ability
to model and accurately predict power consumption in large computing systems.
In this paper we present a data-driven model of power consumption for a hybrid supercomputer (which held
the top spot in the Green500 ranking in June 2013) that combines CPU, GPU and MIC technologies to
achieve high levels of energy efficiency. Our model takes as input workload characteristics — the number
and location of resources that are used by each job at a certain time — and calculates a predicted power
consumption at the system level. The model is application-code-agnostic and is based solely on a data-
driven predictive approach, where log data describing the past jobs in the system are employed to estimate
future power consumption. For this, three different model components are developed and integrated. The
first employs support vector regression to predict power usage for jobs before these are started. The second
uses a simple heuristic to predict the length of jobs, again before they start. The two predictions are then
combined to estimate power consumption due to the job at all computational elements in the system.The
third component is a linear model that takes as input the power consumption at the computing units, and
predicts system-wide power consumption. Our method achieves highly-accurate predictions starting solely
from workload information and user histories. The model can be applied to power-aware scheduling and
power capping: alternative workload dispatching configurations can be evaluated from a power perspective
and more efficient ones can be selected. The methodology outlined here can be easily adapted to other HPC
systems where the same types of log data are available.
Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Power consumption of computational systems has become a major concern in the computing
community. Today, it is not uncommon for a large data center, such as those hosting HPC
systems, to consume as much power as a mid-size city, with the obvious economic and
environmental consequences. Furthermore, large power needs have negative implications for the
systems themselves, for example by requiring complex and expensive cooling structures and by
limiting their scalability. Accurate models of power consumption in large computing systems will
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2 A. SÎRBU & O. BABAOGLU

be extremely important for optimizing their energy usage. Models allow for prediction of system
behavior under various scenarios, enabling advanced scheduling and fault tolerance techniques that
are essential for making Exascale computing sustainable.

In this paper we model and predict system-level power consumption starting from workload
measures for Eurora [1], an experimental hybrid High Performance Computing (HPC) system
with CPUs, GPUs and MICs. Our predictive model consists of three components. First, power
consumption of jobs is predicted from workload data using a Support Vector Regression (SVR)
approach [2]. Second, we introduce a simple heuristic that enables data-driven prediction of job
length, which allows us to estimate which jobs will run in the system at a future time. The two
predictions are then combined to estimate the power used by computing units. Third, we develop a
relation between power used by computing units and the total system power, including networking,
IO system and other elements, using a linear model.

This work makes various contributions to modeling power consumption for HPC systems. First,
the relation between power of computing units and system power is investigated, and a clear linear
dependency between the two is observed, in agreement with other studies. We take this result one
step further by building a complete power model for the entire system. Our second contribution is
a model, constructed out of three components, that is capable of predicting system-level power
starting from workload data. Our approach does not require knowledge of application code or
hardware counters for power prediction. This makes the methodology easily extendable to other
systems, since only simple workload measures that are common to all HPC systems are used.
Our final contribution is an investigation of the possible applications of our model to power-aware
scheduling.

The rest of the paper is organized as follows. We first discuss the data and our prediction approach
in Sections 2 and 3. The transition from workload to power consumption of computing units using
job power and length prediction is investigated in Section 4.1, while the integration of all three
model components is described in Section 4.2, where results at system level are presented. Section 5
discusses potential applications of our model. State-of-the-art is surveyed in Section 6 and Section 7
summarizes and concludes the paper.

2. EURORA DATA

This work uses workload and power measurements from Eurora, a hybrid HPC system installed at
CINECA, the largest data center in Italy [3]. The system consists of 64 nodes each equipped with
2 CPUs (8-core Intel Xeon E5 CPUs) and 2 accelerators. The accelerators on half of the nodes
are GPUs (Nvidia Tesla Kepler), while on the other half they are MICs (Intel Xeon Phi). Thus the
system is equipped, in total, with 1028 CPU cores, 64 GPUs and 64 MICs. Eurora was number
one on the Green500 list in June 2013 and runs a custom monitoring framework [4] that collects
system logs related to workload (hundreds of thousands of jobs from hundreds of users) and power
consumption at both computing unit and at system levels. The data is stored in a MySql database,
henceforth referred to as the “Eurora database”. The measurements span the period from March
2014 to August 2015, resulting in over 250GB of data.

In our study, we start from workload information and build a prediction of system-level power
consumption. In order to build our model components, we require several data types: workload
(information on jobs submitted to the system), recorded power for computing units, power measured
at system level. All these data were extracted from the Eurora database. A preprocessing stage
was required to correct missing data before extracting the features useful for modeling, and to
synchronize the timestamps for the various data types. This meant replacing missing power of idle
computing units with a default value, and removing all data points where it was unclear whether the
missing data was due to idle units. More details on the procedure can be found in previous work [5].

After data correction and synchronization, workload data consists of 57,183 jobs from 401 unique
users. Job information includes user, queue, and timestamps for submission, start and finish, together
with number of computing units used (CPU cores, GPUs and MICs) and their allocation in the
system. These data were used to extract job length to be predicted by our heuristic, and also input
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DATA-DRIVEN MODELING OF POWER CONSUMPTION 3

Figure 1. Workload properties for corrected data. The top-left plot shows the distribution of power
consumption per job, measured at 5-minute intervals. The rest of the histograms show the distribution of

resources used by each job (CPU cores, GPUs and MICs).

features for the SVR model predicting job power consumption. Figure 1 shows the distribution of
the number of computing units used by each job. Many jobs use only CPUs with about 26% of jobs
employing GPUs and about 2% employing MICs.

Power consumption for computing units (CPUs — including RAM power, GPUs and MICs) is
available in the dataset at a 5-second resolution. Power is available at the level of CPU, GPU and
MIC, and not at core level. These data were used to compute two measures. First, we computed
power profiles for jobs: power at 5-minute intervals for the computing units used by that job. These
profiles became the regression target of the first component of our model, SVR. Figure 1 also shows
the distribution of power levels recorded at 5-minute intervals for each job. Second, we computed
the total power of all active computing units. This was used as an input feature for the third model
component, the linear model mapping computing to system power. Additionally, it was employed
to validate the integration of the first two model components (see Section 4.1 bellow).

Figure 2. Availability of power measurements at system level.
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4 A. SÎRBU & O. BABAOGLU

The third piece of data required for our study is power measurements at system level, i.e., power
consumed not only by the computing units but the entire rack. The Eurora database includes a
table that contains measurements at the main electric panel for the system, at 5-minute intervals.
These measurements were the target of our integrated model. Figure 2 shows power measurements
available at this level. Several gaps that are evident in the figure are due to both system shutdowns
and monitoring issues. For this reason we concentrate on the period July-November 2014 which
contains enough contiguous data for training and testing our models.

3. PREDICTION APPROACH

Using the data described above, we predict power consumption at system level based only on
workload measures. This involves the integration of three modeling components. Figure 3 presents
graphically the approach adopted. The first component is a SVR model that is able to predict power
profiles for jobs, in advance. The second component is an heuristic that enables prediction of job
length. The third and last component is a linear model that maps power of the computing units
to power at system level. Computing unit power is extracted by combining the first two modeling
components. In the following we will describe each component individually and provide details on
their integration.
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Figure 3. System-level power model. The three model components are represented by the star boxes: SVR
models to predict job power, heuristic for prediction of job length and linear model to obtain system power.
Prediction resulting from the first two components are combined to predict computing power, which is then
used as input for the third component. Predictions at computing unit and system level are evaluated against

real data.

3.1. Job power prediction

The first component of our model predicts power consumption of jobs in Eurora starting from
workload measures. The analysis uses only job characteristics and collocation information, and
was introduced in detail in previous work [6]. The method uses SVR to build one model per user.
For each job, a wide set of regression features are employed to predict its power profile in time.
A job is described by independent features, which are job name, number of CPU cores, GPUs and
MICs used by the job and number of nodes allocated, but also by features that describe the workload
and resource allocation globally, for example the number of cores/GPUs/MICs in use by other jobs
collocated on the same nodes as the job being analyzed. This choice enables prediction of power
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Number
of users

Average
jobs per
user

Average
CPU
cores

Average
GPUs

Average
MICs

Average
duration
(minutes)

Train data 34 12796 13.2 0.34 0.07 85.03
Test data 34 1579 12.62 0.36 0.06 95.01

Table I. Summary of data used for training and testing the SVM.

interference across jobs, so that different mapping of resources can result in differences in power
levels.

The analysis is based on workload and power data extracted from the Eurora database.
Specifically, we use measurements of computing unit power to calculate the exact power used
by each job at 5-minute intervals (the regression target) while features are extracted from the
information about resource allocation that exists in the database. For each user we first build one
SVR model to predict the power consumed by jobs on each component type (CPUs, GPUs, MICs),
which are then summed to compute the overall power for jobs. This is applied at 5-minute intervals
to compute a power profile for each job of that user. We train each model with data up to September
2014 and then apply to jobs from the first week of October 2014. Further details of job power
prediction with this approach can be found in the original paper [6].

For training, we applied the SVR method only to users with at least 1000 data points coming from
at least 100 different jobs. Out of 84 users who accessed Eurora during the first week of October
2014, 34 had enough data to train the SVR model. Table I shows general statistics of the workload
for these users, for the training and testing periods. For the rest of the users, who had less data
available, we used an Enhanced Average Model (EAM), also introduced in [6]. It is important to
note that the data related to the activity of the remaining users consist of much fewer data points
compared to those for the 34 regular users.

To apply the EAM, we computed for each user u an average power per unit type (CPU core:
P̄u
CPU , GPU: P̄u

GPU , MIC: P̄u
MIC) from the limited amount of existing training data. For each job j

belonging to the user, we count the number of units used by the job, denoted as nj
CPU , nj

GPU and
nj
MIC . The predicted job power can then be computed as:

P ∗j = nj
CPU × P̄u

CPU + nj
GPU × P̄u

GPU + nj
MIC × P̄u

MIC (1)

For instance, if a job uses 10 CPU cores, one GPU and no MIC, and the average power per CPU
core for that user is 7.9W, while the average GPU power is 47.5W, then the predicted power for the
job will be 10× 7.9 + 47.5 = 126.5W. This value is used at all time points t when the job is active,
hence the job profile is static. In the rare case where no user data for training existed, we used a
global (over all users) average power consumption per unit in the EAM.

In previous work we compared the SVR approach with the EAM and we observed that
performance improved for most of the users when using SVR. However, when an SVR model cannot
be trained due to lack of data, the EAM provides a valid replacement since we obtained R2 values
greater than 0.5 over all user jobs.

3.2. Job length prediction

A second component of our analysis is concerned with prediction of job length. In order to predict
computing power in advance, clearly we need to predict not only the power consumption for all jobs
but also estimate their lengths. This allows us to predict which jobs will be present in the system at
a future time.

The job length prediction component of our model is based on a very simple heuristic: search the
user history for a similar job and use the duration of that job as the predicted duration of the current
job. We chose this approach based on observations made on the data, that we will outline below.
With these observations, we devised a simple set of rules to find a similar profile in the user history.
For this, we inspected the workload and extracted a so-called job profile for each job. This includes
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6 A. SÎRBU & O. BABAOGLU

the job name, the queue name, the user-declared wall-time, and the number of resources of each
type (CPU, GPU, MIC, nodes) used. We analyzed users separately.

A first observation was that jobs with identical profiles did not always show similar durations over
time. Instead, a sort of step function was observed: consecutive jobs with the same profile will have
very similar running times for a period, then switch to a new set of similar running times, that could
be larger or smaller. This indicates a user pattern where the user switches between states. A possible
scenario is that at first the user tests the application on a small dataset, running several simulations,
then moves to a larger one, again running one or more instances, then switches to a different dataset,
and so on. Every time there is a change, we see in the data a shift in job duration, followed by a set
of jobs with similar running times. The size of these sets ranges from one to tens or even hundreds
of jobs. So, a good strategy for estimating job duration is to look at the last job with an identical
profile and take that duration. This leads to good predictions most of the time, and large errors only
when the user switches state.

Sometimes, however, a job with an identical profile may not be present in the user history. Hence
we need to understand whether we can make a correspondence with different jobs. We inspected the
job names and observed that while using the same job name is common, another common pattern
employed by users is to have a common prefix for the job name, followed by a number, such as
‘run1’, ‘run2’, etc. Hence, if we do not find an identical job in the user history, we look for a job
with the same prefix name, with the rest of the profile unchanged.

If this match is also not possible, we look for the last job that had the same name and was
submitted to the same queue and with the same wall-time, even if the resources used are slightly
different. The reason we use the queue as a criterion is that Eurora uses several queues intended for
jobs of different sizes. If also this search fails, we look for the same match but with the name prefix
rather than the exact name. If none of these rules give a match, we look for the last job with the
same name, or, as a last resort, the same name prefix.

For instance, if we take as an example the job profile {job-name:TRANSFER1, wall-time:06:00,
queue:parallel, ncpu:1, ngpu:0, nmic:0, nodes:1} then the first rule will provide a match if an
identical profile is found in the user history. If not, the second rule would match the profile {job-
name:TRANSFER*, wall-time:06:00, queue:parallel, ncpu:1, ngpu:0, nmic:0, nodes:1}, i.e., where
the job name has the same prefix but the trailing number is different. The third rule would match
the last job that has the profile {job-name:TRANSFER1, wall-time:06:00, queue:parallel,ncpu:*,
ngpu:*, nmic:*, nodes:*}, i.e. regardless of resources used. The fourth rule would match
a profile {job-name:TRANSFER*, wall-time:06:00, queue:parallel, ncpu:*, ngpu:*, nmic:*,
nodes:*}. The last two rules will match the last profile that has the job name ‘TRANSFER1’ or
‘TRANSFER*’, regardless of the value of the other fields.

This procedure provided a match over 92% of the time. If all rules fail, then we take the user-
declared wall time as the predicted duration. After applying all rules, prediction is capped by the
wall-time, since the Eurora scheduler kills all jobs that exceed it.

3.3. System power model

The third component of our analysis is a model of system-level power consumption, taking as input
the power of the computational units. We extracted measurements of power consumption at system
level at 5-minute intervals from the Eurora database. Power of each individual CPU, GPU and MIC
was also extracted and summed to obtain total computing power. Figure 4 plots power of the system
versus total computing power for our dataset. It is clear that there is a strong relationship between
the two power measures, with a very high Pearson correlation coefficient (0.939). Thus, we built a
linear model of system power, denoted as LM , starting from the individual computing units. The
model provides an estimate of the system-level power P ∗S(t) at time t as a linear function of the
measured power of computing units PC(t) at the same time t:

P ∗S(t) = LM(PC(t)) (2)
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DATA-DRIVEN MODELING OF POWER CONSUMPTION 7

In order to evaluate the model, we opted for a classical cross-validation approach, where the
model is trained and tested on separate datasets. In the following we will show results from training
with all data from September 2014 and testing on data from the first week of October 2014.

3.4. Model integration

Having obtained job power profiles (predicted at 5-minute intervals using the SVR component of our
model), we can calculate the total predicted power of computing units P ∗C(t) at time t by summing
the predicted power of individual jobs running on the system at time t, P ∗j (t), together with the
power of the idle units, Pidle(t):

P ∗C(t) =
∑

j∈Jobs

P ∗j (t) + Pidle(t) (3)

Idle power can be measured once for each unit type, with Pidle being the sum over all idle units. For
instance, if at a certain time t there are 3 jobs running, using in total 160 CPU cores, 2 GPUs and
1 MIC, then the predicted system power P ∗C(t) will be the sum of the power of each job, predicted
by the SVM model, plus the idle power for the rest of the components (864 idle CPU cores, 62 idle
GPUs and 63 idle MICs). In the following we will show results where SVR models were trained
with data before October and applied to predict the total power for the first week of October 2014.

In Equation 3, “Jobs” denotes the set of all jobs running at time t. Hence, it is assumed that the set
of active jobs is known in advance. In a real setting, however, this set also needs to be predicted, and
we completed this task by using job length predictions resulting from our second model component.
Specifically, at every time step we predict which job will still be running at the following time step
(5 minutes in the future) by considering the set of all the jobs whose predicted length indicates they
will still be online. At the same time, every 5 minutes we can ensure that jobs that are known to have
finished are removed from the set of online jobs. Hence, if we consider the set of jobs predicted to
be running at time t to be Jobs∗, then Equation 3 becomes:

P ∗∗C (t) =
∑

j∈Jobs∗
P ∗j (t) + Pidle(t) (4)

Then, to obtain the desired system-level power predictions, one only needs to apply the linear
model LM described in Section 3.3 to the predicted computing power P ∗∗C from Equation 4 :

P ∗S(t) = LM(P ∗∗C (t)) = LM

 ∑
j∈Jobs∗

P ∗j (t) + Pidle(t)

 (5)

Power of computing units (W)

Figure 4. Power consumed by the entire system versus power of computing units only.
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8 A. SÎRBU & O. BABAOGLU

It is important to note that the linear model LM is trained using the real (measured) power
consumption of computing units, PC(t) from Equation 2. However, in the final model it is applied
to the predicted power of computing units, which uses both job power and length prediction, P ∗∗C (t).

Again, application of the system-level model on test data from the first week of October 2014
will be shown below. Both linear regression and SVR were performed using the scikit-learn Python
package [7], while data preprocessing for feature extraction was performed using the BigQuery
cloud platform [8].

3.5. Evaluation criteria

At each step, the models were evaluated using two standard criteria for regression: the normalized-
root-mean-squared-error (NRMSE) and R-squared (R2).

NRMSE =

√
(
∑N

i=1 (PS(ti)− P ∗S(ti))2)/N

P̄S
(6)

R2 = 1−
∑N

i=1(PS(ti)− P ∗S(ti))
2∑N

i=1(PS(ti)− P̄S)2
(7)

where N is the number of time points considered, P ∗S(ti) and PS(ti) are the predicted and real
system-level powers at time ti, respectively, while P̄S is the average of the real system power over
all N data points.

NRMSE measures the error between prediction and real data as a fraction of the average measured
power. It takes positive values only, with small values meaning errors are much smaller than the
average power levels. The R2 criterion includes information on variability in the data and compares
the errors to the natural variability. It tells us how the model performs compared to the so-called
“average model” — a model where power is predicted to be the average of all power levels
measured. A value close to 0 indicates that the model is no better than the average model (error
is comparable to the standard deviation of the data), while larger values correspond to models better
than random (with 1 corresponding to perfect prediction).

4. RESULTS

In this section we discuss the performance of our integrated model. We first evaluate the prediction
of power at the level of computing units, then we move on to system-level power.

4.1. From workload to power of computing units

Power consumption of computing units is predicted by our model based on workload measures. We
employ job power predictions by SVR (first model component) and job length predictions using our
heuristic (second model component). In this section we will evaluate the two mechanisms separately.

First, we discuss the predicted computing power obtained by summing job-level predictions and
considering the job length to be known (Equation 3). Figure 5 displays the total predicted power
after summing over all users, compared to the measured time series.

The model performance is extremely good, with errors under 3% and very high R2 values. Job
power prediction, as showed in [6] provided accurate predictions (NRMSE under 20% and R2

values over 0.5) for over 80% of the users, however for some users results were less accurate.
Considering all users together allows for errors for some of the users to be compensated by others
so that final performance is very good. This means that prediction of total power of computing units
can be successfully achieved starting from job power predictions.

Secondly, we introduce the prediction of job length, to be used together with predicted job power.
To evaluate our approach for job length prediction, we computed the absolute error between the real
length and that obtained with our heuristic. For all jobs ever logged in the system, the mean absolute
error was 38.9 minutes, which is a much better prediction compared to the user-defined wall-time,

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe



DATA-DRIVEN MODELING OF POWER CONSUMPTION 9

Figure 5. Power consumed by computing units, obtained by predicting power for individual jobs
(Equation 3). Here we assume that job length is known. The dashed line shows the real (measured) power

of computing units.

which is typically used to estimate job duration, and which would have provided a mean error of
225.11 minutes. When looking at the the first week of October 2014 only, the mean absolute error
was 6.94 minutes. Figure 6 shows the cumulative distribution of October errors for our approach.
We can see that our method obtains an error smaller than 1 minute for over 65% of the jobs, while
almost 90% of jobs display errors under 10 minutes. For some jobs we have higher errors. These
jobs correspond to shifts in user state (e.g. the same job that was short now starts to last much longer,
possibly due to a change in input data).

The question now is how does this additional error in job length affect computing and then system-
level power prediction. For this, we apply equation 4 to obtain predicted computing power starting
from workload measures, hence combining the power and length prediction results (the first two
components of our model). Figure 7 shows a comparison between the predicted and measured power
consumption at the level of computing units.

As the figure shows, computing power is still reproduced very well. As expected, the error grows,
from 2.5 to 6.8% with some periods predicted much better than others. We can observe some periods
where our model underestimates computing power, and this corresponds to underestimation of job
length during prediction.

4.2. From computing units to system-level power

In order to be able to predict system-level power consumption starting from the power of computing
units, we first need to train the linear model that is the third component of our integrated approach.

Figure 6. Cumulative distribution of errors for job length prediction, tested on the jobs from the first week
of October 2014.
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10 A. SÎRBU & O. BABAOGLU

Figure 7. Power consumed by computing units, obtained by predicting both power and duration for
individual jobs (Equation 4). The dashed line shows the real (measured) power of computing units.

For cross-validation, the model was trained with Eurora data from September 2014 and tested on
data from the first week of October 2014. Increasing the amount of training data did not improve
performance, so we decided to limit the training period to one month, meaning that in an online
setting previous historical data could be discarded thus saving storage resources.

Figure 8 shows the real and estimated power time series, with NRMSE and R2 values included.
The linear model provides a very good fit, with errors bellow 5% and high R2 value. This is a strong
indication that a linear model can extrapolate very well from computing power to system power. It
is important to note that this first evaluation at system level starts with measured computing power.
In the rest of this section we will discuss performance on the predicted computing power introduced
in Section 4.1.

We thus combine the three models to obtain system-level power predictions from predicted
workload measures. We apply the linear model evaluated in Figure 8 to the predictions shown in
Section 4.1. Again, we first evaluate performance when employing only job power predictions, so
considering the job length to be known. Figure 9 displays the prediction result.

As the figure shows, prediction is very similar to the measured system power, with overall errors
for the first week of October 2014 of under 3% and very high R2. We can observe a slight trend of
underestimating large power levels, especially for singular peaks, and overestimation of very low
power levels. The former appears to be due to underestimation at step 2 (Figure 5) while the latter
seems to be caused by the linear model overestimating lowest values (Figure 8).

However, this prediction is rather unrealistic, since in a real setting job length would not be known
in advance. To estimate a more realistic performance, we apply the linear model also to the power
of computing units shown in Figure 7, i.e., employing both power and length prediction for jobs.
Results are displayed in Figure 10.

Figure 8. Power consumed by the entire system, estimated, using a linear model, from power of computing
units. The dashed line shows the real (measured) system-level power consumption.
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Figure 9. Power consumed by the entire system, forecasted with the linear model from predicted computing
power obtained from job power predictions. Here we consider the job length to be known. The dashed line

shows the real (measured) system-level power consumption.

Figure 10. Power consumed by the entire system, forecasted with the linear model from predicted computing
power obtained from both job power and job length predictions. The dashed line shows the real (measured)

system-level power consumption.

We can observe again a slight increase in error, compared to the case when job length was
assumed to be known: 4.5% versus 2.6% errors. However, this was to be expected, and predicted
power remains very close to the real measured power. In conclusion, after integration of the three
components, our model is able to faithfully predict system-level power. It is important to note that
this prediction does not use as features any measurement of power at any level, nor any performance
measures, but only information on workload (number of computing units used by jobs for the
various users). Hence, online application of the model would require monitoring only the workload.
However, historical power measurements are necessary for model training.

5. DISCUSSION AND APPLICATIONS

The analysis presented was performed off-line for historical data. In practice, it is intended for on-
line use, for instance when using the live monitoring system to extract feature values and compute
power predictions in real time for future time windows. As we have discussed in previous work [6],
prediction of job power profiles does not imply a large overhead to the system. Job length prediction
is very simple, requiring only to record the previous job profiles and corresponding lengths for
each user, and requiring limited processing power. Training and applying the linear model also
has low overhead, with negligible running times required. Hence, all in all, the entire model is
straightforward to employ.
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The results presented (Figure 10) are related to predicting future system-level power for a 5-
minute time window. We restricted the time window in order to be able to take into account the
fact that job length overestimations can be corrected simply by looking at the system itself: even
if the predicted job length suggests that one job may still run for a long time, it may happen that
the job actually finishes earlier. In this case prediction is overridden by measurement, improving
performance. In a real setting, this window can of course be varied. The maximum future time
window for which prediction can be achieved depends on factors such as the frequency of job
submissions by the user, job length and load of the system. Every time a new job is ready to start,
our model can predict the power profile for the system, given also the other jobs currently running
on the machine, with their respective predicted job lengths. Thus, a complete system-level profile
can be obtained at least until a new job is started. Then the profile changes according to the new
job. On a very busy system with long queues, prediction can be obtained for longer periods of time,
since we can know in advance what jobs will be scheduled next. On a lightly used system, the
prediction window depends practically only on the time between job submission by users, which
is more difficult to foresee. HPC systems in general work with relatively long and heavy jobs and
queues that are always busy, making our approach very useful in this context.

The method presented here is easily applicable to any HPC system. Of course, this involves
training models of job power consumption and job duration for the users of the new system,
and learning the dependencies between power at computing units and system level, using the
methodology outlined in this paper. It is possible that the linear relation between system and unit
power does not hold in some systems, in which case the linear model can be replaced by a non-
linear regression model. Once the three model layers are learned, they can be combined into one
prediction framework. Thus, on the new system, the required measurements are workload (number
of units of each type used by the jobs) and power consumption at computing and system level.
These are typically available on HPC systems (e.g. [9]). When power of computing units is missing,
temperatures can be used as their proxies [9]. With regard to applications outside the HPC domain,
this is still possible but would depend on the system type. The data-driven approach is based on a
certain stability of the system, in terms of components and user behavior. Hence, while for certain
homogeneous systems such as clouds this may be the case, for other heterogeneous systems like
grids, our method would not be able to learn power patterns.

System-level power predictions can have several applications for optimization of behavior for
HPC systems. Besides providing a tool for operators to be aware of future power values, the
model can also be used to decrease power consumption by adjusting job scheduling and resource
allocation. Power for various scheduling and allocation schemes for the same workload can be
predicted, and the scheme with the lowest power employed. This is made possible due to the wide
range of workload features considered, which include global description of resources allocated to
jobs. Specifically, the number of nodes that a job uses and the number of cores in use by other
jobs change from one allocation scheme to another, changing thus power consumption. Our task
would be to construct a low-power mapping of resources to jobs, which would require some
form of search-based optimization. For instance, methods relying on constraint programming are
already widely used for HPC scheduling and could be extended to take into account power and job
length predictions [10]. Evolutionary techniques could also be a possibility. The disadvantage of
these methods, when facing currently used HPC schedulers, is their running time, hence suitable
implementations are needed.

Another example of a power-aware technique that is commonly explored, especially given
the increased power needs of HPC infrastructures, is power capping. This technique is not
concerned with decreasing overall energy consumption, although this may happen as a side effect,
but concentrates on maintaining total system power at bay, so that the capacity of the energy
provisioning system is not exceeded. Here too, our model can provide important information on
power for future system states, so that scheduling meets the power capping needs.
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6. RELATED WORK

With energy needs becoming a major concern for large computational infrastructures, numerous
recent research efforts have focused on analysing and reducing power usage [11, 12]. A large amount
of work regards modeling power for various types of computing units, starting from load, frequency
and other hardware counters. For instance, single and dual core CPU power is modeled in [13]
by considering the relation between the probability distribution functions of load and power, while
servers with up to 8 cores are studied in [14, 15]. GPU power is estimated from load measures
in [16]. These methods do not allow for advance prediction in real life scenarios, since load and
hardware counters cannot be known in advance, unless they can be predicted through other methods.
Our method is significantly different in that we model total system power starting exclusively from
workload measures, without the need to monitor the individual components, enabling advance
prediction of power.

Power requirements of HPC applications has also been analyzed in recent years. For instance, the
US Department of Defense are using application signatures to predict power consumption across
different architectures [17]. Performance counters are used to model application power on three
small scale HPC platforms by [18]. GPU CUDA kernels are analyzed in [19], again based on
job performance counters. Recently, we have introduced a method [6] based on Support Vector
Regression (SVR), which builds one power model per user to predict job power consumption
based on workload in Eurora. This method has the advantage over others in that it does not require
instrumenting the applications to extract signatures and performance counters, but only needs the
number of resources required, making it much more straightforward to apply. In this work, the SVR
method was employed to predict power of computing components, from which we then obtained
system-level power. Recently, another method for predicting power solely from workload data was
introduced [20], however the authors concentrate on predicting mean power for jobs and not full
power profiles like we do.

In the quest for Exascale computing systems, where energy needs will be much greater, it
is important to analyze power of large computing infrastructures at system level. Related work
cited above looks only at individual computing components or jobs, while we concentrate on
total system power including hardware other than computing components, such as networking and
I/O. Very few other examples of power analysis at system level exist in the literature, despite a
recognized need for development in this direction [21]. For example, recently Google has introduced
a method [22] of modeling Power Usage Effectiveness (PUE) through an Artificial Neural Network
which takes as input workload, cooling, power, together with other external information such as
outside temperature, wind speed, etc. This allowed for testing various data center scenarios and
improving PUE for the system under analysis. Resource usage indicators (such as operations per
second) are used in [23] to model power at system level for a heterogeneous datacenter. Using
nonlinear transformation of raw resource usage indicators, the authors generate a set of features of
interest that are then mapped to power consumption using linear regression. Again, all these models
are useful for estimating power consumption while measuring the input features, but do not allow
for power prediction.

Some work also exists for prediction of job length on HPC systems. Typically, the prediction task
is solved using machine learning techniques, where various job properties are used as input to a
model that can predict the remaining running time for the job. For instance, [24] record the memory
and CPU usage for jobs in time, and provide an estimate of the remaining running time, using a
statistical classifier. A similar approach is [25], where kernel logs are used to monitor job execution,
in order to predict remaining running time. The authors use a Hidden Markov Model to perform
the prediction. In both examples, jobs need to be monitored after they have started to understand
their characteristics and respond to changes. Our work instead uses only general job information
available just before the job is started, hence it is much more flexible. Additionally, our heuristic
does not require any complicated training procedure, while producing very good prediction results.
This provides an advantage for on-line usage.
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Job duration prediction has also been analyzed in the context of job scheduling [26]. Here
predictions are performed using linear regression, using the past running times and resource
utilization as features. The authors show that slowdown during scheduling can be improved by
28% through prediction of job length. Our predictions can also be employed to optimize scheduling
approaches, as we intend to do in future work, with the additional advantage that we can obtain
power-aware schedulers by combining power and length predictions for jobs. Examples of power-
aware techniques include power-capping, such as the works of [27, 28]. Studies along these lines
could benefit from accurate system-level power prediction that we introduce in this paper. Power-
reducing scheduling techniques have also been investigated using Dynamics Voltage and Frequency
Scaling in virtualized cloud environments [29, 30].

Our predictions can also enable power-reducing scheduling, due to the fact that we employ
features related to resource allocation. That means that different load levels for a node are
incorporated in the model. Different loads typically lead to different voltage/frequency scales.Thus
power usage under various such scales can be learned by our model provided enough data is
available.

A different application of power models is prediction or identification of anomalous behavior. For
instance, the Google PUE model [22] allowed for identification of anomalies in monitoring, when
the model did not fit the data any more. Similarly, a decrease in modeling performance can predict
system failures as well. Our model can also be used to predict anomalous behavior, as we discussed
in previous work [5].

7. CONCLUSIONS

We have presented a 3-layer model of system-level power consumption for Eurora, a hybrid HPC
installation containing CPUs, GPUs and MICs. The model takes as input workload parameters,
namely job names and resources allocated to each job. It first computes a predicted profile of power
consumption for each job using Support Vector Regression, and forecasts job duration with a simple
heuristic. The two predictions are then used to estimate power for computing units. This estimation
is provided as input to a linear model able to predict total power at system level, including also
networking, IO and other elements.

The approach achieves very good performance on test data, with errors under 5% for the first
week of of October 2014. The methodology can be easily applied to other systems since the data
types used are generally available in most HPC systems.

We have discussed applications of our predictions. One is power optimization through job
dispatching. Being able to forecast job length and power can enable dispatchers to choose among
different allocation schemes that reduce consumption. A different application could be capping
power usage for HPC systems, again in the context of scheduling algorithms. Both applications are
considered for future work, possibly together with investigating alternative power models based on
hardware counters, which could be adapted to perform advance power prediction rather than real
time estimation. Knowledge of the application code for jobs could also help, however these data are
not currently available in our system. The methodology outlined here can be easily adapted to other
HPC systems for which the same data types are available.
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