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Abstract

In this paper we find exponential formulas for the Betti numbers of the De Concini-
Procesi minimal wonderful models YG(r,p,n) associated to the complex reflection groups
G(r, p, n). Our formulas are different from the ones already known in the literature:
they are obtained by a new combinatorial encoding of the elements of a basis of the
cohomology by means of set partitions with weights and exponents.

We also point out that a similar combinatorial encoding can be used to describe
the faces of the real spherical wonderful models of type An−1(= G(1, 1, n)), Bn (=
G(2, 1, n)) and Dn(= G(2, 2, n)). This provides exponential formulas for the f -vectors
of the associated nestohedra: the Stasheff’s associahedra (in this case closed formulas
are well known) and the graph associahedra of type Dn.

1 Introduction
Let us start by fixing some notations. First we recall that the finite irreducible complex
reflection groups, according to the Shephard-Todd classification (see [37]), are the groups
G(r, p, n), with r, p, n ∈ Z+ and p|r, plus 34 exceptional groups.

Let C(r) be the cyclic group of order r generated by a primitive r-th root of unity ζ. The
group G(r, 1, n), the full monomial group, is the wreath product of C(r) and the symmetric
group Sn. It can also be described as the group generated by all the complex reflections in
GL(Cn) whose reflecting hyperplanes are the hyperplanes with equations xi = ζαxj, where
α = 0, ..., r − 1, and xi = 0.

Its elements are all the linear transformations g(σ, ε) : Cn → Cn defined on the standard
basis by

g(σ, ε)ei = ε(i)eσ(i)

where σ ∈ Sn and ε ranges among the functions from {1, ..., n} to C(r).
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The group G(r, p, n) is the subgroup of G(r, 1, n) consisting of all the g(σ, ε) such that
the product ε(1)ε(2) · · · ε(n) is a power of ζp. If p < r the sets of reflecting hyperplanes of
G(r, p, n) and G(r, 1, n) coincide, and their intersection lattice is the Dowling lattice Qn(Zr)
(see [15]).

As important examples, we observe that for n ≥ 2 G(1, 1, n) = Sn is the Weyl group of
type An−1, while G(2, 1, n) is the Weyl group of type Bn and, for n ≥ 4, G(2, 2, n) is the
Weyl group of type Dn.

1.1 The interest of the models YG(r,p,n)

Wonderful models have been constructed by De Concini-Procesi in their seminal papers [7]
and [8]. They play a relevant role in several fields: subspace and toric arrangements (see [10],
[22]), configuration spaces, box splines and index theory (see the exposition in [9]), tropical
geometry (see for instance [21] and the survey [12]) and discrete geometry (see [18] for further
references). We will recall in Sections 2.1 and 2.2 the construction of these models, including
the definitions of nested sets and building sets, and their main properties. The importance of
the models associated with reflection groups, i.e. with the hyperplane arrangements given by
their reflecting hyperplanes, was at first pointed out by the example of type A: the minimal
projective De Concini-Procesi model of type An−1 is isomorphic to the moduli space M0,n+1

of (n + 1)-pointed stable curves of genus 0. This isomorphism carries on the cohomology
of the models of type An−1 an ‘hidden’ extended action of Sn+1 that has been studied by
several authors (see for instance [28], [36], [17]).

Also the other models YG(r,p,n) appeared in the literature in several contexts. They are
crucial objects in representation theory, since they provide natural geometric representations
of G(r, p, n). They were studied from this point of view by Henderson in [29], where recur-
sive character formulas for the action of G(r, 1, n) and G(r, r, n) on their cohomology were
described, as well as their specializations that give recursive formulas for the Betti numbers.
We note here that the model YG(r,1,n) is equal to YG(r,p,n) if p < r, since the underlying
reflection arrangement is the same. We recall that recursive formulas for the Betti numbers
in the cases An, Bn and Dn have been obtained also in [38] and [23] (for the An case these
formulas have been found in several other papers devoted to the moduli spaces approach,
see for instance [32]).

We remark that in the case of a finite real reflection group G, one can construct a complex
minimal model YG and also a minimal real compact model Y G: formulas for the action on
the cohomology of Y G in the An case appear in [36] while in [30] the cases of the other finite
Coxeter groups are dealt with.

The combinatorial and discrete geometric interest of the real models Y G comes from
the observation that they can be obtained by glueing some nestohedra: for instance, the
models Y G(1,1,n) and Y G(2,1,n) are obtained by glueing Stasheff’s associahedra, while the
models Y G(2,2,n) are obtained by glueing graph associahedra of type Dn (in the sense of
Carr and Devadoss, see [5]). There are also non minimal De Concini-Procesi models (see
[27] for a classification), whose construction involves the glueing of permutohedra and other
nestohedra (see [26]).
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Finally we would like to mention that the minimal complex model YG, when G is an
irreducible finite complex reflection group, plays a role in the theory of braid groups: for
instance, the elements in the center of the pure braid group PBG (resp. the braid group BG)
associated to G are easily described in terms of the geometry of YG (resp. YG/G), as well as
the elements in the center of the parabolic subgroups of PBG (resp. BG, see [4]).

1.2 A combinatorial approach

In [3] a new exponential (non recursive) formula for the Betti numbers of the models YG(1,1,n)

has been found, using the following combinatorial approach. In [38] (see also [23]) a monomial
basis of H∗(YG(1,1,n)) was described; the elements of this basis can be represented by graphs,
that are some oriented rooted trees on n leaves, with exponents attached to the internal
vertices. Now let us focus on the trees that have k internal vertices; in [25] a bijection
between these trees and the partitions of {1, ..., n+k−1} into k parts of cardinality ≥ 2 has
been described (this is in fact a variant of a bijection shown in [16]). It turns out that, using
this bijection, a new representation of the monomials of the basis of H∗(YG(1,1,n)) is provided
by partitions with exponents. The generating function for these partitions is expressed by an
exponential series (see Theorem 3.1 in Section 3, where we recall the results on this type A
case).

In this paper we extend to all the groups G(r, p, n) the above described combinatorial
approach. Here the combinatorial structure (described in Section 4) is richer: vertices of
two types appear (strong and weak vertices) as well as weights attached to the vertices and
the leaves (in addition to exponents attached to the internal vertices, as in the An case).
Even if the combinatorial picture is more complicated, we obtain also in this more general
case exponential formulas for the generating functions of the Betti numbers. A formula for
the models YG(r,1,n) (and therefore for the models YG(r,p,n) with p < r, since in this case
YG(r,p,n) = YG(r,1,n)) is provided by Theorem 5.2 in Section 5.1, while Theorem 5.3 gives a
formula for the models YG(2,2,n) (when n ≥ 3 and r ≥ 3 the varieties YG(r,r,n) and YG(r,1,n) are
isomorphic, as explained in Remark 4.2).

In the last two sections of the paper we show an application of the same principles (the
encoding of the combinatorics of nested sets by weighted partitions) to the counting of the
faces of some polytopes associated to the real reflection groups G(1, 1, n), G(2, 1, n) and
G(2, 2, n).

We start by recalling, in Section 6, the construction of the minimal spherical model CYG
associated with a real reflection group G. This is a smooth manifold with corners and it is
diffeomorphic to a disjoint union of polytopes that belong to the family of nestohedra. In
[26] a linear realization of CYG is provided: the polytopes involved lie inside the chambers
of the reflection arrangement; in every chamber we find a copy of the graph associahedron
PG of type G (i.e. the graph polytope defined in [14] and [5] associated with the Dynkin
diagram of type G). We show in Section 7 that the faces of the polytopes appearing in CYG
can be indexed by weighted internally ordered partitions, i.e. the parts of the partitions are
ordered sets. This gives rise to exponential formulas for the generating series of the f -vectors
of the polytopes PG when G = G(1, 1, n), G(2, 1, n), G(2, 2, n).
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In the first two cases the components of the f vectors are the well known Kirkman-
Cayley numbers (a closed formula for these numbers dates back to Cayley’s paper [6]), since
the associated polytopes are Stasheff’s associahedra. In the G(2, 2, n) case (see Theorem
7.2) our formulas generate the f -vectors of the graph polytopes of type Dn. As a final
remark, we notice that specializing these generating series we can obtain formulas for the
generating series of the Euler characteristic of the corresponding real compact De Concini-
Procesi models, that can be compared with the closed formulas described in [30].

2 Models
In this section we will recall the basic facts about De Concini-Procesi models of subspace
arrangements, introduced in the seminal papers [7], [8].

2.1 Building sets and nested sets

Let V be a finite dimensional vector space over a field K and let G be a finite set of subspaces
of the dual space V ∗. We denote by CG its closure under the sum.

Definition 2.1. Given a subspace U ∈ CG, a decomposition of U in CG is a collection
{U1, · · · , Uk} (k > 1) of non zero subspaces in CG such that

1. U = U1 ⊕ · · · ⊕ Uk

2. for every subspace A ⊂ U , A ∈ CG, we have A ∩ U1, · · · , A ∩ Uk ∈ CG and A =
(A ∩ U1)⊕ · · · ⊕ (A ∩ Uk).

Definition 2.2. A subspace F ∈ CG which does not admit a decomposition is called irre-
ducible and the set of irreducible subspaces is denoted by FG.

One can prove that every subspace U ∈ CG has a unique decomposition into irreducible
subspaces. The set FG of the irreducible spaces and the set CG are building sets in the sense
of the following definition:

Definition 2.3. A collection G of subspaces of V ∗ is called building if every element C ∈ CG
is the direct sum G1⊕ · · · ⊕Gk of the set of maximal elements G1, · · · , Gk of G contained in
C.

Definition 2.4. (see [8], Section 2.4) Let G be a building set of subspaces of V ∗. A subset
S ⊂ G is called G-nested if and only if for every subset {A1, · · · , Ak} (k ≥ 2) of pairwise
non comparable elements of S the subspace A = A1 + · · ·+ Ak does not belong to G.

After De Concini and Procesi’s papers [7] and [8], building sets and nested sets turned
out to play a relevant role in combinatorics. For instance, in [20] building sets and nested
sets were defined in the more general context of meet-semilattices and they also appeared
in connection with special polytopes, called nestohedra (see [34], [35], [39], [33], [26]). In
Sections 6 and 7 we will deal with some of these polytopes.
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2.2 Wonderful models

Let us take K = C as the base field and consider a finite subspace arrangement in the complex
vector space V . We describe this arrangement by the dual arrangement G in V ∗ (for every
A ∈ G, we denote by A⊥ its annihilator in V ). The complement in V of the arrangement
{A⊥ | A ∈ G} will be denoted byM(G).
For every A ∈ G we have a rational map defined outside of A⊥:

πA : V −→ V/A⊥ −→ P
(
V/A⊥

)
.

We then consider the embedding

φG :M(G) −→ V ×
∏
A∈G

P
(
V/A⊥

)
given by the inclusion on the first component and by the maps πA on the other components.

Definition 2.5. The De Concini-Procesi model YG associated to G is the closure of φG (M(G))
in V ×

∏
A∈G P

(
V/A⊥

)
.

These wonderful models are particularly interesting when the arrangement G is building:
they turn out to be smooth varieties and the complement of M(G) in YG is a divisor with
normal crossings. The irreducible components of this divisor are indexed by G: if p is the
projection of YG onto the first component V , then for every A ∈ G we denote by DA the
unique irreducible component such that p(DA) = A⊥.

A complete characterization of the boundary is then provided by the observation that, if
we consider a collection T of subspaces in G, then

DT =
⋂
A∈T

DA

is non empty if and only if T is G-nested, and in this case DT is a smooth irreducible
subvariety obtained as a normal crossing intersection.

Remark 2.1. As an immediate consequence of the Definition 2.5 we observe that if a building
set G ′ is obtained from a building set G by adding some lines, even if the two complements
are different (M(G ′) (M(G)), the two complex varieties YG and YG′ are isomorphic.

A presentation of the integer cohomology rings of the models YG was provided in [8].
They are torsion free, and in [38] Yuzvinsky explicitly described Z-bases (see also [23] that
extends this description giving bases for the cohomology of the components of the boundary).
We briefly recall these results.

Let G be a building set of subspaces of V ∗. If H ⊂ G and B ∈ G is such that A ( B for
each A ∈ H, one defines

dH,B := dimB − dim

(∑
A∈H

A

)
.
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In the polynomial ring Z[cA]A∈G, we consider the ideal I generated by the polynomials

PH,B :=
∏
A∈H

cA

(∑
C⊃B

cC

)dH,B

as H and B vary.

Theorem 2.1. (see [8], Section 5.2).
There is a surjective ring homomorphism

φ : Z[cA]A∈G −→ H∗(YG,Z)

whose kernel is I and such that φ(cA) ∈ H2(YG,Z) is the Chern class of the divisor DA.

Definition 2.6. Let G be a building set of subspaces of V ∗. A function f : G −→ N is
G-admissible (or simply admissible) if f = 0 or, if f 6= 0, the following two conditions
hold:

• supp(f) is G-nested

• for all A ∈ supp(f) one has f(A) < dsupp(f)A,A

where supp(f)A := {C ∈ supp(f) : C ( A}.
A monomial mf =

∏
A∈G c

f(A)
A ∈ Z[cA]A∈G is admissible if f is admissible.

Theorem 2.2. (see Section 3 of [38] and Section 2 of [23])
The set BG of all admissible monomials is a Z-basis of H∗(YG,Z).

3 The braid case
Let us consider an hyperplane arrangement in V , represented by the set H of the lines in
V ∗ that are the annihilators of the hyperplanes; we notice that there is a minimal building
set that contains H and it is the building set of irreducibles FH (see Definition 2.2). The De
Concini-Procesi model obtained from FH is called the minimal De Concini-Procesi model
associated to H.

In this section we will recall some results in the case of the reflection groupG(1, 1, n) = Sn.
Adopting a notation that will be extended to all the complex reflection groups, we will denote
by FG(1,1,n) its associated minimal building set and by YG(1,1,n) (instead than YFG(1,1,n)

) the
corresponding minimal model.

Let us consider the real or complexified braid arrangement, i.e. the arrangement given in
Rn or Cn (n ≥ 2) by the hyperplanes defined by the equations xi−xj = 0. The arrangement
associated to the reflection group G(1, 1, n) coincides with the root arrangement of type
An−1 and can be viewed as the arrangement in the quotient space V , where V = Rn/ <
(1, 1, ..., 1) > or V = Cn/ < (1, 1, ..., 1) >, whose hyperplanes are the projections of the
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hyperplanes xi − xj = 0. The projected hyperplanes can still be described by the equations
xi − xj = 0, that are well defined in the quotient.

As we mentioned before, FG(1,1,n) is the minimal building set that contains the lines in
V ∗ that are the annihilators of the hyperplanes xi − xj = 0: it is made by all the subspaces
in V ∗ whose annihilators in V are described by equations like xi1 = xi2 = · · · = xik (k ≥ 2).

Therefore there is a bijective correspondence between the elements of FG(1,1,n) and the
subsets of {1, · · · , n} of cardinality at least two: if the annihilator of A ∈ FG(1,1,n) is the
subspace described by the equation xi1 = xi2 = · · · = xik then we represent A by the set
{i1, i2, . . . , ik}. As a consequence of Definition 2.4, a FG(1,1,n)-nested set S is represented
by a set (which we still call S) of subsets of {1, · · · , n} with the property that any of its
elements has cardinality ≥ 2 and if I and J belong to S than either I ∩ J = ∅ or one of the
two sets is included into the other.

We observe that we can represent a FG(1,1,n)-nested set S by an oriented forest on n

leaves in the following way. We consider the set S̃ = S ∪ {1} ∪ {2} ∪ · · · ∪ {n}. Then the
forest coincides with the Hasse diagram of S̃ viewed as a poset by the inclusion relation: the
roots of the trees correspond to the maximal elements of S, and the orientation goes from
the roots to the leaves, that are the vertices {1}, {2}, . . . , {n} (see Figure 1).

1 2 3 54 6 7 8 9 10

Figure 1: This forest represents the FG(1,1,10)-nested set S made by the irreducibles {2, 3, 4},
{2, 3, 4, 6}, {1, 2, 3, 4, 6}, {5, 7}, {5, 7, 8, 9}, {5, 7, 8, 9, 10}.

One can show, using a bijection proven in [16] (see [25] for a variant), that there are
actions of ‘big’ symmetric groups on the set of FG(1,1,n)-nested sets. Namely, the symmetric
group Sn+k−1 acts on the set of the FG(1,1,n)-nested sets S such that |S| = k and S includes
{1, 2, ..., n}. These actions can be extended to the basis of cohomology described in Theorem
2.2: in [3] (Theorem 10.1) it was shown that one can obtain, by counting the orbits of these
actions, an exponential (not recursive) formula for a series that computes the Betti numbers
of the models YG(1,1,n).

As we mentioned in the Introduction, some recursive formulas for the Poincarè series of
these varieties are well known (see for instance [32], [38], [23]).
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Let us describe the formula obtained in [3], that is the starting point for our general-
izations in the next sections. We denote by Ψ(q, t, z) the following exponential generating
series:

Ψ(q, t, z) = 1 +
∑
n≥2, S

P (S)z|S|
tn+|S|−1

(n+ |S| − 1)!

where, for every n ≥ 2,
• S ranges over all the nested sets of the building set FG(1,1,n) (as a special notation, we

include for every n ≥ 2 also the ‘degenerate’ case where S = ∅);

• P (S) is the polynomial, in the variable q (to be considered of degree 2), that expresses
the contribution to H∗(YG(1,1,n),Z) provided by all the monomials mf in the Yuzvinsky
basis such that supp f = S; furthermore we put P (∅) = 1.

Theorem 3.1 (see [3], Theorem 10.1). We have the following formula for the series Ψ(q, t, z):

Ψ(q, t, z) = et
∏
i≥3

ezq[i−2]q
ti

i!

where [j]q denotes the q-analog of j: [j]q = 1 + q + · · ·+ qj−1.
Remark 3.1. In [3] the result above is stated about the minimal projective De Concini-
Procesi model, that is obtained starting from the projectivized hyperplane arrangement, but,
as it was shown in [8], the integer cohomology rings of a model YG and of its corresponding
projective model are isomorphic.
Example 3.1. In order to compute the Poincaré polynomial of YG(1,1,6) from the formula
above one has to single out all the monomials in Ψ whose z, t component is tkzs with k−s = 5.
A product of the exponential functions that appear in the formula gives:

t5

5!
[1] +

t6

6!
z[42q + 22q2 + 7q3 + q4] +

t7

7!
z2[35q3 + 105q2]

Therefore the Poincaré polynomial of YG(1,1,6), that is equal to the Poincaré polynomial of the
moduli space M0,7, is 1+(42q+22q2+7q3+q4)+(35q3+105q2) = 1+42q+127q2+42q3+q4.

4 Extension to G(r, 1, n), G(r, p, n) and G(r, r, n)

In this section we will describe the building sets of irreducibles associated to the groups
G(r, p, n), and their corresponding nested sets.

We notice that this combinatorial setting could be described also in the language of
Dowling lattices: for instance, the intersection poset of the reflection arrangement of type
G(r, p, n) when p < r is the Dowling lattice Qn(Zr) (see [15]), and we are considering its
minimal building set and its nested set complex, according to the combinatorial definition of
Feichtner and Kozlov in [20]. For this combinatorial approach, and for its further extensions
to Bergman geometry, one could refer to [1], [2], [11], [19], [31]. In particular, in the first
sections of [11] (and in Remark 4.7) one can find an useful overview on the many “bridges”
between combinatorics and geometry related to this subject.
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4.1 The building set of irreducibles

The reflecting hyperplanes of the arrangement in Cn associated with the full monoidal group
G(r, 1, n) coincide with the reflecting hyperplanes of G(r, p, n) when p < r and have been
described in the Introduction.

One can easily check that the building set of irreducibles FG(r,1,n) (that is equal to FG(r,p,n)

when p < r) is made by two families of subspaces. The subspaces in the first family are the
strong subspaces H i1,i2,...,it (the adjective ‘strong’ comes from the analysis of the Bn and Dn

case in [38]), that are the annihilators of the subspaces in Cn described by the equations

xi1 = xi2 = · · · = xit = 0

where 1 ≤ t ≤ n. We can represent them by associating toH i1,i2,...,it the subset {0, i1, i2, ..., it}
of {0, 1, ..., n}. The second family is made by the weak subspaces, that are the annihilators
Hi1,i2,...,it(α2, ..., αt) of the subspaces in Cn described by the equations:

xi1 = ζα2xi2 = · · · = ζαtxit

where 2 ≤ t ≤ n, ζ is a primitive r-th root of unity and, for every s, 0 ≤ αs ≤ r − 1.

Remark 4.1 (Notation). Let us suppose that i1 < i2 < · · · < it; then we can represent
these weak subspaces by associating to Hi1,i2,...,it(α2, ...αt) the weighted subset {i1,

α2

i 2, ...,
αt

i t}
of {1, ..., n}. The weights are integers modulo r, and here (and in the sequel) if a weight is
0 we will omit to write it.

We observe that the building set of irreducibles FG(r,r,n) when n ≥ 3 can be obtained
from FG(r,1,n) by removing some strong subspaces, namely the lines H i, for every i = 1, ..., n.
Moreover, if r = 2 one needs to remove also the two dimensional subspaces H i,j. In fact we
notice that the subspaces H i,j are irreducible if and only if r ≥ 3. In this case the r lines
Hi,j(α) (with 0 ≤ α ≤ r−1) belong to FG(r,r,n), so the two dimensional subspaceH i,j contains
at least three distinct lines that belong to FG(r,r,n) and does not admit a decomposition (point
2 of Definition 2.1 fails).

Remark 4.2. This last observation reveals that when n ≥ 3 and r ≥ 3 the varieties YG(r,r,n)

and YG(r,1,n) are isomorphic. This follows immediately from Remark 2.1 since the building
set FG(r,1,n) can be obtained from FG(r,r,n) by adding some lines.

4.2 Nested sets for FG(r,1,n) and FG(r,r,n)

According to Definition 2.4 and to the representation of the irreducibles by subsets of
{0, 1, ...., n} described in the preceding section, a nested set for FG(r,1,n) is represented by
a set {A′1, ..., A′m} of (possibly weighted) subsets of {0, ..., n} of cardinality ≥ 2 with the
following properties:

• the subsets that contain 0 are not weighted; they are linearly ordered by inclusion;
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• the subsets that do not contain 0 are weighted;

• for any pair of subsets A′i, A′j, we have that, forgetting their weights, they are one
included into the other or disjoint; if A′i, A′j both represent weak subspaces one included
into the other (say A′i ⊂ A′j), then their weights must be compatible. Since we adopt
for A′i and A′j the notation of Remark 4.1, this means that, up to the multiplication
of all the weights of A′i by the same power of ζ, the weights associated to the same
numbers must be equal.

We can represent such a nested set by an oriented weighted forest as in Figure 2. Every
internal vertex v represents the subset obtained considering the leaves that belong to the
subtree stemming from v. In particular, if v is weak, it represents a weighted subset, in the
following way. First of all, if a weak vertex is the root of a tree, we put its weight to be equal
to 0 (so we don’t write it). Then, given any weak vertex w, the weight that one appends to
the leaf i in its associated weighted subset is given by the sum (modulo r) of the weights that
one finds in the oriented connected path from w to i (we do not take into account the weight
of w). According to the above described rules, there is a unique way to put the weights in
the weighted forest respecting the notation of Remark 4.1.

12 35 4 6128 90 13710
23

2

2

2

11
23

Figure 2: A nested set in the case G(4, 1, 13). The ’big’ internal vertices represent
the strong subspaces. The red numbers are the weights, that are integers modulo 4.
The nested set represented in the picture is therefore made by the strong subspaces:

{0, 2, 4, 5, 8, 12}, {0, 1, 2, 3, 4, 5, 6, 8, 11, 12} and by the weak subspaces {4,
3

5,
2

12}, {2,
2

4,
1

5, 12},
{3,

2

6}, {1,
2

3, 6}, {7,
3

9,
2

10}, {7,
3

9,
2

10, 13}.

A description of the same type holds for the nested sets of FG(r,r,n) when n ≥ 3 and
r ≥ 3 (the only difference is that the subsets {0, j} do not appear). As for the nested
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sets of FG(2,2,n) (n ≥ 2), also the subsets {0, j, k} do not appear. Furthermore, there is an
exception to the rule that for any pair of subsets A′i, A′j, forgetting their weights, they are
one included into the other or disjoint: in a nested set there may be one (and only one) pair

{i,
1

j}, {i, j} and in this case any other element B of the nested set satisfies (forgetting its
weights) B ∩ {i, j} = ∅ or {0, i, j} ( B.

5 Series
The results of Section 3 on the computation of Betti numbers of YG(1,1,n) can be extended to
the models YG(r,1,n) (= YG(r,p,n) when p < r) and YG(r,r,n). Our goal is to give a non recursive
formula for the Poincaré series

ΦG(r,a)(q, t) = 1 +
∑
n≥1

Poin(YG(r,a,n))(q)
tn

n!

where Poin(YG(r,a,n))(q) is the Poincaré polynomial of the model YG(r,a,n).
We start by singling out the contribution to ΦG(r,a)(q, t) given by the monomials of the

Yuzvinsky basis whose support does not contain strong subspaces. In terms of the Dowling
lattice, the supports of these monomials are nested sets whose elements belong to the sub-
poset Q0

n(Zr) of Qn(Zr) defined by Hultman in [31] (the notation Q0
n(Zr) is the one adopted

in Section 1.2 of [11]).

Definition 5.1. Let a = 1 or a = r and let us denote by KG(r,a)(q, t, z) the following
exponential generating series:

KG(r,a)(q, t, z) = 1 +
∑
n≥2, S

P (S)z|S|
tn+|S|−1

(n+ |S| − 1)!

where, for every n ≥ 2 (while r remains fixed),

• S ranges over all the nested sets of the building set FG(r,a,n) that do not contain strong
subspaces (as a special notation, we include for every n ≥ 2 also the ‘degenerate’ case
where S = ∅);

• P (S) is the polynomial, in the variable q, that expresses the contribution to H∗(YG(r,a,n),Z)
provided by all the monomials mf in the Yuzvinsky basis such that supp f = S; fur-
thermore we put P (∅) = 1.

We notice that the series KG(r,a)(q, t, z) doesn’t change in the two cases G(r, 1, n) or
G(r, r, n), since only weak subspaces are involved.

Theorem 5.1. We have the following formula for the series KG(r,a)(q, t, z):

KG(r,a)(q, t, z) = et
∏
i≥3

e
z
r
q[i−2]q (rt)i

i!

where [j]q denotes the q-analog of j: [j]q = 1 + q + · · ·+ qj−1.
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Proof. This is a variant of Theorem 3.1, nevertheless we write the details of the proof for
the convenience of the reader.

A monomial m of the Yuzvinsky basis of YG(r,1,n) can be represented by a weighted
partition with exponents, in the following way. The support of the monomial is given, as
we know from Theorem 2.2, by a FG(r,1,n)-nested set, and we are considering the monomials
such that this nested set is made by weak subspaces.

For instance in H∗(YG(4,1,13)) the support of the monomial

c
{4,

3
5,

2
12}
c2
{2,

2
4,

1
5,8,11,12}

c
{7,

3
9,

2
10}
c3
{1,3,6,7,

3
9,

2
10,13}

is described by the weighted forest in Figure 3.

12 35 4 6128 9 13710
23

2

23
11

Figure 3: This weighted forest represents the support of the monomial
c
{4,

3
5,

2
12}
c2
{2,

2
4,

1
5,8,11,12}

c
{7,

3
9,

2
10}
c3
{1,3,6,7,

3
9,

2
10,13}

in H∗(YG(4,1,13)).

Then, following [25], we can label the internal vertices of the forest as in Figure 4: we
put labels level by level, and the label of a vertex v is less than the label of a vertex w
iff the subtree that stems from v contains a leaf whose label is smaller than the labels of
all the leaves in the subtree that stems from w. If the forest has more than one connected
component (as in Figure 4), we add an extra vertex on top, with the maximum label.

We can then associate to the support of the monomial m a weighted partition, by looking
at the internal vertices of the labelled forest and taking into account, for each internal vertex,
the labels and weights of the vertices covered by it. For instance, looking at the weighted
forest represented in Figure 4, we associate to it the the weighted partition:

{4,
3

5,
2

12}{2, 8, 11,
2

14}{7,
3

9,
2

10}{1, 3, 6, 13, 15}{16, 17}

Finally we can associate to the monomial

c
{4,

3
5,

2
12}
c2
{2,

2
4,

1
5,8,11,12}

c
{7,

3
9,

2
10}
c3
{1,3,6,7,

3
9,

2
10,13}

the following weighted partition of {1, ..., 17} with exponents attached to the parts, in order
to keep into account the exponents in the monomial:

{4,
3

5,
2

12}{2, 8, 11,
2

14}2{7,
3

9,
2

10}{1, 3, 6, 13, 15}3{16, 17}0
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Figure 4: We can label (level by level) the internal vertices of the forest of Figure 3 with the
numbers 14, 15, 16, 17. Since the forest is not connected, we add a vertex on top, with the
maximum label 18.

Remark 5.1. This process, if applied to a forest with more then one connected component,
adds an extra vertex on top. In this case we obtain a part with exponent 0, like {16, 17}0 in
the example above. We notice that this part, by construction, contains 17, the maximum of
{1, 2, ..., 17}.

Going back to our proof, let us denote by B(r, 1)weak the set of all the Yuzvinsky basis
monomials of all the models YG(r,1,n) (n ≥ 3) whose support is made by weak subsets. As
we remarked above, we can think of these monomials as weighted partitions with exponents
attached to the parts. Let us now denote by P(r, 1) the union, for every j ≥ 3, of the set of
weighted partitions of {1, .., j} with exponents, such that:

• at most one of the parts has exponent equal to 0 (and cardinality ≥ 2). If this part
exists, it contains the maximum number j;

• the other parts I have cardinality ≥ 3 and their exponent αI satisfies 1 ≤ αI ≤ |I|− 2.

As an easy corollary of Theorem 2.1 in [25], we know that the above described map from
B(r, 1)weak to P(r, 1) is bijective1, therefore we can find a formula for KG(r,a)(q, t, z) by
counting the contribution of all the elements of P(r, 1).

Then we single out the contribution given to KG(r,a)(q, t, z) by all the parts represented
by subsets with cardinality i ≥ 3 and with nonzero exponent. If in a weighted partition there
is only one such part its contribution is z

r
(q+q2 + · · ·+qi−2) (rt)

i

i!
. If there are j such parts the

associated contribution is ( z
r
)j(q + q2 + · · ·+ qi−2)j

(
(rt)i

i!
)j

j!
. In conclusion the contribution of

all the parts represented by subsets with cardinality i ≥ 3 and with nonzero label is provided
1We remark that another bijection between these two sets can be deduced from Theorem 1 of [16].
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by
e

z
r
(q+q2+···+qi−2)

(rt)i

i! − 1

Let us now focus on the contribution to KG(r,a)(q, t, z) that comes from the parts with
cardinality i ≥ 2 and with exponent equal to 0. For every monomial in the basis there
is at most one such part (that must contain the highest number of the set that we are
partitioning), and its contribution is ti−1

(i−1)! . We note that by construction all the weights of
the numbers that belong to this part are equal to 0, since it does not represent a subspace
in the support of the monomial.

The total contribution of the elements with exponent equal to 0 is therefore
∑

i≥2
ti−1

(i−1)! .
Summing up, we observe that the expression

et
∏
i≥3

e
z
r
q[i−2]q (rt)i

i!

allows us to take into account the contribution to KG(r,a)(q, t, z) of all the elements in P(r, 1).

5.1 Series for G = G(r, 1, n)

Let us now find a formula for the Poincaré series ΦG(r,1)(q, t) of the models YG(r,1,n).
In this case the support of a monomial of the Yuzvinsky basis can be represented by a

forest that has a shape like the one suggested in Figure 5.
There may be at most one connected component with strong vertices. Then the strong

vertices, as in the picture, form a chain, and below each of them there is a subgraph made by
weak vertices. There may be other connected components that are made by weak vertices.

The following series will play a key role in computing the contribution of a weak subtree
that stems from a strong vertex:

γG(r,1)(q, t, z) =

(∑
i≥2

ti−1

(i− 1)!
q[i− 1]q

)∏
i≥3

eq[i−2]q
z
r ( tr

i! )
i

The idea is that we can evaluate the series γG(r,1)(q, t, z) in z = ∂
∂t

and then integrate
(formally, with constant equal to 0) with respect to the variable t. As a result we get a new
series in the variables q, t which we denote by ΓG(r,1)(q, t):

ΓG(r,1)(q, t) =

∫
γG(r,1)(q, t,

∂

∂t
)

Remark 5.2. Here and in the sequel, when we say that we evaluate a series in z = ∂
∂t
,

we mean that first we compute the series, then, in every monomial that appears in the final
expression of the series, we put z = ∂

∂t
.
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Figure 5: The shape of a forest that represents the support of a basis monomial of
H∗(YG(r,1,n)). There is at most one component with strong vertices. Then the strong vertices,
as in the picture, form a chain, and below each of them there is a subgraph made by weak
vertices. There may be other connected components that are made by weak vertices.

At the same way we define

KG(r,1)(q, t) = 1 +

∫
KG(r,1)(q, t,

∂

∂t
)

Theorem 5.2. We have the following formula for the Poincaré series of the models YG(r,1,n):

ΦG(r,1)(q, t) =
1

1− ΓG(r,1)(q, t)
KG(r,1)(q, t)

Proof. First we observe that

KG(r,1)(q, t) = 1+

∫
KG(r,1)(q, t,

∂

∂t
) = 1+t+

∑
n≥2, S weak

P (S)
tn

n!
= 1+t+

∑
n≥2

Poinw(YG(r,1,n))(q)
tn

n!

where S weak means that we are considering only the nested sets made by weak subspaces
(as a special notation, we are including for every n ≥ 2 also the ‘degenerate’ case where
S = ∅), and Poinw(YG(r,1,n))(q) is the contribution to the Poincaré polynomial of the model
YG(r,1,n) given by the basis monomials whose nested set is ‘weak’.

Then we observe that the difference between the series γG(r,1)(q, t, z) and KG(r,1)(q, t, z)

consists only in the first exponential factor, where we find
∑

i≥2
ti−1

(i−1)!q[i − 1]q instead than∑
i≥2

ti−1

(i−1)! : the q-polynomial q[i − 1]q counts the contribution to the Poincarè series given
by a strong vertex which covers i weak vertices in the graph. The evaluation of z as ∂

∂t
and

the integral transform γG(r,1)(q, t, z) into ΓG(r,1)(q, t), that gives the correct contribution to
the Poincaré series of a strong vertex and of the weak subgraph stemming from it.
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Since the strong vertices are linearly ordered, if there are m strong vertices their contri-
bution is given by ΓG(r,1)(q, t)

m, so the total contribution of strong vertices to ΦG(r,1)(q, t)
is

ΓG(r,1)(q, t) + ΓG(r,1)(q, t)
2 + ΓG(r,1)(q, t)

3 + ...

Multiplying by KG(r,1)(q, t) we take into account the contributions of the components of the
forest that don’t have strong vertices, and this proves our claim.

5.2 Series for G = G(r, r, n)

When n ≥ 3 and r ≥ 3 the varieties YG(r,r,n) and YG(r,1,n) are isomorphic, as we observed in
Remark 4.2, therefore when r ≥ 3 the series ΦG(r,r)(q, t) coincides with ΦG(r,1)(q, t).

Theorem 5.3. When r = 2 we have

ΦG(2,2)(q, t) =
(1− q t2

2
)

1− ΓG(2,1)(q, t)
KG(2,1)(q, t)

Proof. When r = 2, the only modification we have with respect to the computation of
Theorem 5.2 is that among the forests that represent the supports of the monomials we do
not have forests whose lower strong vertex corresponds to a two dimensional subspace H i,j.
The contribution to ΦG(2,1)(q, t) of the associated monomials is computed by the series

q t
2

2

1− ΓG(2,1)(q, t)
KG(2,1)(q, t)

so we have to subtract it from ΦG(2,1)(q, t).

6 Real spherical models
When the group G is real we can construct a spherical model associated to it, as a special
case of a construction in [24].

Let us consider the real arrangement AG given in the euclidean space V by the reflecting
hyperplanes of G, and let us identify V ∗ with V by the scalar product. Therefore the
subspaces in the minimal building set, that we denote by FG, are identified with subspaces
in V . We will denote byM(G) the complement of the arrangement AG in V .

Moreover, we denote by S(V ) the unit sphere in V , and, for every subspace A ⊂ V , let
S(A) = A ∩ S(V ). Let us consider the compact manifold

K = S(V )×
∏
A∈FG

S(A)
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There is an open embedding φ : M(G)/R+ −→ K which is obtained as a composition of
the section s : M(G)/R+ 7→ M(G)

s([p]) =
p

|p|
∈ S(V ) ∩M(G)

with the map
M(G) 7→ S(V )×

∏
A∈FG

S(A)

that is given by the normalization on the first factor and by the orthogonal projections
followed by normalizations on the other factors.

Definition 6.1. We denote by CYG the closure in K of φ(M(G)/R+).

It turns out that CYG is a smooth manifold with corners that has as many connected
components as the number of chambers of the arrangement.

A linear realization of CYG as a disjoint union of polytopes has been constructed in
[26]. The polytopes involved lie inside the chambers of the arrangement: in the fundamental
chamber we find the graph associahedron PG of type G (i.e. the graph polytope defined in
[14] and [5] associated with the Dynkin graph of type G) and in the other chambers there is
the image of this polytope via the action of G. The faces of the graph associahedron PG that
lies in the fundamental chamber are parametrized by the fundamental nested sets defined as
follows. Given a basis of simple roots for the root system of G, the fundamental building set
is the union of {V } with the set of irreducible subspaces that are spanned by simple roots
(it almost always happen that V already belongs to this set). The nested sets containing V
associated to this building set are the fundamental nested sets.

Now, as it is well known, the chambers of the arrangement are in bijection with the
elements of G. It follows that the faces of the graph associahedra that are the components
of CYG are parametrized by pairs (w,S ′) where w ∈ G and S ′ is a fundamental nested set.

From Section 5 of [24] we know that there is a natural projection map P from CYG
to Y FG

, the real compact wonderful model associated with the group G. This model is
constructed in [8] as the closure of the image of the map

P(M(G)) −→ P(V )×
∏
A∈FG

P(A)

where we identify the euclidean space V with its dual as above.
Then Theorem 5.2 of [24] states that P has fibers of distinct cardinalities. In fact CYG has

a natural stratification: the codimension 0 stratum is the disjoint union of the interiors of all
the associahedra that are the connected components of CYG, and in general the codimension
k stratum is the union of the interiors of all the codimension k faces of these associahedra.
Then P is 2 → 1, i.e. its fibers have cardinality 2, when restricted to the codimension
0 stratum of CYG, and it is 2k+1 → 1 when restricted to codimension k stratum of CYG.
Therefore Y FG

can be obtained by glueing |G| copies of the polytope PG in a prescribed way.
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7 Counting faces of polytopes in the real cases
A variant of the computation of the Poincaré series of the model YG allows us to find a series
that counts the number of faces of CYG. From this one immediately obtains formulas for
the number of faces of the graph associahedron PG.

7.1 Case An−1, group Sn = G(1, 1, n).

When G = Sn (n ≥ 2), i.e. when we are dealing with the arrangement of type An−1, the
polytope PG is a n − 2 dimensional Stasheff’s associahedron. The entries of the f−vectors
of these associahedra are the well known Kirkman-Cayley numbers. Anyway, in order to
‘test’ our method, in this section we show how we can obtain a series that encodes all the
information about the f -vectors of the Stasheff’s associahedra.

First we notice that every nested set in FG(1,1,n) is represented by a forest on n leaves, as
we explained in Section 3. For the description of CYG(1,1,n) we need the nested sets containing
V , i.e. the ones represented by trees. Let us now consider planar pictures of these trees,
adding an ordering condition on the leaves: even if two trees represent the same nested set,
we consider them as different objects if the order from left to right of their leaves is different.
Each of these plane trees represents a face of CYG(1,1,n): the plane trees where the leaves,
from left to right, form the list 1, 2, .., n represent the fundamental nested sets, so the trees
whose leaves form the list w(1), w(2), ..., w(n) (where w ∈ Sn) describe the faces (w,S ′) of
the polytope that lies in the chamber corresponding to w.

In conclusion, the faces of the disjoint union of polytopes CYG(1,1,n) are in bijective
correspondence with the set of the above described plane rooted trees on n ordered leaves.

Definition 7.1. Let us denote by F (z, t) the series

F (z, t) =
∑
n≥2

∑
T

zs(T )
tn+s(T )−1

(n+ s(T )− 1)!
(1)

where T ranges over all the above described plane rooted trees with n ordered leaves and s(T )
is the number of internal vertices in T .

We observe that we can write

F (z, t) =
∑

n≥2,1≤s≤n−1

Cn,s
(n+ s− 1)!

zstn+s−1

where Cn,s is the number of (s−1)-codimensional faces of CYG(1,1,n). Therefore, the coefficient
in F (z, t) of zstn+s−1 multiplied by (n+s−1)!

n!
is equal to the number of (s− 1)-codimensional

faces of the n− 2 dimensional Stasheff’s associahedron, that is the Kirkman-Cayley number

Dn+1,s−1 =
1

s

(
n− 2

s− 1

)(
n+ s− 1

s− 1

)
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Proposition 7.1. We have F (z, t) = ez
t2

1−t − 1.

Proof. As in the proof of Theorem 5.1 we want to count partitions of {1, ..., n+ k − 1} into
k parts with cardinality ≥ 2 instead than plane trees with n ordered leaves and k internal
vertices. An important difference is that here the order of the leaves is relevant; this can
be translated in terms of partitions by considering partitions where each part is internally
ordered. In fact an “ordered” variant of the bijection described in Section 5 (see Theorem
2.2 of [25]) associates to such a partition a tree on n ordered leaves, as illustrated by Figure
6.

12 354 6 7 89

13

10

11

14

12

15

{2,3,1} {4,6} {7,5} {10,8,11} {12,13} {15,9,14}

16

Figure 6: The internally ordered partition of [1, 15] into 6 blocks that is on top of the picture
produces the rooted tree with 10 ordered leaves on the bottom of the picture (the internal
orderings of the blocks are obtained reading from left to right: we preferred this implicit
notation to a heavier notation like {2 ≺ 3 ≺ 1}{4 ≺ 6}{7 ≺ 5}{10 ≺ 8 ≺ 11}{12 ≺
13}{15 ≺ 9 ≺ 14}). For every internal vertex v, the labels of the vertices and leaves covered
by it, read from left to right, reproduce the internal orderings of a block of the partition.

Furthermore, in this case all the parts have exponent equal to 1 (in particular there is no
part with exponent 0), and the parts have cardinality ≥ 2.

When we single out the contribution given to F (z, t) by all the parts represented by
subsets with cardinality i ≥ 2 we observe that if in a partition there is only one such part
its contribution is zti and if there are j such parts their contribution is zj (t

i)j

j!
. The formula

follows.

Let us now consider the series

X(t) =
∑
n≥2

χ(Y G(1,1,n))
tn−1

(n− 1)!

19



where χ( ) denotes the Euler characteristic. There are several different ways to compute
this series and a closed formula for χ(Y FG(1,1,n)

) has been provided in [13] and [30]. Anyway
we remark that we can compute X(t) also from F (z, t):

Corollary 7.1. The series X(t) can be obtained from the series e
z
2

t2

1+t − 1 by evaluating z
as ∂

∂t
.

Proof. We can compute the Euler characteristic by counting the faces of the CW complex
that covers Y FAn−1

according to the map P described in the end of Section 6. Then e
z
2

t2

1+t −1

is F ( z
2
,−t): the substitution z → z

2
in F (z, t) takes into account the 2k+1 → 1 glueings of the

k-codimensional boundary components of CYG(1,1,n), while the substitution t→ −t gives the
correct sign (−1)n−1+s(= (−1)n−1−s) to the (s− 1)-codimensional cells of the CW complex.

7.2 Cases Bn, group G(2, 1, n) and Dn, group G(2, 2, n).

Let us consider a = 1 or a = 2 and define the series

FCYG(2,a)
(w, t) =

∑
n≥a

∑
1≤j≤n

CG(2,a,n),jw
j t
n

n!

where CG(2,a,n),j is the number of (j − 1)-codimensional faces of CYG(2,a,n). The only
exception is CG(2,2,2),1 that we put equal to 0 for a technical reason, while in the model
CYG(2,2,2), corresponding to the Klein group G(2, 2, 2), there are two 0-codimensional faces
(and four 1-codimensional faces). The ‘singularity’ of this case depends on the fact that it
is the only one where the full space V is not an irreducible subspace.

In view of the description of fundamental nested sets, and of the parametrization by pairs
(w,S ′) of the faces of CYG(2,a,n), the number CG(2,a,n),j coincides with the number of plane
rooted weighted trees on n + 1 leaves labelled by {0, 1, ..., n} and ordered from left to right
with the following properties (see Figure 7):

• the vertices may be weak or strong; the root is a strong vertex, and the strong vertices
are linearly ordered;

• the leaves belong to a horizontal line; the first leaf on the left is the leaf 0, that is
contained in the subgraph that stems from every strong vertex; the other leaves are
put on the line in any order from left to right;

• there are at least two edges that go down from every internal vertex; if a = 2, there
must be at least three leaves in the subgraph that stems from the lower strong vertex:
if there are exactly three leaves, then there must be the extra label ± described in the
last point below.
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• there are weights 0 or 1 attached to the leaves and vertices, with the following restric-
tions: the root has weight 0 and when a vertex covers some other objects (where with
‘object’ we mean a vertex or a leaf), the leftmost object has weight 0. Furthermore,
let us say that a leaf has parity 0 or 1 if the sum (modulo 2) of the weights that one
finds in the path from the leaf to the root is 0 or 1 respectively; then, in the case a = 2
the number of leaves with parity 1 must be even.

• if a = 2, the first leaf on the right of the leaf 0 may be equipped with and extra label
(+, − or ±). More precisely, it has this extra label if it is covered by a weak vertex,
with the following meaning: let c be the label of the leaf on the right of b, then if in
the subspace represented by the weak vertex there is the root xc + xb we put the label
+, if there is the root xc − xb we put the label −. We also allow the following special
case: there is a weak vertex v that covers exactly two leaves, namely the leaf b with
the extra label ± and the leaf c, and there is a strong vertex that covers exactly two
objects: the leaf 0 and the vertex v; this notation means that in the nested set there
are both the one dimensional subspaces spanned by the roots xc + xb and xc − xb.

12 35 4 6128 90 13710
1

1
1

1

11
1 1

1

1 1

1

Figure 7: A valid plane oriented rooted tree that represents a face of codimension 7 of
CYG(2,1,13).

Remark 7.1. We notice that the combined information provided by the ordering from left to
right of the leaves and by the weights of these trees determines the chamber of the arrangement
that we are considering, since the chambers are in bijective correspondence with the orderings
of the numbers {1, 2, ..., n}, with weights 0 or 1 attached to these numbers (these weights are
recovered from the weights of a tree by attaching to a leaf its parity 0 or 1).
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When a = 1, i.e. in the Bn case, the associated polytope is again the (n−1)-dimensional
Stasheff’s associahedron whose f -vector is well known. Nevertheless we show a formula for
FCYG(2,1)

(w, t) from which we will obtain a formula for FCYG(2,2)
(w, t). We remark that since

CYG(2,2,n), for every n, is the disjoint union of 2n−1n! polytopes, this immediately gives a
formula that computes the f -vectors of the graph associahedra of type Dn.

One defines

γ̃G(2,1)(t, z, w) = 2

(∑
i≥1

i(2t)i−1

)∏
j≥2

e
wz
2
(2t)j

This series plays the same role of the series γG(r,1) in Section 5.1: it counts the contribution
to FCYG(2,1)

(w, t) of the vertices of the weak subgraph that stems from a strong vertex (the
leaves are considered weak except for the leaf 0). In this case, for a technical reason that will
become clear later, there are two variables, w and z, that count the same quantity, i.e. the
number of internal vertices of this subgraph. As in the G(1, 1, n) case, the order from left
to right of the leaves is relevant and therefore we are considering partitions into internally
ordered parts. This time there are also weights, equal to 0 or 1, attached to each number of
the partition.

The factor 2
(∑

i≥1 i(2t)
i−1) has the following meaning: in a given partition there is a

part, say of cardinality i, that contains the highest number, and represents the vertices
connected by an arc to the strong vertex; then the contribution of this part is given by
2iiti−1, where the factor i counts the choices of the position of the highest number.

To obtain the exact contribution of the vertices of the weak subgraph that lies below a
strong vertex, we have to pass from γG(r,1) to the following series:

Γ̃G(2,1)(t, w) =

∫
γ̃G(2,1)(t,

∂

∂t
, w)

where the substitution of z with ∂
∂t

is performed as specified in Remark 5.2. We observe that
the variable w still counts the internal vertices of the subgraph.

Theorem 7.1. We have

FCYG(2,1)
(w, t) =

1

1− wΓ̃G(2,1)(t, w)
− 1

Proof. We have already discussed the meaning of the series Γ̃G(2,1)(t, w). So, since the strong
vertices are linearly ordered, the series FCYG(2,1)

(w, t) is equal to

wΓ̃G(2,1)(t, w) + (wΓ̃G(2,1)(t, w))2 + (wΓ̃G(2,1)(t, w))3 + ...

Example 7.1. A simple computation shows that the first terms of the series wΓ̃G(2,1)(t, w)
are as follows:

wΓ̃G(2,1)(t, w) = w2t+ (w2 +w)22t2 + (2w3 + 3w2 +w)23t3 + (5w4 + 10w3 + 6w2 +w)24t4 + ...
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As a consequence, the first terms of FCYG(2,1)
(w, t) are:

FCYG(2,1)
(w, t) = w2t+(2w2+w)22t2+(5w3+5w2+w)23t3+(14w4+21w3+9w2+w)24t4+ ...

The coefficients that appear inside the parentheses give, as expected, the f -vectors of Stash-
eff’s associahedra.

We can now quickly obtain a formula in the Dn case:

Theorem 7.2. We have

FCYG(2,2)
(w, t) =

(1− t)wΓ̃G(2,1)(t, w)− 2tw − 2t2w − 2t2w2

1− wΓ̃G(2,1)(t, w)

In particular, when n ≥ 4, the coefficient of wstn of this series, divided by 2n−1, gives the
number of faces of codimension s− 1 of the (n− 1)-dimensional associahedron of type D.

Proof. A difference with respect to the computation in the Bn case is that as a first step
we remove the contributions of all the graphs such that the subgraph that stems from the
lower strong vertex has only two or three leaves, namely the leaf 0 plus one or two leaves. A
subgraph of this type that has only two leaves gives the contribution 2wt to wΓ̃G(2,1)(t, w),
while the subgraphs of this type that have three leaves give the contribution 4(w +w2)t2 to
wΓ̃G(2,1)(t, w).

Furthermore, we have to take into account the extra label +, − or ± of the leaf on the
right of the leaf 0 (we will call it the leaf b): this extra label appears only when the leaf b
is covered by a weak vertex. So in order to compute the contributions of the extra labels +
and − we multiply by two the contribution of lower strong vertices computed so far:

2[wΓ̃G(2,1)(t, w)− 2tw − 22t2(w + w2)]

and then subtract from it the contribution of lower strong vertices where the leaf b is not
covered by a weak vertex:

2[wΓ̃G(2,1)(t, w)− 2tw − 22t2(w + w2)]− 2t[wΓ̃G(2,1)(t, w)− 2wt]

Then we add 22t2w2 to take into account the case where the extra label ± appears. Finally,
we obtain the following formula that computes the contribution of lower strong vertices:

1

2

(
2[wΓ̃G(2,1)(t, w)− 2tw − 22t2(w + w2)]− 2t[wΓ̃G(2,1)(t, w)− 2wt] + 22t2w2

)
The factor 1

2
takes into account that in the case a = 2 we are considering only the trees

where an even number of leaves have parity 1.
The contribution of strong vertices different from the lower one is computed dividing the

formula that we have obtained by 1− wΓ̃G(2,1)(t, w).
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Example 7.2. If one computes FCYG(2,2)
(w, t) from the formula above, starting from the

formula for the first terms of wΓ̃G(2,1)(t, w) shown in Example 7.1, one obtains that the
coefficient of 23t4 in FCYG(2,2)

(w, t) is equal to:

16w4 + 24w3 + 10w2 + w

The coefficients that appear above give the f vector of the graph associahedron of type D4.
We notice that a formula for the number of the vertices of these graph associahedra (in terms
of the Catalan numbers) is provided by Proposition 5.4 of [34].

We notice that the coefficient of 22t3 in FCYG(2,2)
(w, t) is 5w3+5w2+w, giving the f -vector

of the 2-dimensional Stasheff’s associahedron. This reflects the fact that the ‘degenerate’ root
system D3 is equal to A3.

As a corollary of the results above, we can describe a series that computes the Euler
characteristic of the real compact models of type Bn and Dn (closed formulas can be found
in [30]):

Corollary 7.2. If we evaluate the series FCYG(2,a)
(w,−t) in w = −1

2
, the coefficient of tn

n!
is

equal to the Euler characteristic χ(Y G(2,a,n)) for a = 1 and n ≥ 1 and for a = 2 and n ≥ 3.

Proof. This is an immediate consequence of the properties of the map P , in particular of the
2k+1 → 1 glueings of the k-codimensional boundary components of CYG(2,a).
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