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Abstract

We apply KAM theory to the equation of the forced relativistic pen-
dulum to prove that all the solutions have bounded momentum. Subse-
quently, we detect the existence of quasiperiodic solutions in a generalized
sense. This is achieved using a modified version of the Aubry-Mather the-
ory for compositions of twist maps.

1 Introduction

In this paper we are concerned with some aspects of the dynamics of the differ-
ential equation

d

dt

( ẋ√
1− ẋ2

)
+ a sinx = f(t), (1)

where a > 0 is a parameter and f : R→ R is a continuous and T -periodic real
function satisfying ∫ T

0

f(t)dt = 0. (2)

This equation, sometimes called the forced relativistic pendulum, has been con-
sidered by several authors. In [20] Torres proved the existence of a T periodic
solution after imposing some restrictions on the period and the size of f . Later,
Brezis and Mawhin [4] proved the existence of a T -periodic solution for any f .
The existence of a second T -periodic solution has been proved in [2, 3]. See also
[6, 12] for an alternative approach to the periodic problem. The equation (1)
can be seen as a relativistic counterpart of the classical Newtonian pendulum

ẍ+ a sinx = f(t). (3)

This equation has been analyzed from many points of view. In particular Levi
[10] and You [21] proved that all the solutions of (3) have bounded velocity ẋ(t)
whenever (2) holds. The relativistic framework implies that |ẋ(t)| < 1 and so
the boundedness of the velocity is automatic. However we will prove that the
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results by Levi and You have a relativistic parallel when the velocity is replaced
by the momentum

p(t) =
ẋ(t)√

1− ẋ(t)
2
.

We are going to prove that if f(t) satisfies (2) then KAM theory applies and all
solutions of (1) satisfy

sup
t∈R
|p(t)| <∞. (4)

Moreover we show that condition (2) is essential for this conclusion. Actually, if
the average is not zero, there cannot exist invariant curves for the Poincaré map
and solutions with unbounded momentum will appear. This fact has an intuitive
interpretation if one thinks at the Newtonian pendulum: if the external force
acts more in one direction, then an acceleration is produced in that direction.
In addition we will prove the existence of generalized quasi-periodic solutions
with two frequencies

ω1 =
2π

T
, ω2 ∈ (−1, 1).

We find solutions for each frequency ω2 and these solutions are quasi-periodic
when the phase space of the pendulum is a cylinder. These solutions become
subharmonic solutions when ω1 and ω2 are commensurable. We recall that a
subharmonic solution is a periodic solution of period kT which is not of period
hT with 1 ≤ h < k. Note that equation (1) is not invariant under Lorentz
transformations but condition (4) is equivalent to

sup
t∈R
|ẋ(t)| < 1.

This means that the velocity is always uniformly bounded, in accordance with
the theory of restricted relativity.

To prove these results we consider the Hamiltonian formulation of (1) where
the position q = x and the momentum p = ẋ√

1−ẋ2
are conjugate variables.

After some changes of coordinates we will write the associated Poincaré map
in a form such that Moser Twist Theorem is applicable and so invariant curves
exist. This property already implies the boundedness of the momentum. Note
that this result is a counterpart to the result in [5] in which the authors find
invariant curves surrounding the origin. To apply Moser’s theorem, estimates in
some Ck norm are needed. These estimates usually are tedious and cumbersome
and one has to find the right way case by case. This is why trying to repeat
the direct computation by Levi or the change of variable by You, one is lead
to non trivial technical difficulties. Anyway, a more general technique, inspired
by [19] and based on the differentiability with respect to the parameter of the
solution of a differential equation, will simplify significantly the computations.
Moreover, it could also provide a simpler proof of the results of Levi and You
for the Newtonian case. We also stress the fact that we can consider the case
in which the period of the forcing and the period of the potential are not the
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same. Furthermore, the generality of this argument allows to consider a general
nonlinearity g(x) in (1).

To prove the existence of periodic and generalized quasi-periodic solutions,
one can use the theory of Aubry and Mather [13]. In principle, to apply this
theory we need to know that the Poincaré map of equation (1) has twist. In
the paper [12] it was shown that it does not hold unless a restriction on the
parameters is imposed, namely the condition a ≤ (π/T )2 is necessary. Since we
want to obtain results for arbitrary parameters we will apply a less standard
version of Aubry-Mather theory. In [14] it is shown that the main conclusion of
this theory still holds when the map is obtained as a finite composition of twist
maps. The Poincaré map Π of equation (1) can be seen as a finite composition
Π = f1 ◦ · · · ◦ fN where every fi is a “small-time” map that is twist without
any restriction. To apply the result in [14] we need to check that the twist of
each map fi goes to infinity as the action goes to infinity. The relativistic effect
prevents the velocity from being too large and this makes impossible to satisfy
this assumption of large twist. For this reason Mather’s theorem cannot be
applied directly. The presence of small twist also prevents Moser approach [16]
from holding. So, we will have to spend some work in proving that the existence
of invariant curves allows to modify Mather’s theorem in order to consider also
this situation. With this modified theorem we can produce periodic and quasi-
periodic solutions whose oscillating properties are determined by the rotation
number of the corresponding Mather set.

The paper is organized as follows. Sections 2, 3 and 4 are dedicated to the
study of the boundedness of the momentum. In section 2 we formally state
the problem and the results. Theorem 2.1 refers to the boundedness of the
momentum and Proposition 1 refers to the fact that condition (2) is essential
for this conclusion. In section 3 we obtain an expansion of the Poincaré map
that allows to apply Moser Theorem. In section 4 we formally prove Theorem
2.1 and Proposition 1. Sections 5 and 6 are dedicated to the study of the
quasi-periodic solutions. In section 5 we state the result (Theorem 5.1) on the
existence of quasi-periodic solutions and prove some preliminaries for the proof.
The modified version of Mather Theorem (Theorem 6.2) is stated and proved
in Section 6 together with the conclusion of the proof of Theorem 5.1.

2 Motions with bounded momentum

Consider the equation

d

dt

( ẋ√
1− ẋ2

)
− g(x) = f(t) (5)

and assume that the functions f and g satisfy the following conditions

(A1) g ∈ C7(R), g(x+ S) = g(x),
∫ S

0
g(x)dx = 0

(A2) f ∈ C(R), f(t+ T ) = f(t),
∫ T

0
f(t)dt = 0.
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where T and S are two positive numbers. Note that when g(x) = −a sinx and
S = 2π we recover equation (1).

Remark 1. The regularity required in hypothesis (A1) is necessary to apply
KAM theory. To our knowledge it is not know which is the optimal assumption
on the regularity of g(x) in order to have all motions with bounded momentum.

Equation (5) is in the Lagrangian framework. Actually it can be expressed
in the form

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

where
L(x, ẋ, t) = −

√
1− ẋ2 +G(x) + f(t)x.

Here G represents a primitive of g. Note that G is S-periodic and of class C8.
To our purposes, it will be convenient to pass to the Hamiltonian formulation,{

q̇ = Hp = p√
1+p2

ṗ = −Hq = g(q) + f(t)
(6)

with H(t, q, p) =
√

1 + p2−G(q)− f(t)q. We arrive to this system after having
performed the classical Legendre transformation{

q = x
p = ẋ√

1−ẋ2
.

From now on the conjugate coordinate p will be called the momentum. The
Hamiltonian vector field (Hp,−Hq) is bounded so all solutions of (6) are glob-
ally defined and the same holds for the solutions of (5) undoing the change of
variables.

Note that, due to the relativistic structure, the velocity of any solution is
bounded and satisfies

|ẋ(t)| < 1 for each t ∈ R.

We will prove that also the momentum is bounded. This is equivalent to the
more restrictive condition on the velocity,

sup
t∈R
|ẋ(t)| < 1.

Precisely

Theorem 2.1. Assume that (A1) and (A2) hold. Then every solution (q(t), p(t))
of (6) satisfies

sup
t∈R
|p(t)| <∞.

Moreover, we will show that the null mean value of the function f is an
essential condition in the above theorem.
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Proposition 1. Assume that (A1) holds and that f is a continuous and T -
periodic function satisfying

f̄ =
1

T

∫ T

0

f(t)dt 6= 0.

Then there exists R > 0 such that if (q(t), p(t)) is a solution of (6) with |p(0)| ≥
R, the momentum satisfies

lim
t→∞

|p(t)| =∞.

Moreover, the Poincaré map cannot have invariant curves.

Proof of these results will be presented in the following sections. Moreover,
we will perform the proof for the case S = 1, being conjugated to the general
one through a change of scale.

3 The approximated Poincaré map

The solution of (6) satisfying the initial condition

q(0) = q0, p(0) = p0

will be denoted by (q(t; q0, p0), p(t; q0, p0)). The main tool of our work will be
the Poincaré map, the area preserving diffeomorphism of the plane defined by

Π : R2 → R2, Π(q0, p0) = (q(T ; q0, p0), p(T ; q0, p0)).

The periodicity of g (remember that we suppose S = 1) implies that Π satisfies

Π(q0 + 1, p0) = Π(q0, p0) + (1, 0)

and so Π induces a diffeomorphism of the cylinder T× R, where T = R/Z.
On the other hand, the periodicity of f allows to describe the dynamics of

system (6) in terms of the map Π. In particular, the condition

sup
t∈R
|p(t; q0, p0)| <∞

is equivalent to
sup
n∈Z
|pn| <∞

where (qn, pn) = Πn(q0, p0). Similarly,

lim
t→∞

|p(t; q0, p0)| =∞

is equivalent to
lim
n→∞

|pn| =∞.
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Note that the boundedness of the vector field (Hp,−Hq) plays a role in the
proof of this equivalence. Indeed the function p(t) has bounded derivatives and
is such that p(nt) lies in a bounded strip for every n ∈ Z. Hence it cannot have
big oscillations.

In view of this equivalence, to prove Theorem 2.1 we shall look for non
contractible invariant curves for the map Π. Two disjoint invariant curves define
an annulus that is invariant under the diffeomorphism Π, so we can say that
they act as barriers. Our aim will be to apply Moser’s small twist theorem to
the Poincaré map Π. With the promise of being more precise later on, we recall
that Moser’s theorem gives the existence of invariant curves for a class of maps
of the cylinder whose lifts have the form{

θ1 = θ + ω + δ[α(r) +R1(θ, r)]
r1 = r + δR2(θ, r)

(7)

where α′ > 0 and supposing that the reminders R1 and R2 are small in some
Ck norm. Here δ plays the role of a small parameter.

The coordinates (q, p) are not the best ones to have the Poincaré map written
in form (7), so we perform the following symplectic change of variables{

q = Q
p = P +G(Q) + F (t)

where F (t) is a primitive of f . Note that that F (t) is T -periodic and C1. We
get the system Q̇ = P+G(Q)+F (t)√

1+(P+G(Q)+F (t))2

Ṗ = g(Q)(1− P+G(Q)+F (t)√
1+(P+G(Q)+F (t))2

).
(8)

Now we can introduce the small parameter δ > 0 through the following change
of scale

Q = u, P = − 1

δv
v ∈ [1/2, 7/2]. (9)

It is important to note that the strip R× [1/2, 7/2] corresponds in the original
variables to the time dependent region

Aδ = {(q, p) ∈ R2 : − 1

2δ
+G(q) + F (t) ≤ p ≤ − 2

7δ
+G(q) + F (t)}

and so from the boundedness of F and G

p→∞ as δ → 0 uniformly in v. (10)

System (8) transforms intou̇ = −1+δv[G(u)+F (t)]√
δ2v2+(−1+δv[G(u)+F (t)])2

v̇ = δv2g(u)[1− −1+δv[G(u)+F (t)]√
δ2v2+(−1+δv[G(u)+F (t)])2

].
(11)
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The change of variables (9) is not symplectic, but the Poincaré map of systems
(11) is still conjugated to Π.

Note that if δ = 0 the change of coordinate is not defined but system (11)
transforms into {

u̇ = −1
v̇ = 0

(12)

and taking any initial condition (u0, v0) ∈ R × (1/2, 7/2) we have that the
solution is well-defined for t ∈ [0, T ]. So, by continuous dependence, there
exists ∆ > 0 such that if δ ∈ [0,∆] the solution is still well-defined for t ∈ [0, T ].
The coordinates (u, v) are the good ones to have the Poincaré map written in
form (7). To have a rough idea of why this is true, one can see trough a formal
computation that system (11) has the following expansion for small δ{

u̇ = −1 + 1
2δ

2v2 +O(δ3)
v̇ = O(δ3).

Note the fundamental fact that up to second order F and G do not play any
role. Now one can obtain the Poincaré map integrating and evaluating at t = T .

We are going to make this argument rigorous and the key is the theory of
differentiability with respect to the parameters. So, inspired by [19], let us recall
some general facts. Consider a differential equation depending on a parameter

dz

dt
= Ψ(t, z, δ) (13)

where Ψ : [0, T ] × D × [0,∆] → Rn is of class C0,ν+2,ν+2, ν ≥ 1 and D is an
open connected subset of Rn and ∆ > 0. By this notation we mean that Ψ
is a function having all partial derivatives in the variables (Z, δ) up to order
ν + 2 and such that all of them are continuous in the three variables. The
general theory of differential equations says that the solution z(t, z0, δ) keeps
the regularity C1,ν+2,ν+2. The following lemma will be crucial for our purpose,
and generalizes the result [19, Proposition 6.4].

Lemma 3.1. Let K be a compact set of D such that for every z0 ∈ K and
δ ∈ [0,∆] the solution is well defined in [0, T ]. Then, for every (t, z, δ) ∈
[0, T ]×K × [0,∆] the following expansion holds

z(t, z0, δ) = z(t, z0, 0) + δ
∂z

∂δ
(t, z0, 0) +

δ2

2

∂2z

∂δ2
(t, z0, 0) +

δ2

2
R(t, z0, δ)

where
||R(t, ·, δ)||Cν(K) → 0 as δ → 0

uniformly in t ∈ [0, T ].

Proof. For a function φ ∈ C0,ν+2,ν+2([0, T ] × K × [0,∆]), the Taylor formula
with remainder in integral form gives

φ(t, z0, δ) = φ(t, z0, 0) +
∂φ

∂δ
(t, z0, 0)δ +

δ2

2

∂2φ

∂δ2
(t, z0, 0) +R2(t, z0, δ)
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where

R2(t, z0, δ) =
1

2

∫ δ

0

∂3φ

∂δ3
(t, z0, ξ)(δ − ξ)2dξ.

Integrating by parts one gets

R2(t, z0, δ) =
1

2
{2
∫ δ

0

∂2φ

∂δ2
(t, z0, ξ)(δ − ξ)dξ −

∂2φ

∂δ2
(t, z0, 0)δ2}

and through the change of variable ξ = δs we get

R2(t, z0, δ) = δ2

∫ 1

0

(1− s)[∂
2φ

∂δ2
(t, z0, δs)−

∂2φ

∂δ2
(t, z0, 0)]ds

from which it is easy to conclude using the regularity of the solution.

Note that, by means of this lemma we have a semi-explicit formula for the
solution of (13). This is very useful to compute its Poincaré map. So, let us
apply the previous lemma to system (11). First of all, calling Z = (u, v), system
(11) can be written in the form

Ż = Ψ(t;Z, δ).

Here Ψ is of class C0,7,7 so that ν = 5. The initial condition will be denoted
by Z(0) = z0 = (u0, v0) and we will call the corresponding solution z(t; z0, δ) =
(u(t;u0, v0, δ), v(t;u0, v0, δ)). We will suppose, by periodicity, that z0 ∈ [0, 1]×
[1, 3]. From (12) we have that

z(t;u0, v0, 0) = (u0 − t, v0). (14)

To compute the derivatives with respect to the parameter we are going to make
use of the theorem of differentiability with respect to initial conditions and
parameters. Let us call X(t; z0, δ) = ∂z

∂δ (t; z0, δ). Note that to our purpose we
need X(t; z0, 0). Differentiating X with respect to t and changing the order of
derivatives we get the Cauchy problem{

Ẋ = A(t)X + a(t)
X(0) = 0

where

A(t) =
∂Ψ

∂Z
(t; z(t; z0, 0), 0), a(t) =

∂Ψ

∂δ
(t; z(t; z0, 0), 0).

Here we have already evaluated at δ = 0. A simple computation gives

∂Ψ

∂Z
(t;Z, 0) = 0

∂Ψ

∂δ
(t;Z, 0) = 0 (15)

so that
X(t;u0, v0, 0) = 0. (16)
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Now let us compute the second derivative. Analogously to the previous case, let

us call Y (t; z0, δ) = ∂2z
∂δ2 (t; z0, δ) with components (ξ(t; z0, δ), η(t; z0, δ)). Once

again, to our purpose we need Y (t; z0, 0). Differentiating Y with respect to t
and changing the order of derivatives we get the Cauchy problem{

Ẏ = A(t)Y + b(t)
Y (0) = 0

where

b(t) =
∂2Ψ

∂δ2
(t; z(t; z0, 0), 0) + 2

∂2Ψ

∂Z∂δ
(t; z(t; z0, 0), 0)X(t; z0, 0)

+
∂2Ψ

∂Z2
(t; z(t; z0, 0), 0)[X(t; z0, 0), X(t; z0, 0)].

Here we already evaluated at δ = 0 and ∂2Ψ
∂Z2 (t; z(t; z0, 0), 0) is interpreted as a

bilinear form from R2 × R2 into R2. A simple computation gives

∂2Ψ

∂δ2
(t; z(t; z0, 0), 0) = (v2

0 , 0).

From (15) and (16) we get the system{
ξ̇ = v2

0 , ξ(0) = 0
η̇ = 0, η(0) = 0

leading to
Y (t;u0, v0, 0) = (v2

0t, 0). (17)

Next we apply Lemma 3.1 using (14), (16) and (17). We have that

Z(t;u0, v0, δ) = (u0 − t, v0) +
δ2

2
(v2

0t, 0) +
δ2

2
R(t;u0, v0, δ),

where the remainder R satisfies the estimate

||R(t, ·, δ)||C5([0,1]×[1,3]) → 0 as δ → 0

uniformly in t ∈ [0, T ]. Finally, evaluating at t = T we get the following
expression for the Poincaré map{

u1 = u0 − T + δ2

2 Tv
2
0 + δ2

2 R1(u0, v0, δ)

v1 = v0 + δ2

2 R2(u0, v0, δ)
(18)

and

||R1(t, ·, δ)||C5(R/Z×[1,3]) + ||R2(t, ·, δ)||C5(R/Z×[1,3]) → 0 as δ → 0. (19)
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4 Invariant curves vs. Lyapunov functions

We saw that Theorem 2.1 will be proved as soon as we could place any initial
condition (q0, p0) between two invariant curves. In view of (10) it is sufficient
to prove the existence of invariant curves for the map (18) as δ → 0. More
precisely, we are going to prove the existence of a sequence of invariant curves
Γn approaching uniformly the bottom of the cylinder. Analogously one can
prove the existence of a sequence of invariant curves approaching the top of the
cylinder. Finally we will prove Proposition 1 to show that the null mean value
of the forcing f is essential to have invariant curves.

Concerning the boundedness, as anticipated, we have found the variables
(u, v) in order to have the Poincaré map written in form (18) and apply Moser’s
small twist theorem whose original version is in [15]. There are many versions of
this theorem and we shall employ one coming from the works of Herman [7, 8]
and explicitly stated in [18]. To recall it, let T = R/Z and consider the infinite
cylinder C = T × R and its strip A = T × [a, b] with b − a ≥ 3

2 . The theorem
deals with maps g : A → C with lifts{

θ1 = θ + ω + δ[α(r) +R1(θ, r)]
r1 = r + δR2(θ, r)

where α ∈ C4[a, b], and R1, R2 ∈ C4(A). The number ω ∈ R is arbitrary and
δ ∈ (0, 1] is a parameter. Suppose that the function α satisfies

c−1
0 ≤ α′(r) ≤ c0 ∀r ∈ [a, b], ||α||C4[a,b] ≤ c0

for some constant c0 > 1. Moreover, we suppose that g satisfies the intersection
property, in the sense that

g(Γ) ∩ Γ 6= ∅

for every non-contractible Jordan curve Γ ⊂ A.

Theorem 4.1 ([18]). Let g : A → C be a mapping satisfying the previous
conditions. Then there exists ε > 0, depending only on c0, such that if

||R1||C4(A) + ||R2||C4(A) ≤ ε

the map g has an invariant curve.

Remark 2. Following the proof in [18] one can see that there exists an un-
countable number of invariant curves in A. Moreover, these curves are graph of
functions ψ belonging to the Sobolev space H3(T) and such that a ≤ ψ(θ) ≤ b
for every θ. The dynamics on the curve r = ψ(θ) is conjugated to a rotation of
a Diophantine angle ω̄ ∈ [ω + δα(a), ω + δα(b)].

Now everything is ready for the proof of Theorem 2.1. Excepting for the
intersection property, it is easy to see that the Poincaré map expressed in the
form (18)-(19) satisfies all the hypothesis of Theorem 4.1. In this case, θ =
u0, r = v0, ω = −T , α(v0) = T

2 v
2
0 and δ is small enough. Concerning the
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intersection property, note that from a result in [12], the null mean value of f
implies that the Poincaré map associated to system (6) is exact symplectic in
the sense that the differential form

p1dq1 − pdq

is exact in the cylinder. The geometrical interpretation is that the signed area
between any non contractible Jordan curve and its image is null. Hence, it is
clear that an exact symplectic map has the intersection property. Finally we
can say that also map (18) has the intersection property because this property
is preserved by conjugacy. So, an application of Theorem 4.1 proves Theorem
2.1. We have just proved that hypothesis (A1) and (A2) imply that the momen-

tum is bounded. To complete the study of the boundedness we need to prove
Proposition 1. We will perform the proof supposing that

f̄ =
1

T

∫ T

0

f(s)ds > 0,

the other case being similar. We just need to prove that there exists R suffi-
ciently large such that if |p0| ≥ R then the corresponding orbit of the Poincaré
map Π is unbounded. In this case, a less subtle expansion of Π, coming directly
from system (6), will be sufficient. So, integrate (6) and get, for t ∈ [0, T ]{

q(t; q0, p0) = q0 + t+ ε̃(t, q0, p0)

p(t; q0, p0) = p0 +
∫ t

0
g(q(s; q0, p0))ds+

∫ t
0
f(s)ds

(20)

where

ε̃(t, q0, p0) =

∫ t

0

{
p(s; q0, p0)√

1 + p2(s; q0, p0)
− 1

}
ds.

Since p(t; q0, p0) → ∞ as p0 → ∞ uniformly in q0 and t ∈ [0, T ], we have that
ε̃→ 0 as p0 →∞, uniformly in q0 and t ∈ [0, T ].

Adding and subtracting
∫ t

0
g(q0 + s)ds = G(q0 + t) − G(q0) in the second

equation of (20) we get

p(t; q0, p0) = p0 +G(q0 + t)−G(q0) +

∫ t

0

f(s)ds+ ε(t, q0, p0)

where

ε(t, q0, p0) =

∫ t

0

{g(q0 + s+ ε̃(s, q0, p0))− g(q0 + s)}ds.

The mean value theorem implies that ε → 0 as p0 → ∞ uniformly in q0 and
t ∈ [0, T ]. Evaluating in t = T we get the following expansion of Π:{

q1 = q0 + T + ε̃(T, q0, p0)
p1 = p0 +G(q0 + T )−G(q0) + T f̄ + ε(T, q0, p0)

where ε and ε̃ tends to zero uniformly in q0 as p0 tends to +∞.
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Now, inspired by [1], consider the function

V (q, p) = p−G(q).

and notice that
V (Π(q, p)) = V (q, p) + Γ(q, p)

where

Γ(q, p) = −G(q + T + ε̃(T, q, p)) +G(q + T ) + ε(T, q, p) + T f̄ .

Now, using the fact that G is bounded, one can find V∗ such that if V (q0, p0) ≥
V∗ then p0 is sufficiently large in order to have Γ(q0, p0) > T f̄

2 . For such a p0

we have

V (Π(q0, p0)) > V (q0, p0) +
T f̄

2
> V ∗.

So, by induction we can prove that

V (qn, pn) > V (q0, p0) + n
T f̄

2
, n ≥ 1.

Finally we have that
lim
n→∞

V (qn, pn) = +∞

and remembering the definition of V and the boundedness of G we get that
pn → +∞.

Remark 3. Note that if f̄ 6= 0 the map Π is still symplectic but no more
exact symplectic [9]. This fact prevents the existence of invariant curves (not
homotopic to a point). Indeed it is easy to see that, if an invariant curve Ξ
existed, it would divide the cylinder in two invariant connected components.
Now, consider a closed non-contractible curve Γ and suppose that Γ ∩ Ξ = ∅.
The region Σ defined by Γ and Ξ and the region Σ1 defined by Π(Γ) and Ξ
must have the same area and lie in the same connected component defined by
Ξ. From this it is easy to see that the signed area between Γ and Π(Γ) is zero.
In the case Γ ∩ Ξ 6= ∅ we can repeat the same argument considering separately
the intersections of Σ with the connected components defined by Ξ. Then the
signed area between every non-contractible closed curve and its image is zero.
It means that Π is exact symplectic.

5 Generalized quasi-periodic and periodic solu-
tions

We have just proved that all the solutions of (6) have bounded momentum and
a natural question is to describe the kind of recurrent motions that can be
expected. Periodic solutions of different types always exist ([12],[6]), and now
we are going to look for quasi-periodic solutions. Precisely, we will prove

12



Theorem 5.1. For every ω ∈ (−T, T ), there exists a family of solutions of (6),
Xξ(t) = (qξ(t), pξ(t)), with ξ ∈ R such that

Xξ+1(t) = Xξ(t) + (1, 0) and Xξ(t+ T ) = Xξ+ω(t). (21)

Moreover, the initial conditions

ξ 7→ qξ(0) and ξ 7→ pξ(0)

are of bounded variation and

lim
t→∞

qξ(t)

t
=
ω

T
.

To understand why these solutions satisfy a kind of weak quasi-periodicity
we define, inspired by [17],

Φξ(θ1, θ2) = Xθ2− ωT θ1+ξ(θ1).

It satisfies

Φξ(θ1 + T, θ2) = Φξ(θ1, θ2), Φξ(θ1, θ2 + 1) = Φξ(θ1, θ2) + (1, 0)

and this says that the function Φξ is doubly periodic once it takes values on the
phase space T× R. The solution is recovered by the formula

Xξ(t) = Φξ(t,
ω

T
t)

when Φξ is continuous as a function of the three variables (ξ, θ1, θ2). This
function is quasi-periodic. Again we are assuming that it takes values on T×R.
In the discontinuous case the solution will not be quasi-periodic in the classical
sense but the bounded variation of the initial conditions implies that quasi-
periodicity in the sense of Mather will appear. See [13] for more details. When
the number ω is rational, say ω = a

b with a and b relatively prime, then

Xξ(t+ bT ) = Xξ(t) + (a, 0)

and the solution is periodic with period bT . Once more we are assuming that
Xξ takes values on T × R. Classically these solutions are called subharmonic
solutions of the second kind.

To prove Theorem 5.1, consider the change of variable{
Q = q
P = p− F (t)

where Ḟ = f . System (6) transforms into{
Q̇ = P+F (t)√

1+(P+F (t))2

Ṗ = g(Q).
(22)
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The Poincaré map of system (22) has a particular form. Consider a partition of
the interval [0, T ] in N sub intervals of equal length

L =
T

N
<

π√
||g′||∞

(23)

and consider the map ΠL,τ (Q0, P0) = (Q(τ+L; τ,Q0, P0), P (τ+L; τ,Q0, P0)) =
(Q1, P1) where (Q(t; τ,Q0, P0), P (t; τ,Q0, P0)) is the solution of (22) with initial
condition (Q0, P0) at time τ . The Poincaré map Π of the system can be written
as composition of such maps, precisely we have that

Π = ΠT,0 = ΠL,(N−1)L ◦ · · · ◦ΠL,L ◦ΠL,0.

So let us study such maps. It is worth recalling some definition inspired by
[14]. Consider a C2 diffeomorphism f(θ, r) = (Θ(θ, r), R(θ, r)) = (θ1, r1) of the
infinite cylinder T × R that is isotopic to the identity. Passing to the lift, the
components satisfy

Θ(θ + 1, r) = Θ(θ, r) + 1, R(θ + 1, r) = R(θ, r).

We stress the fact that in his work Mather required only a C1 diffeomorphism,
but for our purposes we will need more smoothness. The diffeomorphism is said

• exact symplectic if the differential form RdΘ− rdθ is exact in T× R,

• twist if ∂Θ/∂r > 0, while, if there exists β > 0 such that ∂Θ/∂r > β we
will say that f is β-twist,

• to preserve the ends of the infinite cylinder, if R(θ, r)→ ±∞ as r → ±∞
uniformly in θ,

• to twist each end infinitely, if Θ(θ, r)− θ → ±∞ as r → ±∞ uniformly in
θ.

Now we can recall the

Definition 5.2. Let P∞ =
⋃
β>0 Pβ , where Pβ is the class of C2 diffeomor-

phisms of the infinite cylinder that

1. are isotopic to the identity

2. are exact symplectic

3. are β-twist

4. preserve the ends of the infinite cylinder,

5. twist each end infinitely.

For our purposes we will need

14



Definition 5.3. Let Pρ+,ρ− be the class of C2 diffeomorphisms of the infinite
cylinder that satisfy properties 1., 2., 4. of the previous definition and

3’. are twist

5’. are such that Θ(θ, r)− θ → ρ± as r → ±∞ uniformly in θ,

6. there exists M such that |R(θ, r)− r| ≤M for every (θ, r) ∈ T× R.

Now we can start the study of the map ΠL,τ . Note that by the periodicity
of (22) it can be seen as a map defined on the cylinder T×R. Moreover we have
that

Lemma 5.4. For every τ ∈ [0, T ], the map ΠL,τ is exact symplectic in T× R.

Proof. Inspired by [9] consider the function

Vτ (Q0, P0) =

∫ τ+L

τ

{
−F

2(t) + P (t; τ,Q0, P0)F (t) + 1√
1 + (P (t; τQ0, P0) + F (t))2

+G(Q(t; τQ0, P0))

}
dt.

First of all, it follows from the periodicity of (22) that Q(t; τ,Q0 + 1, P0) =
Q(t; τ,Q0, P0) + 1 and P (t; τ,Q0 + 1, P0) = P (t; τ,Q0, P0). Hence we have

Vτ (Q0 + 1, P0) = Vτ (Q0, P0).

Now let us compute the differential dVτ .
We have

∂Vτ
∂Q0

=

∫ τ+L

τ

{
P

[1 + (P + F )2]3/2
∂P

∂Q0
+ g(Q)

∂Q

∂Q0

}
dt

=

∫ τ+L

τ

{
P

[1 + (P + F )2]3/2
∂P

∂Q0
+ Ṗ

∂Q

∂Q0

}
dt

(24)

using the second equation in (22). Now, integrating by parts and using the first
equation in (22) we get∫ τ+L

τ

Ṗ
∂Q

∂Q0
dt = [P

∂Q

∂Q0
]τ+L
τ −

∫ τ+L

τ

P
∂Q̇

∂Q0
dt

= [P
∂Q

∂Q0
]τ+L
τ −

∫ τ+L

τ

P

[1 + (P + F )2]3/2
∂P

∂Q0

that, substituting in (24) gives

∂Vτ
∂Q0

= P (τ + L)
∂Q

∂Q0
(τ + L)− P (τ)

∂Q

∂Q0
(τ).

Analogously we can get

∂Vτ
∂P0

= P (τ + L)
∂Q

∂P0
(τ + L)− P (τ)

∂Q

∂P0
(τ).

Hence dV = P1dQ1 − P0dQ0 and the lemma is proved.
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This is not the only property satisfied by the map. In fact we have

Proposition 2. For every τ ∈ [0, T ], we have Πτ,L ∈ P−L,L.

Proof. First of all, from Lemma 5.4 we have that the map ΠL,τ is exact sym-
plectic and by a similar argument as in [12] condition (23) implies that for every
τ ∈ [0, T ], the map ΠL,τ is twist and isotopic to the identity. From equation
(22) we have{

Q(t; τ,Q0, P0) = Q0 +
∫ t
τ

P (s;τ,Q0,P0)+F (s)√
1+(P (s;τ,Q0,P0)+F (s))2

ds

P (t; τ,Q0, P0) = P0 +
∫ t
τ
g(Q(s; τ,Q0, P0))ds.

Evaluating the second equation in t = τ + L, the boundedness of g gives that
Πτ,L preserves the end of the infinite cylinder. Moreover, evaluating the first
equation in t = τ + L and using the second we easily get

lim
P0→±∞

(Q1 −Q0) = ±L

uniformly in Q0. Finally, property 6. is a trivial consequence of the boundedness
of g.

So, summing up we have that the Poincaré map of system (22) can be written
as a composition of maps in P−L,L and this justifies the study that we are going
to develop in the next section.

6 Composition of twist maps and proof of The-
orem 5.1

Consider a finite family {fi}i=1,...,N such that fi ∈ P∞ for every i. Let F =
f1 ◦ · · · ◦ fN . We have that F is a C2 exact symplectic diffeomorphism of T×R
that preserves the ends and such that twists the ends infinitely. However, it has
not to be twist.

In [14], Mather proved that one can associate to F a continuous function
h(θ, θ1) defined on R2, called variational principle, that acts as a generating
function for a twist diffeormorphism. The variational principle satisfies, among
others, these relevant properties:

(H1) h(θ + 1, θ1 + 1) = h(θ, θ1),

(H5) There exists a positive continuous function ρ on R2 such that

h(γ, θ1) + h(θ, γ1)− h(θ, θ1)− h(γ, γ1) ≥
∫ γ

θ

∫ γ1

θ1

ρ

if θ < γ and θ1 < γ1,
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(H6α) there exists α > 0 such that

θ → αθ2/2− h(θ, θ1) is convex for every θ1

θ1 → αθ2
1/2− h(θ, θ1) is convex for every θ.

The function h in general is not differentiable but from (H6) one can prove
that the one side partial derivatives ∂1h(θ±, θ1) and ∂2h(θ, θ1±) exist. Mather
proved that there exist particular configurations (θ̄i) that minimize an action
(see [14] for further details on the definition of the action). They are called
minimal configurations and are such that the partial derivatives along these
configurations ∂1h(θ̄i, θ̄i+1) and ∂2h(θ̄i−1, θ̄i) both exist and satisfy

∂1h(θ̄i, θ̄i+1) + ∂2h(θ̄i−1, θ̄i) = 0 for every i. (25)

This property allows to construct a complete orbit (θ̄i, r̄i) of F defining

r̄i = −∂1h(θ̄i, θ̄i+1) = ∂2h(θ̄i−1, θ̄i).

Once we have a minimal configuration (θ̄i), we can define for (p, q) ∈ Z × Z
its translate Tp,q θ̄ by (Tp,q θ̄)i = θ̄i+q − p. In an analogous way we can define
the translate of an orbit. The translate of a minimal configuration is minimal.
Moreover, given two configurations Θ = (θi) and Γ = (γi) we say that Θ < Γ if
θi < γi for every i. Two configurations Θ and Γ are comparable if either Θ = Γ
or Θ > Γ or Θ < Γ. Using these characterizations, it follows from the results of
Mather [14, Section 2]

Theorem 6.1. Let F = f1 ◦ · · · ◦ fN with fi ∈ P∞ for i = 1, . . . , N . Then for
every ω ∈ R there exists an orbit (θ̄i, r̄i) of F such that any two translates of
(θ̄i) are comparable and the sequence (θ̄i) is increasing. Moreover,

lim
i→∞

θ̄i
i

= ω

and ω is called rotation number.

Remark 4. The structure of the orbit depends on the arithmetic of ω:

• if ω = p
q ∈ Q then θ̄i+q = θ̄i + p for every i,

• if ω ∈ R \Q then the set {θ̄i}i∈Z is dense in T.

The connection between Theorem 6.1 and the result in the first paper by
Mather [13, page 1] is stated in the following

Corollary 1. From the orbit (θ̄i, r̄i) in the previous theorem, we can construct
two functions φ, η : R→ R satisfying, for every t ∈ R

φ(t+ 1) = φ(t) + 1, η(t+ 1) = η(t)

F (φ(t), η(t)) = (φ(t+ ω), η(t+ ω)) (26)

where φ is monotone (strictly if ω /∈ Q) and η is of bounded variation.
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Proof. Inspired by [16], let us consider, for every ω, the set

Σ = {t ∈ R : t = jω − k for some (j, k) ∈ Z2}. (27)

We have to distinguish whether ω is rational or not.
− If ω is irrational, Σ is a dense additive subgroup of R and every pair (j, k)

gives rise to a different number. We proceed by steps.

Step 1. definition of φ on Σ. If t ∈ Σ we define

φ(t) = θ̄j − k. (28)

We claim that the function φ : Σ → R is strictly increasing: we have to prove
that

jω − k < j′ω − k′ ⇒ θ̄j − k < θ̄j′ − k′

that is, calling r = j′ − j and s = k′ − k,

0 < rω − s⇒ θ̄j < θ̄j+r − s.

The case r = 0 is obvious, so suppose r 6= 0. Suppose by contradiction that for
some j ∈ Z

θ̄j ≥ θ̄j+r − s (29)

we have, from the comparison property of the translated, that either

θ̄i > θ̄i+r − s for every i

or
θ̄i = θ̄i+r − s for every i.

In the second case the orbit would be periodic and this is not compatible with
an irrational rotation number. So, from (29) we can prove by induction that for
every n ∈ N

θ̄j > θ̄j+nr − ns.

Now suppose that r > 0. Taking the limit for n → ∞ after having divided by
nr we get

0 ≥ ω − s

r

that leads to a contradiction as we multiply by r. Note that we can repeat the
same argument and get the same contradiction for r < 0.

Moreover, φ satisfies the periodicity property

φ(t+ 1) = φ(t) + 1 for each t ∈ Σ.

Step 2. extension of φ outside Σ. Given τ ∈ R− Σ, the limits

φ(τ±) = lim
t→τ±,t∈Σ

φ(t)
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exist and φ(τ−) ≤ φ(τ+). To extend φ to a monotone function on the whole real
line it is sufficient to impose φ(τ) ∈ [φ(τ−), φ(τ+)] and we choose φ(τ) = φ(τ−).
In this way φ : R→ R is strictly increasing and satisfies

φ(t+ 1) = φ(t) + 1 for each t ∈ R.

Step 3. definition of η . Define, for t ∈ R

η(t) = ∂2h(φ(t− ω), φ(t))

where h is the variational principle associated to F . We claim that for every
t, s ∈ R

|η(s)− η(t)| ≤ α|φ(s)− φ(t)|

where α comes from (H6α). Supposing t < s we have from the monotonicity

φ(t− ω) < φ(s− ω), φ(t) < φ(s), φ(t+ ω) < φ(s+ ω).

Inspired by [14, Proposition 2.6], we note that if in (H5) we set γ = φ(s − ω),
θ = φ(t− ω), θ1 = φ(t)− ε, γ1 = φ(t) with ε > 0, divide by ε and let ε→ 0 we
get

∂2h(φ(s− ω), φ(t)−) ≤ ∂2h(φ(t− ω), φ(t))

remembering that the partial derivatives exist along the orbit. Moreover, from
(H6α) and remembering that the one side partial derivatives of a convex function
exist and are non decreasing, we have

∂2h(φ(s− ω), φ(s)) ≤ ∂2h(φ(s− ω), φ(t)−) + α(φ(s)− φ(t)).

Combining these two inequalities we have

η(s) ≤ η(t) + α(φ(s)− φ(t)).

Using (25) we can see that also η(t) = −∂1h(φ(t), φ(t + ω)) so we can get
analogously

η(t) ≤ η(s) + α(φ(s)− φ(t))

and conclude repeating an analogous argument for s < t. Since φ is monotone
and hence of bounded variation, we have that η is of bounded variation. Now,
from the periodicity property of h and φ we get that η(t+ 1) = η(t).

Step 4. property (26) holds. Let us assume first that t ∈ Σ. Then t = jω−k
and

φ(t) = θ̄j − k, φ(t+ ω) = θ̄j+1 − k.

Moreover,
η(t) = ∂2h(φ(t− ω), φ(t)) = ∂2h(θ̄j−1, θ̄j) = r̄j

and similarly η(t + ω) = r̄j+1. Since (θ̄j − k, r̄j) is an orbit of F we conclude
that

F (φ(t), η(t)) = (φ(t+ ω), η(t+ ω)).
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Let us assume now that t ∈ R \Σ. So we select a sequence (tn) converging to t
with tn ∈ Σ and tn < t. Then we can pass to the limit in the identity

F (φ(tn), η(tn)) = (φ(tn + ω), η(tn + ω)).

The irrational case is done.
− The case ω = p

q rational is simpler. We can suppose that p and q are

relative prime and that the corresponding sequence (θ̄i) is periodic (in the sense
specified in Remark 4). First of all note that in this case, the subgroup Σ defined
in (27) is discrete, precisely,

Σ = {d
q

: d ∈ Z}.

The representation t = jω − k is not unique, indeed t = j pq − k = j′ pq − k′

whenever k′−k = Np and j′−j = Nq for some N ∈ N. Anyway the periodicity
of (θ̄i) implies that

j
p

q
− k = j′

p

q
− k′ ⇒ θ̄j − k = θ̄j′ − k′.

So we can define φ on Σ as in (28). As before one can prove that φ : Σ → R
is increasing (non strictly). We extend it to a monotone function on the whole
R as a piecewise constant function that is continuous from the left and taking
only the values θ̄j − k.

Finally, as before, one can prove that φ(t+ 1) = φ(t) + 1. Moreover, the fact
that φ takes only values at points of a minimal orbit, we can define directly for
t ∈ R

η(t) = ∂2h(φ(t− ω), φ(t)).

This function is of bounded variation and condition (26) is satisfied as well. To
prove this we just have to repeat the same arguments as in the irrational case.
Note that this time it is not necessary to pass to the limit.

In our case, Theorem 6.1 cannot be applied, as the hypothesis of the in-
finite twist at infinity is not satisfied. So we will present a modified version
of the theorem. First we give the following notation: let Γk be a sequence of
non-contractible Jordan curves that are invariant under a map f . This curves
are called invariant curves. We say that Γk ↑ +∞ uniformly if there exists a
sequence rk → +∞ as k → +∞ such that Γk ⊂ T× (rk,+∞). The reader can
easily guess the meaning of Γk ↓ −∞ uniformly.

We can prove

Theorem 6.2. Consider a finite family {fi}i=1,...,N where fi ∈ Pρ+,ρ− . Let
F = f1 ◦ · · · ◦ fN . Suppose that F possesses a sequence (Γk) of invariant curves
such that Γk ↑ +∞ uniformly as k → +∞ and Γk ↓ −∞ uniformly as k →
−∞ Then, for every ω ∈ (Nρ−, Nρ+) there exist two functions φ, η : R → R
satisfying the same properties as in Corollary 1.
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The proof of this theorem relies on the following lemmas

Lemma 6.3. Consider f ∈ Pρ+,ρ,− . Fix an interval [a, b]. Then, there exists
f̃ ∈ P∞ such that f = f̃ on T× [a, b].

Proof. It is convenient to work with the generating function h(θ, θ1). Remember
that it is a C3 function defined on the set Σ̃ = {ρ− < θ1 − θ < ρ+} ⊂ R2 such
that h(θ+ 1, θ1 + 1) = h(θ, θ1) and satisfies the Legendre condition ∂12h < 0. It
generates f in the sense that the map f is defined implicitly by the equations{

∂1h(θ, θ1) = −r
∂2h(θ, θ1) = r1.

(30)

More details can be found in [9]. Note that the strip T × [a, b] of the cylinder
corresponds to the set Σ̃2 = {α(θ) ≤ θ1 − θ ≤ β(θ)} ⊂ Σ̃ where α and β are
implicitly defined by

−∂1h(θ, θ + α(θ)) = a

−∂1h(θ, θ + β(θ)) = b.

The functions α and β are C2, 1-periodic and the Legendre condition implies
that α(θ) < β(θ). Moreover, we have that α(θ) ↓ ρ− as a→ −∞ and β(θ) ↑ ρ+

as b → +∞. Now take two larger strips Σ̃1 = {ã ≤ θ1 − θ ≤ b̃} and Σ̃ε =
{ã+ ε < θ1 − θ < b̃− ε} such that Σ̃2 ⊂ Σ̃ε ⊂ Σ̃1 ⊂ Σ̃ (see Figure 1).

Notice that, by compactness, there exists δ > 0 such that ∂12h < −δ on Σ̃1.
Now, fix ε > 0 small and extend ∂12h out of {ρ− + ε ≤ θ1 − θ0 ≤ ρ+ − ε} as a
C1 bounded function with upper bound given by −δ (it is not important how
you do it). So we can suppose that there exists a constant M1 > 0 such that

sup
(θ0,θ1)∈R2

|∂12h| ≤M1. (31)

Consider χ a C∞ cut-off function of R2 such that{
χ = 1 on Σ̃ε
χ = 0 on {θ1 − θ > b̃}.

Moreover we can suppose that χ = χ(θ1 − θ), 0 ≤ χ ≤ 1 and χ > 0 on
{b̃− ε < θ1 − θ < b̃}. Define the new function

∆ = χ∂12h+ (χ− 1)δ.

We note that ∆ ∈ C1, ∆(θ1 + 1, θ + 1) = ∆(θ1, θ) and{
∆ = ∂12h on Σ̃ε
∆ = −δ on {θ1 − θ > b̃}.

With a similar argument as in [11] we can consider the following Cauchy problem
for the wave equation∂12u = ∆(θ, θ1)

u(θ, θ + ã) = h(θ, θ + ã)
(∂2u− ∂1u)(θ, θ + ã) = (∂2h− ∂1h)(θ, θ + ã).

21



Figure 1: The sets Σ̃2 (bounded by the curved solid lines), Σ̃ε (bounded by the
dashed lines), Σ̃1 (bounded by the dotted lines) and Σ̃ (bounded by the straight
solid lines) in the plane (θ, θ1).
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The solution h+ is defined on the set {θ1 − θ > ã + ε}, is such that h+ ∈ C2,
h+(θ1 + 1, θ + 1) = h+(θ1, θ), ∂12h

+ = ∆ and h+ = h on Σ̃ε. Now perform an
analogous argument to modify ∂12h also in the zone {θ1 − θ < ã} finding h−.
Finally glue h+ and h− through the common part Σ̃ε to get a function h̃. Notice
that ∂12h̃ ≤ −δ on R2. The function h̃ generates via (30) a diffeomorphism
f̃(θ, r) = (θ1, r1) such that the relation

∂θ1

∂r
= − 1

∂12h̃

holds. So the diffeomorphism f̃ is β-twist with β = 1/max{−∂12h̃} and satisfies
property 5. Moreover, as h = h̃ on Σ̃ε, the diffeomorphism f̃ coincides with f
on T× [a, b].

It is not hard to guess that we are going to use this lemma to modify the
diffeomorphism F through its components fi. So, it is worth introducing some
notation. Given f ∈ Pρ−,ρ+ and an interval [a, b] then the modified diffeo-
morphism f̃ with support [a, b] is the diffeomorphism coming from Lemma 6.3.
Given F = f1 ◦ · · · ◦ fN with fi ∈ Pρ−,ρ+ , we will call F̃ with support [a, b] the
diffeomorphism given by F̃ = f̃1 ◦ · · · ◦ f̃N where every f̃i is supported in [a, b].
Moreover, note that, if fi ∈ P∞ then trivially f̃i ≡ fi. Finally, F has coordinates
(Θ(θ, r), R(θ, r)) while fi has coordinates (Θ(i)(θ, r), R(i)(θ, r)) and the corre-
sponding modifications have coordinates (Θ̃(θ, r), R̃(θ, r)) and (Θ̃(i)(θ, r), R̃(i)(θ, r)).

Lemma 6.4. Consider f ∈ Pρ−,ρ+ . There exists K > 0 such that for every
modified f̃ with support [a, b]

|R̃(θ, r)− r| ≤ K for every (θ, r) ∈ T× R

uniformly in [a, b].

Proof. We have to prove that, given a modification with support [a, b], we have
the estimate with the constant K independent of [a, b]. Consider the generating
function h̃ of f̃ . We have to estimate the quantity

|∂2h̃(θ, θ1) + ∂1h̃(θ, θ1)|.

Notice that, with the notation of the previous lemma, in [b̃ − ε, ã + ε] we have
h ≡ h̃ so the estimate comes directly from property 6. in the definition of the
class f ∈ Pρ−,ρ+ . If θ1 − θ > b̃ or θ1 − θ < ã then R̃(θ, r) = r and K = 0. So
we only have to study the cases b̃− ε ≤ θ1 − θ ≤ b̃ and ã ≤ θ1 − θ ≤ ã+ ε. Let
us study the first, being the second similar. We need d’Alambert formula, valid
for a function V ∈ C2(R2):

V (θ, θ1) =−
∫ θ1

θ+δ

∫ η−δ

θ

∂12V (ξ, η)dξdη + V (θ, θ + δ)+∫ θ1

θ+δ

∂2V (η − δ, η)dη
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where δ ∈ R. Applying it to h̃ and choosing δ = b̃− ε we get

h̃(θ, θ1) =−
∫ θ1

θ+b̃−ε

∫ η−b̃+ε

θ

∆(ξ, η)dξdη + h(θ, θ + b̃− ε)+∫ θ1

θ+b̃−ε
∂2h(η − b̃+ ε, η)dη.

Let us compute the partial derivatives. The fundamental theorem of calculus
gives

∂1h̃(θ, θ1) =

∫ θ1

θ+b̃−ε
∆(θ, η)dη + ∂1h(θ, θ + b̃− ε).

Remembering the definition of ∆ we have, integrating by parts∫ θ1

θ+b̃−ε
∆(θ, η)dη =

∫ θ1

θ+b̃−ε
χ(η − θ)∂12h(θ, η)dη + δ

∫ θ1

θ+b̃−ε
{χ(η − θ)− 1}dη =

χ(θ1 − θ)∂1h(θ, θ1)− ∂1h(θ, θ + b̃− ε)−
∫ θ1

θ+b̃−ε
χ′(η − θ)∂1h(θ, η)dη

+ δ

∫ θ1

θ+b̃−ε
{χ(η − θ)− 1}dη

where we used the fact that χ(b̃− ε) = 1. So

∂1h̃(θ, θ1) =χ(θ1 − θ)∂1h(θ, θ1) + δ

∫ θ1

θ+b̃−ε
{χ(η − θ)− 1}dη

−
∫ θ1

θ+b̃−ε
χ′(η − θ)∂1h(θ, η)dη.

Similarly,

∂2h̃(θ, θ1) =χ(θ1 − θ)∂2h(θ, θ1)− δ
∫ θ1−b̃+ε

θ

{χ(θ1 − ξ)− 1}dξ

−
∫ θ1−b̃+ε

θ

χ′(θ1 − ξ)∂2h(ξ, θ1)dξ.

Now we can concentrate on the quantity

|∂2h̃(θ, θ1) + ∂1h̃(θ, θ1)|.

To estimate it we first note that

|χ(θ1−θ)∂2h(θ, θ1)+χ(θ1−θ)∂1h(θ, θ1)| = |χ(θ1−θ)||∂2h(θ, θ1)+∂1h(θ, θ1)| ≤M

using property 6 in the definition of the class Pρ+,ρ− . Moreover, with the change
of variable θ1 − ξ = η − θ we get

|δ
∫ θ1

θ+b̃−ε
{χ(η − θ)− 1}dη − δ

∫ θ1−b̃+ε

θ

{χ(θ1 − ξ)− 1}dξ| = 0.

24



So we just have to estimate the quantity

|
∫ θ1−b̃+ε

θ

χ′(θ1 − ξ)∂2h(ξ, θ1)dξ +

∫ θ1

θ+b̃−ε
χ′(η − θ)∂1h(θ, η)dη|

that, after the change of variable η = ξ + b̃ − ε in the first integral and having
noticed that |χ′| is bounded, reduces to an estimate of∫ θ1

θ+b̃−ε
|∂2h(η − b̃+ ε, θ1) + ∂1h(θ, η)|dη

≤ |θ1 − θ − b̃+ ε| max
θ+b̃−ε≤η≤θ1

|∂2h(η − b̃+ ε, θ1) + ∂1h(θ, η)|.

Remembering that we are working in the region b̃− ε ≤ θ1 − θ ≤ b̃,

|θ1 − θ − b̃+ ε| ≤ ε. (32)

Now, by the Legendre condition, the function

Ψ(η) = ∂2h(η − b̃+ ε, θ1) + ∂1h(θ, η)

is monotone, so maxθ+b̃−ε≤η≤θ1 |Ψ(η)| is either |Ψ(θ1)| or |Ψ(θ+ b̃−ε)|. Suppose
we are in the first case, being the other similar. We have

|Ψ(θ1)| ≤ |∂2h(θ1 − b̃+ ε, θ1)− ∂2h(θ, θ1)|+ |∂2h(θ, θ1) + ∂1h(θ, θ1)|
≤ |∂12h(c, θ1)||θ1 − θ − b̃+ ε|+M

for some c ∈ [θ, θ1 − b̃+ ε]. Now we can conclude using (32) and (31).

Lemma 6.5. Let F (θ, r) be a diffeomorphism of T × R. Assume that F =
f1 ◦· · ·◦fN with fi ∈ Pρ+,ρ− for i = 1, . . . , N . Then, for every ω ∈ (Nρ−, Nρ+)
there exist four non negative constants r∗, A, B and η such that

Θ(θ, r)− θ ≥ ω + η for r > r∗
Θ̃(θ, r)− θ ≥ ω + η for r > r∗
Θ(θ, r)− θ ≤ ω − η for r < −r∗
Θ̃(θ, r)− θ ≤ ω − η for r < −r∗

where F̃ has support [−r∗ −A∗, r∗ +B∗] with A∗ > A and B∗ > B.

Proof. For simplicity of notation, let us prove it for N = 2. The proof goes by
induction. If N = 1, then ω ∈ (ρ−, ρ+) and then by property 5′ in the definition
of the class Pρ+,ρ− there exist r∗ > 0 and η > 0 such that{

Θ(θ, r)− θ ≥ ω + η for r > r∗
Θ(θ, r)− θ ≤ ω − η for r < −r∗

Every modified F̃ outside [−r∗, r∗] is twist, so

∂(Θ̃(θ, r)− θ)
∂r

> 0
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and, remembering that F (θ,±r∗) = F̃ (θ,±r∗) for every θ, one can verify that
also {

Θ̃(θ, r)− θ ≥ ω + η for r > r∗
Θ̃(θ, r)− θ ≤ ω − η for r < −r∗.

Now suppose that F = f1 ◦ f2 so that we fix ω ∈ (2ρ−, 2ρ+). From the case
N = 1 there exist ρ∗ and η such that, for i = 1, 2,

Θ(i)(θ, r)− θ ≥ ω+η
2 for r > ρ∗

Θ̃(i)(θ, r)− θ ≥ ω+η
2 for r > ρ∗

Θ(i)(θ, r)− θ ≤ ω−η
2 for r < −ρ∗

Θ̃(i)(θ, r)− θ ≤ ω−η
2 for r < −ρ∗.

(33)

Moreover, as f2 preserves the ends, there exists r∗ > ρ∗ such that R(2)(θ, r) > ρ∗
for r > r∗. So, for r > r∗

Θ(θ, r)− θ = Θ(1)(Θ(2)(θ, r), R(2)(θ, r))−Θ(2)(θ, r) + Θ(2)(θ, r)− θ ≥ ω + η.

Analogously we can suppose that

Θ(θ, r)− θ ≤ ω − η for r < −r∗.

Now take the modified f̃i with support bigger than [−r∗ −K, r∗ +K] where K
is the constant coming from Lemma 6.4. Let us estimate the quantity

Θ̃(θ, r)− θ = Θ̃(1)(Θ̃(2)(θ, r), R̃(2)(θ, r))− Θ̃(2)(θ, r) + Θ̃(2)(θ, r)− θ

for r > r∗. It comes from (33) that Θ̃(2)(θ, r) − θ ≥ ω+η
2 . It remains to prove

that

Θ̃(1)(Θ̃(2)(θ, r), R̃(2)(θ, r))− Θ̃(2)(θ, r) ≥ ω + η

2
.

If r∗ < r ≤ r∗ + K then R̃(2)(θ, r) = R(2)(θ, r) > ρ∗ and we get the estimation
through (33). If r > r∗ + K then, by the definition of K, we have R̃(2)(θ, r) >
r∗ > ρ∗ and we conclude as before. In an analogous way we have the others
estimates.

Lemma 6.6. Let F (θ, r) be a diffeomorphism of T × R. Assume that F =
f1 ◦· · ·◦fN with fi ∈ Pρ+,ρ− for i = 1, . . . , N . Then, for every ω ∈ (Nρ−, Nρ+)
there exist three non negative constants r∗, A and B, such that the following
holds. Let (θn, rn) be an orbit of F or of a modified F̃ with support [−r∗ −
A∗, r∗ +B∗] with A∗ > A and B∗ > B. Suppose that

lim inf
n→∞

θn
n
< ω < lim sup

n→∞

θn
n
.

Then there exists n̄ ∈ Z such that

(θn̄, rn̄) ∈ T× (−r∗, r∗).
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Proof. Let r∗, A and B the constants coming from Lemma 6.5. Using the fact
that F and F̃ preserve the ends, we can suppose that r∗ is large enough such
that both F (T× [r∗,∞)) and F−1(T× [r∗,∞)) do not intersect T× [−∞,−r∗)
and the same holds for F̃ . Now consider an orbit (θn, rn). If rn > r∗ for every
n or rn < −r∗ for every n then from lemma 6.5 there exists η > 0 such that

lim inf
n→∞

θn
n
≥ ω + η or lim sup

n→∞

θn
n
≤ ω − η

respectively, in contradiction with the hypothesis. If instead rn1
> r∗ and

rn2 < −r∗ for some n1, n2 ∈ Z then our choice of r∗ ensures that there exists
an integer n̄ between n1 and n2 such that −r∗ < rn̄ < r∗.

Now we are ready for the

Proof of Theorem 6.2. Fix ω ∈ (Nρ−, Nρ+), consider the constants r∗, A and
B coming from Lemma 6.6. By hypothesis, we can find two invariant curves
Γ+ and Γ− contained, respectively in r > r∗ or r < r∗. Let Σ be the compact
region defined by such curves. Let F (j) = f1 ◦ · · · ◦ fj for j = 1, . . . , N . The sets

F (j)(Σ) are compact and so one can find a region Σ̃, defined by two invariant
curves such that

Σ ∪ F (1)(Σ) ∪ F (2)(Σ) ∪ · · · ∪ F (N)(Σ) ⊂ intΣ̃.

Analogously, we can find and a region Σ1 = T× [−r∗−A∗, r∗+B∗] with A∗ > A
and B∗ > B such that

Σ̃ ∪ F (1)(Σ̃) ∪ F (2)(Σ̃) ∪ · · · ∪ F (N)(Σ̃) ⊂ intΣ1.

Now modify every fi outside the strip Σ1 applying Lemma 6.3 and find the
corresponding f̃i. So we get F̃ = f̃1 ◦ · · · ◦ f̃n. The diffeomorphisms F̃ satisfies
the hypothesis of Theorem 6.1 so we get an orbit (θ̄n, r̄n) of F̃ with rotation
number ω. By Lemma 6.6 there exists n̄ such that (θ̄n̄, r̄n̄) ∈ Σ. Note that Γ+

and Γ− are also invariant curves for F̃ and so by the invariance on Σ we have
that (θ̄n, r̄n) ∈ Σ̃ for every n. But in Σ̃ we have F = F̃ so that (θ̄n, r̄n) is also
an orbit of F . Remembering Corollary 1 we get the thesis.

Finally, we are ready for

Proof of Theorem 5.1. From Proposition 2 we can apply Theorem 6.2 to the
Poincaré map Π of system (22) and find for every ω ∈ (−T, T ) two functions φ
and η such that

φ(ξ + 1) = φ(ξ) + 1, η(ξ + 1) = η(ξ) (34)

Π(φ(ξ), η(ξ)) = (φ(ξ + ω), η(ξ + ω)). (35)

LetXξ(t) = (Qξ(t), Pξ(t)) be the solution of (22) with initial condition (φ(ξ), η(ξ)).
Note that from (34) and uniqueness we have that

Xξ+1(t) = Xξ(t) + (1, 0)
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and from (35) and the definition of Π,

Xξ(t+ T ) = Xξ+ω(t).

so that (21) is verified. Finally, consider the limit

lim
t→∞

Qξ(t)

t
.

We have that, for nT ≤ t ≤ (n+ 1)T

Qξ(t)

t
=
Qξ(t)−Qξ(nT )

t
+
Qξ(nT )

nT

nT

t

where, being the vector field in (22) bounded, the quantity Qξ(t) − Qξ(nT ) is
bounded. So we can compute

lim
t→∞

Qξ(t)

t
= lim
n→∞

Qξ(nT )

nT
= lim
n→∞

Qξ+nω(0)

nT
= lim
n→∞

[
Qξ+{nω}(0)

nT
+

[nω]

nT
] =

ω

T

where [x] denotes the integer part of x and {x} = x− [x].
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