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ABSTRACT
We introduce a new method to perform preliminary orbit determination for satellites on
low Earth orbits (LEO). This method works with tracks of radar observations: each track is
composed by n ≥ 4 topocentric position vectors per pass of the satellite, taken at very short
time intervals. We assume very accurate values for the range ρ, while the angular positions
(i.e. the line of sight, given by the pointing of the antenna) are less accurate. We wish to correct
the errors in the angular positions already in the computation of a preliminary orbit. With
the information contained in a pair of radar tracks, using the laws of the two-body dynamics,
we can write eight equations in eight unknowns. The unknowns are the components of the
topocentric velocity orthogonal to the line of sight at the two mean epochs of the tracks, and
the corrections � to be applied to the angular positions. We take advantage of the fact that
the components of � are typically small. We show the results of some tests, performed with
simulated observations, and compare this method with Gibbs’ and the Keplerian integrals
methods.

Key words: methods: analytical – methods: numerical – surveys – celestial mechanics.

1 IN T RO D U C T I O N

We investigate the preliminary orbit determination problem for a
satellite of the Earth using radar observations collected by an in-
strument with given technical specifications, and with a fixed ob-
servation scheduling. Assume we collect the following data for the
observed object:

(tj , ρj , αj , δj ), j = 1 . . . 4, (1)

where the triples (ρ j, αj, δj) represent topocentric spherical coor-
dinates of the object at epochs tj of the observations. Typically αj,
δj are the values of right ascension and declination. We shall call a
radar track the set of observations in (1).

The following assumptions will be made on the data compos-
ing the tracks. The time difference tj+1 − tj between consecutive
observations is �t = 10 s. The range data ρ j are very precise: the
statistical error in the range is given by its rms σρ , which is 10 m.
On the other hand we assume that the angles αj, δj are not precisely
determined: their rms σα , σ δ are supposed to be 0.2 degrees.

Given a radar track we can compute by interpolation the following
data:

(t̄ , ᾱ, δ̄, ρ, ρ̇, ρ̈). (2)

Here t̄ , ᾱ and δ̄ are the mean values of the epoch and the angles, and
ρ, ρ̇, ρ̈ are the values of a function ρ(t) and its derivatives at t = t̄ ,
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where ρ(t) is given by a quadratic fit with the (tj, ρ j) data. For low
Earth orbits (LEO) these assumptions imply that the interpolated
values of α̇, δ̇ are very badly accurate, to the point that their value
can be of the same order of the errors, therefore they are practically
undetermined.

We use topocentric spherical coordinates and velocities

(ρ, α, δ, ρ̇, α̇, δ̇)

for the orbit that we want to compute. By the above considerations,
given a vector-like equation (2) obtained by a radar track, we can
keep the values of ρ, ρ̇ and consider as unknowns the quantities
(�α, �δ, α̇, δ̇), with

α = ᾱ + �α, δ = δ̄ + �δ,

where �α, �δ are small deviations from the mean values ᾱ, δ̄.
To search for the values of the unknowns we need to use additional

data: we can try to use the data of two radar tracks, together with a
dynamical model, to compute one or more preliminary orbits. This
is a linkage problem, see Milani & Gronchi (2010).

In this paper, we propose a new method for the linkage, which
takes advantage of the smallness of �α, �δ, that we call infinitesi-
mal angles. We write the equations for preliminary orbits by using
the five algebraic integrals of Kepler’s problem, Lambert’s equa-
tion for elliptic motion (see Section A) and the projection of the
equations of motion along the line of sight.

Moreover, we perform some tests to compare this method
with Gibbs’ method, using only one radar track, and with the
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Keplerian integrals (KI) method, which solves a linkage problem
using (ᾱ, δ̄, ρ, ρ̇) at two mean epochs (see Taff & Hall 1977; Farnoc-
chia et al. 2010; Gronchi, Farnocchia & Dimare 2011).

The paper is organized as follows. First we introduce some
notation and recall the basic results on Kepler’s motion which
are relevant for this work (see Sections 2–4). The equations for
the linkage problem are presented in Section 5, and in Sections 6, 7
we show two different ways to compute the solutions. In Section 9,
we present the results of some numerical tests, including a compar-
ison with the already known methods recalled in Section 8. Finally,
in Section A, we recall the proof of Lambert’s theorem for elliptic
orbits and give a geometrical interpretation of the results. Moreover,
we show a method to correct the observations of a radar track so
that they correspond to points in the same plane.

2 T H E E QUAT I O N S O F MOTI O N

Let us denote by eρ the unit vector corresponding to the line of
sight, and by q the geocentric position of the observer. Then the
geocentric position of the observed body is r = q + ρeρ , where ρ

is the range. Using the right ascension α and the declination δ as
coordinates we have

eρ = (cos δ cos α, cos δ sin α, sin δ).

We assume the observed body is moving according to Newton’s
equations

r̈ = − μ

|r|3 r. (3)

We introduce the moving frame {eρ, v̂, n̂}, depending on the epoch
t, where v̂ = d

ds
eρ , regarding eρ as function of the arc-length s, and

n̂ = eρ × v̂. By projecting equation (3) on these vectors we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ̈ − ρη2 + q̈ · eρ = − μ

|r|3 (r · eρ)

2ρ̇η + ρη̇ + q̈ · v̂ = − μ

|r|3 (r · v̂)

κη2ρ + q̈ · n̂ = − μ

|r|3 (r · n̂),

where η =
√

α̇2 cos2 δ + δ̇2 is the proper motion and κ = d
ds

v̂ · n̂.
For later use we introduce the notation

K =
(

r̈ + μ

|r|3 r
)

· eρ = ρ̈ − ρη2 + q̈ · eρ + μ

|r|3 (r · eρ).

3 T H E T WO - B O DY I N T E G R A L S

We write below (see also Gronchi et al. 2011) the expressions of
the first integrals of Kepler’s problem, i.e. the angular momentum
c, the energy E and the Laplace-Lenz vector L, in the variables
ρ, α, δ, ρ̇, ξ, ζ , with

ξ = ρα̇ cos δ, ζ = ρδ̇. (4)

We have

c = Aξ + Bζ + C,

E = 1

2
|ṙ|2 − μ

|r| ,

μL(ρ, ρ̇) = ṙ × c − μ
r
|r| =

(
|ṙ|2 − μ

|r|
)

r − (ṙ · r)ṙ,

where

A = r × eα, B = r × eδ, C = r × q̇ + ρ̇ q × eρ,

with

eα = 1

cos δ

∂eρ

∂α
, eδ = ∂eρ

∂δ
,

and

ṙ = ξ eα + ζ eδ + (ρ̇eρ + q̇),

|ṙ|2 = ξ 2 + ζ 2 + 2q̇ · eαξ + 2q̇ · eδζ + |ρ̇eρ + q̇|2,
ṙ · r = q · eαξ + q · eδζ + (ρ̇eρ + q̇) · r.

We introduce the notation

qα = q · eα, qδ = q · eδ, q̇α = q̇ · eα, q̇δ = q̇ · eδ.

Note that ξ 2 + ζ 2 = ρ2η2.

4 LAMBERT’S EQUATI ON

Lambert’s theorem for elliptic motion gives the following relation
for the orbital elements of a body on a Keplerian orbit at epochs
t1, t2:

n(t2 − t1) = β − γ − (sin β − sin γ ) + 2kπ. (5)

Here, k ∈ N is the number of revolutions in the time interval [t1,
t2], n = n(a) is the mean motion, where a = −μ/(2E) (the energy
is the same at the two epochs), and the angles β, γ are defined by

sin2 β

2
= r1 + r2 + d

4a
, sin2 γ

2
= r1 + r2 − d

4a
, (6)

and

0 ≤ β − γ ≤ 2π,

with r1, r2 the distances from the centre of force, and d the length of
the chord joining the two positions of the body at epochs t1, t2. For
a fixed number of revolutions we have four different choices for the
pairs (β, γ ), see Section A and Battin (1987) for the details.

5 L I N K AG E

We wish to link two sets of radar data of the form (2), with mean
epochs t̄i , i = 1, 2, and compute one or more preliminary orbits.
In the following we use labels 1, 2 for the quantities introduced in
Sections 2–4 according to the epoch.

Let us denote by L the expression defining Lambert’s equation.
More precisely, L = 0 is one of the possible cases occurring in (5)
with ti = t̃i = t̄i − ρi/c, where c is the velocity of light (correction
by aberration), see Section A. Moreover, let us define v2 = eρ

2 × q2.
We consider the system

(c1 − c2, E1 − E2,K1,K2, (L1 − L2) · v2,L) = 0 (7)

of eight equations in the eight unknowns (X, �), with

X = (ξ1, ζ1, ξ2, ζ2), � = (�α1, �δ1, �α2, �δ2).

Note that the unknowns are divided into two sets so that � is the
vector of infinitesimal angles. To solve system (7) we first compute
X as function of � using four of these equations, then we substi-
tute X(�) into the remaining equations and search for solutions
of the resulting non-linear system by applying Newton–Raphson’s
method. Taking advantage of the assumed smallness of the solutions
�, we can use � = 0 as starting guess.
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6 C O MPU TIN G X(�)

We describe below two ways to compute X as function of � using
some of the equations of system (7). One approach uses linear
equations, see Section 6.1, while the equations for the other are
quadratic, see Section 6.2.

6.1 Linear equations

Substituting 2E1 + ρ1K1 − 2E2 − ρ2K2 in place of E1 − E2 in (7)
we obtain an equivalent system and the equation

2E1 + ρ1K1 = 2E2 + ρ2K2 (8)

is linear in the variables X = (ξ1, ζ 1, ξ 2, ζ 2). Using equation (8)
and the conservation of the angular momentum we obtain a linear
system in the variables X :

MX = V . (9)

Here

M =

⎡
⎢⎢⎢⎢⎣

A11 B11 −A21 −B21

A12 B12 −A22 −B22

A13 B13 −A23 −B23

q̇α
1 q̇δ

1 −q̇α
2 −q̇δ

2

⎤
⎥⎥⎥⎥⎦ ,

where Aij, Bij are the components of Ai , Bi , and q̇α
i = q̇i · eα

i , q̇δ
i =

q̇i · eδ
i , for i = 1, 2. Moreover

V = (C21 − C11, C22 − C12, C23 − C13, D2 − D1)T,

where Cij are the components of C i and

Di = 1

2

(
ρ2

i η
2
i + |ρ̇i e

ρ
i + q̇i |2

)
− μ

|r i | ,

with η2
i expressed as function of (�αi, �δi) by using the equations

Ki = 0, i = 1, 2, that is using relation

η2 = 1

ρ

(
ρ̈ + q̈ · eρ + μ

|r|3 (r · eρ)

)

at the two epochs t̄1, t̄2. We can write X as function of � by solv-
ing system (9). Let us call Mhj the components of M, and Vh the
components of V . The solutions of (9) are given by

ξi = |M2i−1|
|M| , ζi = |M2i |

|M| , i = 1, 2, (10)

where Mk has components

M
(k)
hj =

{
Mhj if k �= j

Vh if k = j

and |M|, |Mk| represent the determinants of M, Mk.

6.2 Quadratic equations

The orbits at epochs t̃i = t̄i − ρi/c, i = 1, 2, computed with the
solution X of system (9), do not necessarily share the same energy
E . This can produce some problems in the linear algorithm described
above, especially when solving Lambert’s equation, where the right-
hand sides of (6) may become greater than 1 during the iterations
of Newton–Raphson’s method. We can force the orbits to share the
same energy by solving the first 4 equations in (7), that are quadratic
in the variable X . By introducing the vector

Y = (ξ1, ζ1, ξ2),

we can write the conservation of the angular momentum as the
linear system

NY = W . (11)

Here,

N =

⎡
⎢⎢⎣

A11 B11 −A21

A12 B12 −A22

A13 B13 −A23

⎤
⎥⎥⎦

and

W = ζ2W (1) + W (0),

where

W (1) = (B21, B22, B23)T,

W (0) = (C21 − C11, C22 − C12, C23 − C13)T.

We solve system (11). Let us call Nhj the components of N and
Wh,W (0)

h ,W (1)
h the components of W ,W (0),W (1). The solutions of

(11) are functions of ζ 2, �, and are given by

ξ̃1 = |N1|
|N| , ζ̃1 = |N2|

|N| , ξ̃2 = |N3|
|N| ,

where Nk has components

N
(k)
hj =

⎧⎨
⎩

Nhj if k �= j

Wh if k = j
.

From the conservation of energy we can find ζ 2 as function of �.
We write

F2ζ
2
2 + F1ζ2 + F0 = 0, (12)

with

F2 = 1

|N|2 (|N(1)
1 |2 + |N(1)

2 |2 − |N(1)
3 |2) − 1

F1 = 2

|N|2 (|N(1)
1 ||N(0)

1 | + |N(1)
2 ||N(0)

2 | − |N(1)
3 ||N (0)

3 |)

+ 2

|N| (q̇α
1 |N(1)

1 | + q̇δ
1 |N(1)

2 | − q̇α
2 |N(1)

3 | − q̇δ
2 |N|)

F0 = 1

|N|2 (|N(0)
1 |2 + |N(0)

2 |2 − |N(0)
3 |2)

+ 2

|N| (q̇α
1 |N(0)

1 | + q̇δ
1 |N(0)

2 | − q̇α
2 |N(0)

3 |)

+ D1 − D2,

where N(�)
k , k = 1, 2, 3, � = 0, 1, has components

N
(k,�)
hj =

{
Nhj if k �= j

W
(�)
h if k = j

,

and

Di = 2Di − ρ2
i η

2
i , i = 1, 2.

Therefore we have

ξ1(�) = ξ̃1(ζ2(�), �),

ζ1(�) = ζ̃1(ζ2(�), �),

ξ2(�) = ξ̃2(ζ2(�), �),

where ζ2(�) is a solution of (12). Note that we can have up to two
acceptable expressions for X(�).
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7 C O MPU TIN G �

We introduce the vector

G = (K1,K2, (L1 − L2) · v2,L).

To select the relevant expressions of L we need to guess the
value of k in equation (5). We can do this by assuming � = 0 and
computing the possible orbits according to the linear or quadratic
equations for X(�). In both cases we obtain two possible values for
the number of revolutions k: with the linear equations we can have
two different values of k at the two epochs t̃1, t̃2; with the quadratic
equations we may obtain two orbits with different k at the same
epoch, say t̃1, but from conservation of energy we have the same
values at t̃2.

By substituting the possible expressions of X(�), coming from
either the linear or the quadratic equations, we obtain the reduced
system

G(�) = G(X(�),�) = 0. (13)

Since the unknowns in � are small, we can try to apply Newton–
Raphson’s method with � = 0 as starting guess. Thus we try to
compute an approximation for � by the iterative formula

�k+1 = �k −
[

∂G
∂�

(�k)

]−1

G(�k), �0 = 0. (14)

Equations (14) are linear, and are defined by (13) and by the Jacobian
matrix

∂G
∂�

(�k) = ∂G
∂X

(Xk, �k)
∂X
∂�

(�k) + ∂G
∂�

(Xk, �k),

with Xk = X(�k).
Note, that at each iteration the number of solutions can be dou-

bled, but if we impose the value of �k+1 to be close to �k then we
can usually avoid bifurcations.

The computation of the Jacobian matrix ∂G
∂�

is described below,
enhancing the differences between the linear and the quadratic case.

7.1 The derivatives ∂G
∂X

∂K1

∂X
= − 2

ρ1
(ξ1, ζ1, 0, 0)

∂K2

∂X
= − 2

ρ2
(0, 0, ξ2, ζ2).

We observe that

L2 · v2 = − 1

μ
(ṙ2 · r2)(ṙ2 · v2).

Thus we have

∂

∂ξ1
[(L1 − L2) · v2] = 2

μ
(ξ1 + q̇1 · eα

1 )(r1 · v2)

− 1

μ
[(q1 · eα

1 )(ṙ1 · v2) + (ṙ1 · r1)(eα
1 · v2)]

∂

∂ζ1
[(L1 − L2) · v2] = 2

μ
(ζ1 + q̇1 · eδ

1)(r1 · v2)

− 1

μ
[(q1 · eδ

1)(ṙ1 · v2) + (ṙ1 · r1)(eδ
1 · v2)]

∂

∂ξ2
[(L1 − L2) · v2] = 1

μ
[(q2 · eα

2 )(ṙ2 · v2) + (ṙ2 · r2)(eα
2 · v2)]

∂

∂ζ2
[(L1 − L2) · v2] = 1

μ
[(q2 · eδ

2)(ṙ2 · v2) + (ṙ2 · r2)(eδ
2 · v2)].

For Lambert’s equation, the derivatives are given by

∂L
∂X

= ∂n

∂X
(t̃1 − t̃2) + ∂(β − sin β)

∂X
− ∂(γ − sin γ )

∂X
,

∂n

∂X
= − 3

2μ

√
−2E1

∂(2E1)

∂X
,

∂(β − sin β)

∂X
= (1 − cos β)

∂β

∂X
= 2

√
�+

1 − �+

∂�+
∂X

,

∂(γ − sin γ )

∂X
= (1 − cos γ )

∂γ

∂X
= 2

√
�−

1 − �−

∂�−
∂X

,

with

�+ = sin2 β

2
= − r1 + r2 + d

2μ
E1,

�− = sin2 γ

2
= − r1 + r2 − d

2μ
E1.

In the expression for ∂n
∂X we use the energy E1 at epoch t̃1. We

could as well choose E2 at epoch t̃2: this choice is arbitrary in the
linear case, in fact computing X(�) with the linear algorithm, we
generally have E1(ξ1(�), ζ1(�)) �= E2(ξ2(�), ζ2(�)).

Since r1, r2, d do not depend on X , we have

∂�+
∂X

= − r1 + r2 + d

2μ

∂E1

∂X
,

∂�−
∂X

= − r1 + r2 − d

2μ

∂E1

∂X
,

with

∂E1

∂X
= ((ξ1 + q1 · eα

1 ), (ζ1 + q1 · eδ
1), 0, 0).

7.2 The derivatives ∂X
∂�

To compute derivatives with respect to � we use as intermediate
variables the unit vectors eρ

j , eα
j , eδ

j , j = 1, 2. To this aim we intro-
duce the vector

E =
⎡
⎣ E1

E2

⎤
⎦ , where Ej =

⎛
⎝ eρ

j

eα
j

eδ
j

⎞
⎠ .

Its derivatives with respect to � are given by

∂E
∂�

=
[ ∂ E1

∂(α1,δ1) 0

0 ∂E2
∂(α2,δ2)

]
,

where

∂Ej

∂(αj , δj )
=

⎡
⎢⎢⎢⎣

cos δj eα
j eδ

j

e⊥
j 0

− sin δj eα
j −eρ

j

⎤
⎥⎥⎥⎦

and e⊥
j = −(cos αj , sin αj , 0)T.

Moreover, we need to compute ∂X
∂ E . We describe the different

procedures for the linear and quadratic methods.
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7.2.1 The derivatives ∂X
∂ E , linear case

Using equation (10), we only need to compute

∂ξh

∂E
= 1

|M|
∂|M2h−1|

∂E
− |M2h−1|

|M|2
∂|M|
∂E

,

∂ζh

∂E
= 1

|M|
∂|M2h|

∂E
− |M2h|

|M|2
∂|M|
∂E

.

We take advantage of the following relation, valid for any matrix A
of order n with coefficients aij depending on a variable x:

d

dx
|A| =

n∑
h=1

|Bh|,

where Bh has coefficients b
(h)
ij , with

b
(h)
ij =

⎧⎨
⎩

aij h �= j

d

dx
aij h = j

.

7.2.2 The derivatives ∂X
∂ E , quadratic case

From the implicit function theorem applied to equation (12) we
obtain

∂ζ2

∂E
= −

[
1

(2F2ζ2 + F1)

(
∂F2

∂E
ζ 2

2 + ∂F1

∂E
ζ2 + ∂F0

∂E

)]∣∣∣∣
ζ2=ζ

(i)
2 (E)

.

Let us define

ξ1(E) = ξ̃1(ζ2(E), E),

ζ1(E) = ζ̃1(ζ2(E), E),

ξ2(E) = ξ̃2(ζ2(E), E).

We have

∂ξ1

∂E
= 1

|N|
(

∂|N1|
∂ζ2

∂ζ2

∂E
+ ∂|N1|

∂E

)
− |N1|

|N|2
∂|N|
∂E

,

∂ζ1

∂E
= 1

|N|
(

∂|N2|
∂ζ2

∂ζ2

∂E
+ ∂|N2|

∂E

)
− |N2|

|N|2
∂|N|
∂E

,

∂ξ2

∂E
= 1

|N|
(

∂|N3|
∂ζ2

∂ζ2

∂E
+ ∂|N3|

∂E

)
− |N3|

|N|2
∂|N|
∂E

.

7.3 The derivatives ∂G
∂�

As in Section 7.2, we compute the derivatives of G with respect to
E and multiply the result by ∂ E

∂�
. We have

∂Kj

∂eρ
j

= q̈j + μ
qj

|rj |3
(

1 − 3ρj

(rj · eρ
j )

|rj |2
)

, j = 1, 2

and

∂Kj

∂eα
j

= ∂Kj

∂eδ
j

= 0,
∂K1

∂E2
= ∂K2

∂E1
= 0.

∂

∂eρ
1

[(L1 − L2) · v2] = 1

μ

[
(r1 · v2)

(
2ρ̇1q̇1 + μρ1

q1

|r1|3
)

+
(

|ṙ1|2 − μ

|r1|
)

ρ1v2−(ṙ1 · v2)(ρ̇1q1 + ρ1q̇1) − (ṙ1 · r1)ρ̇1v2

]
,

∂

∂eα
1

[(L1 − L2) · v2] = ξ1

μ
[2(r1 · v2)q̇1 − (ṙ1 · v2)q1−(ṙ1 · r1)v2],

∂

∂eδ
1

[(L1 − L2) · v2] = ζ1

μ
[2(r1 · v2)q̇1 − (ṙ1 · v2)q1−(ṙ1 · r1)v2],

∂

∂eρ
2

[(L1 − L2) · v2] = −L1 × q2

+ 1

μ
[(ρ̇2q2 + ρ2q̇2)(ṙ2 · v2) + (ṙ2 · r2)q2 × q̇2],

∂

∂eα
2

[(L1 − L2) · v2] = 1

μ
[ξ2(ṙ2 · v2) + ζ2(ṙ2 · r2)]q2,

∂

∂eδ
2

[(L1 − L2) · v2] = 1

μ
[ζ2(ṙ2 · v2) − ξ2(ṙ2 · r2)]q2.

For Lambert’s equation we have

∂L
∂E

= ∂n

∂E
(t̃1 − t̃2) + ∂(β − sin β)

∂E
− ∂(γ − sin γ )

∂E
,

with

∂n

∂E1
= − 3

2μ

√
−2E1

∂(2E1)

∂E1
,

∂n

∂E2
= 0,

∂(β − sin β)

∂E
= 2

√
�+

1 − �+

∂�+
∂E

,

∂(γ − sin γ )

∂E
= 2

√
�−

1 − �−

∂�−
∂E

.

Moreover

∂�+
∂E1

= −2E1

4μ

(
∂r1

∂E1
+ ∂d

∂E1

)
+ �+

2E1

∂(2E1)

∂E1
,

∂�+
∂E2

= −2E1

4μ

(
∂r2

∂E2
+ ∂d

∂E2

)
,

∂�−
∂E1

= −2E1

4μ

(
∂r1

∂E1
− ∂d

∂E1

)
+ �−

2E1

∂(2E1)

∂E1
,

∂�−
∂E2

= −2E1

4μ

(
∂r2

∂E2
− ∂d

∂E2

)
,

with

∂(2E1)

∂E1
=

(
2ρ̇1q̇1 + 2μρ1

q1

r3
1

, 2ξ1q̇1, 2ζ1 q̇1

)
,

∂r1

∂E1
=

(
ρ1q1

r1
, 0, 0

)
,

∂r2

∂E2
=

(
ρ2q2

r2
, 0, 0

)
,

∂d

∂E1
= ρ1

d
(q1 − r2, 0, 0),

∂d

∂E2
= ρ2

d
(q2 − r1, 0, 0).

8 A LT E R NAT I V E K N OW N M E T H O D S

We recall below two already known methods that can be used in
place of the one described in Sections 5–7, with the available data.
An important difference is that these methods do not provide cor-
rections to the angles α, δ.

8.1 Gibbs’ method

From three position vectors of an observed body at the same pass
we can compute an orbit using Gibbs’ method, see Herrick (1976,
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chapter 8). We recall below the formulas of this method. Given the
position vectors rj at times tj, with j = 1, 2, 3, we have

ṙ2 = −d1 r1 + d2 r2 + d3 r3,

where

dj = Gj + Hjr
−3
j , j = 1, 2, 3,

G1 = t2
32

t21 t32 t31
, G3 = t2

21

t21 t32 t31
, G2 = G1 − G3,

H1 = μ t32/12 , H3 = μt21/12 , H2 = H1 − H3.

Here, tij = ti − tj, rj = |rj |. Before applying Gibbs’ method we
can use the algorithm of Section A2 to correct the data so that they
correspond to coplanar geocentric position vectors.

8.2 Keplerian integrals

From two radar tracks, we can obtain by interpolation the values of
(ᾱ, δ̄, ρ, ρ̇) at epochs t̄1, t̄2. If we wish to determine the values of
the unknowns α̇, δ̇, or equivalently of ξ , ζ defined by (4), we can
use the KI method, see Taff & Hall (1977), Farnocchia et al. (2010),
Gronchi et al. (2011). This method uses the equations

c1 = c2, E1 = E2,

which can be explicitly solved, giving at most two solutions.

Table 1. Keplerian elements of the test orbit at epoch t̃1 =
54127.1550347 MJD. Distances are expressed in km, angles
in degrees.

a e I � ω �

7818.10 0.066 65.81 216.25 357.16 202.09

Table 2. rms of the errors
added to the radar tracks.

rms α, δ (deg) ρ (m)

Case 1 0.2 0
Case 2 0.04 2
Case 3 0.06 3
Case 4 0.1 5
Case 5 0.2 10

Table 4. Relative error for the orbital el-
ements computed with IAL at epoch t̃1.

IAL rms

2.9 × 10−7 Case 1
δa/a −2.4 × 10−5 Case 2

1.2 × 10−1 Case 3

1.8 × 10−5 Case 1
δe/e −2.0 × 10−3 Case 2

3.3 × 10−1 Case 3

1.7 × 10−6 Case 1
δI/I −5.4 × 10−4 Case 2

−2.6 × 10−2 Case 3

−1.5 × 10−8 Case 1
δ�/� 2.8 × 10−6 Case 2

−8.1 × 10−3 Case 3

−7.4 × 10−6 Case 1
δω/ω 6.1 × 10−4 Case 2

−6.1 × 10−1 Case 3

1.5 × 10−5 Case 1
δ�/� −1.3 × 10−3 Case 2

−7.7 × 10−1 Case 3

9 N U M E R I C A L T E S T S

We have performed some numerical tests with simulated objects,
without the J2 effect, but adding errors to the observations. Here,
we describe the results for only one simulated object, whose orbital
elements are displayed in Table 1 for epoch t̃1.

We produce two tracks of simulated observations of this object
with a two-body propagation and add to the data of the tracks a
Gaussian error, with zero mean and the standard deviations listed
in Table 2. In particular we consider the case where we add no
error to the range ρ (Case 1 in the table). The data that we obtain
by interpolation from the modified radar tracks are displayed in
Table 3 for the simulated object. Indeed Case 1 is peculiar, in fact
we interpolate the available values of α, δ and we use the exact
values of ρ, ρ̇, ρ̈, that we can compute from the given orbit.

First we compute an orbit at epoch t̃1 using the infinitesimal angles
method with the linear equations (IAL) introduced in Section 6.1.
In Table 4, we show the (signed) relative error for each orbital
element computed by IAL with respect to the corresponding known
values. This computation is successful only for a reduced noise
level, Cases 1 and 2 in Table 2. In particular, in Case 1, where
there is no error in ρ, ρ̇, ρ̈, IAL is able to correct the errors in α,

Table 3. Data interpolated from the radar tracks of the test object at epochs t̄1 = 54127.1550348 MJD and t̄2 =
54127.5821181 MJD, using the different noise levels of Table 2.

Epoch Data Case 1 Case 2 Case 3 Case 4 Case 5

ᾱ (deg) 51.175 32 51.209 94 51.205 62 51.196 96 51.175 32
δ̄ (deg) −5.466 10 −5.431 48 −5.435 81 −5.444 46 −5.466 10

t̄1 ρ (km) 1984.410 270 20 1984.409 360 97 1984.408 906 36 1984.407 997 13 1984.405 724 06
ρ̇ (km d−1) −73 313.626 74 −73 295.547 60 −73 286.508 03 −73 268.428 89 −73 223.231 05
ρ̈ (km d−2) 116 444 362.776 116449505.035 116 477 961.145 116 534 873.370 116 677 153.912

ᾱ (deg) 264.303 69 264.272 53 264.276 42 264.284 21 264.303 69
δ̄ (deg) −66.769 98 −66.801 15 −66.797 25 −66.789 46 −66.769 98

t̄2 ρ (km) 1893.534 107 62 1893.536 356 46 1893.537 480 88 1893.539 729 72 1893.545 351 82
ρ̇ (km d−1) −323 586.568 97 −323 638.420 16 −323 664.345 76 −323 716.196 96 −323 845.824 95
ρ̈ (km d−2) 123 666 888.648 123 507 436.811 123 396 401.795 123 174 331.770 122 619 156.710
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Table 5. Comparison of relative errors for the orbital elements com-
puted with G, KI and IAQ at epoch t̃1.

G KI IAQ rms

5.8 × 10−2 −1.9 × 10−4 2.8 × 10−7 Case 1
δa/a 2.6 × 10−2 −3.1 × 10−4 −9.3 × 10−6 Case 4

5.8 × 10−2 −4.2 × 10−4 7.9 × 10−7 Case 5

−9.2 × 10−1 5.5 × 10−3 1.8 × 10−5 Case 1
δe/e −4.4 × 10−1 5.8 × 10−3 −8.4 × 10−3 Case 4

−9.2 × 10−1 8.2 × 10−3 −1.9 × 10−2 Case 5

6.6 × 10−2 5.7 × 10−4 1.4 × 10−6 Case 1
δI/I 3.4 × 10−2 3.9 × 10−4 −3.1 × 10−3 Case 4

6.6 × 10−2 5.7 × 10−4 −7.2 × 10−3 Case 5

6.0 × 10−3 −9.8 × 10−6 4.7 × 10−8 Case 1
δ�/� 3.1 × 10−3 8.3 × 10−6 2.3 × 10−4 Case 4

6.0 × 10−3 −9.7 × 10−6 5.8 × 10−4 Case 5

−5.7 × 10−2 −4.4 × 10−4 −7.7 × 10−6 Case 1
δω/ω −2.8 × 10−3 3.6 × 10−5 7.2 × 10−4 Case 4

−6.0 × 10−2 7.7 × 10−5 9.9 × 10−4 Case 5

8.7 × 10−2 1.0 × 10−3 1.6 × 10−5 Case 1
δ�/� −3.1 × 10−3 2.8 × 10−5 −1.7 × 10−3 Case 4

9.1 × 10−2 1.4 × 10−6 −2.6 × 10−3 Case 5

δ and to recover the orbital elements of the known orbit. However,
this method shows some limitations: for Case 3 the computed orbit
displayed in Table 4 is very different from the known one, and for
larger values of the observational errors either we could not compute
an orbit or the results were wrong.

In Table 5, we show the relative error for the orbital elements at
epoch t̃1 computed by the method of Gibbs (G), by the KI and by the
infinitesimal angles with the quadratic equations (IAQ) introduced
in Section 6.2. Here we consider the noise levels corresponding to
Cases 1, 4, and 5 in Table 2. In Case 1, IAQ is also able to correct
the errors in α, δ and to recover the orbital elements of the known
orbit. For Case 4 and Case 5, IAQ obtains a better value of the
semimajor axis a, and slightly worse values of the other elements,
if compared with KI. To be consistent, for KI in Case 1 we use
the exact values of ρ, ρ̇. The results with Gibbs’ method are not
very good. This also occurs by applying the corrections to the data
explained in Section A2. On the other hand this method uses only
part of the information: here, we use the three vectors (tj, ρ j, αj, δj)
of the first track at epochs tj, with j = 1, 2, 4.

1 0 C O N C L U S I O N S

We have introduced a new method to compute preliminary orbits
of Earth satellites using radar observations. This consists in solving
system (7) and we considered two different possible approaches,
denoted by IAL and IAQ. The comparison of this new method
with already existing ones has been performed for some test cases.
From the results of Section 9, we conclude that IAQ works much
better than IAL and Gibbs’ method and it shows some advantages
with respect to KI. Large-scale tests should be done to check the
performance of IAQ, possibly with real data. We plan to investigate
the case which includes the J2 effect in the equations: this is essential
to link radar tracks of LEO orbits after several revolutions.
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APPENDI X A : C OMPLEMENTA RY RESULTS

A1 Lambert’s equations for elliptic motion

In this section, following Whittaker (1989) and Plummer (1918), we
summarize the steps to derive Lambert’s equation for elliptic motion
under a Newtonian force and we give a geometric interpretation of
the result. Indeed we obtain four distinct equations per number
of revolutions of the observed body. Note that, dealing with radar
observations of space debris, the time between two distinct arcs of
observations usually covers several revolutions.

Theorem 1. (Lambert 1761) In the elliptic motion under the Newto-
nian gravitational attraction, the time �t = t2 − t1 spent to describe
any arc (without multiple revolutions) from the initial position P1

to the final position P2 depends only on the semimajor axis a, on
the sum r = r1 + r2 of the two distances r1 = |P1 − F|, r2 = |P2 −
F| from the centre of force F, and the length d of the chord joining
P1 and P2. More precisely we have

n�t = β − γ − (sin β − sin γ ),

where n = n(a) is the mean motion, and the angles β, γ are defined
by

sin2 β

2
= r + d

4a
, sin2 γ

2
= r − d

4a
,

and

0 ≤ β − γ ≤ 2π. (A1)

Proof. We can assume, without loss of generality, that the positions
of the points P1, P2 are defined by two values E1, E2 of the eccentric
anomalies such that 0 ≤ E2 − E1 ≤ 2π.

The difference of Kepler’s equations at the two epochs gives

n�t = E2 − E1 − e(sin E2 − sin E1),

where e is the orbital eccentricity. From elementary geometrical
relations we obtain

r

a
= 2

(
1 − e cos

E1 + E2

2
cos

E2 − E1

2

)
,
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d

a
= 2 sin

E2 − E1

2

√
1 − e2 cos2

E1 + E2

2
.

It follows that

r + d

2a
= 1 − cos

(
E2 − E1

2
+ arccos

(
e cos

E2 + E1

2

))
,

(A2)

r − d

2a
= 1 − cos

(
−E2 − E1

2
+ arccos

(
e cos

E2 + E1

2

))
.

(A3)

In particular, for a real elliptical orbit to be possible the given scalar
quantities must satisfy the relations r ≥ d and 4a − r ≥ d. If we
define

β0 = 2 arcsin

(√
r + d

4a

)
, γ0 = 2 arcsin

(√
r − d

4a

)
,

then, using relation

1 − cos θ = 2 sin2 θ

2
, θ ∈ R,

and setting

β = E2 − E1

2
+ arccos

(
e cos

E2 + E1

2

)
, (A4)

γ = −E2 − E1

2
+ arccos

(
e cos

E2 + E1

2

)
, (A5)

we find that the pairs

(β, γ ) = (β0, γ0), (β0, −γ0), (2π − β0, −γ0), (2π − β0, γ0) (A6)

satisfy equations (A2), (A3). Up to addition of the same integer
multiple of 2π to both β and γ , the pairs (A6) are the only ones
fulfilling (A2), (A3) and (A1). From (A4), (A5) we obtain

β − γ = E2 − E1, cos
β + γ

2
= e cos

E2 + E1

2
,

that yields

n�t = β − γ − (sin β − sin γ ) .

In fact

sin β − sin γ = 2 sin
β − γ

2
cos

β + γ

2

= 2e sin
E2 − E1

2
cos

E2 + E1

2
= e(sin E2 − sin E1).

The pairs (β, γ ) given in equation (A6) correspond to four geo-
metrically distinct possible paths from the initial to the final position,
see Fig. A1. Given the points P1, P2 and the attracting focus F, for
a fixed value a of the semimajor axis, we find two different ellipses
passing through P1 and P2. They share the attracting focus F, but
not the second focus (F∗ and F∗∗ in the figure). For each ellipse
we have two possible arcs from P1 to P2, with different orientation,
clockwise and counter-clockwise. The four cases are discussed in
Plummer (1909), Plummer (1918), and are distinguished on the ba-
sis of the abscissa of the intercept Q of the straight line through P1

and P2, on the axis passing through the foci of one of the ellipses,
measured from its centre.

In Plummer (1918) the four cases are also distinguished using the
region R whose border is formed by the arc and the chord joining

Figure A1. The four cases occurring in Lambert’s theorem.

Figure A2. The region R (filled in grey) corresponding to the four cases.

P1 and P2, see Fig. A2. We use this criterion for the classification
given below.

For a complete list of the equations coming from Lambert’s theo-
rem, that need to be considered in our problem, we have to take into
account the possible occurrence of multiple revolutions along the
orbit. Denoting by n the mean motion, the following expressions
for �t are obtained:1

(i) �t = T1 + 2kπ/n, when the arc covers k revolutions and R
contains neither of the foci;

(ii) �t = T2 + 2kπ/n, when the arc covers k revolutions, R con-
tains the attracting focus F but not the other one;

(iii) �t = −T1 + 2(k + 1)π/n, when the arc covers k revolutions
and R contains both foci;

(iv) �t = −T2 + 2(k + 1)π/n, when the arc covers k revolutions,
R does not contain the attracting focus F but contains the other one,

where T1, T2 are given by

nT1 = β0 − γ0 − (sin β0 − sin γ0),

nT2 = β0 + γ0 − (sin β0 + sin γ0).

The four cases above can be summarized in the equation

n�t = β − γ − (sin β − sin γ ) + 2kπ, k ∈ N,

1 Here the region R is defined ignoring multiple revolutions.
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where the angles β, γ are defined by

sin2 β

2
= r + d

4a
, sin2 γ

2
= r − d

4a
,

and

0 ≤ β − γ ≤ 2π.

We also observe that in Prussing (1979) there is a geometrical
interpretation for the angles β, γ .

A2 Corrections to the observations

We describe a procedure that could be used to correct the angular
positions of a track by a pure geometrical argument.

Assume we have the geocentric position vectors rj = ρj eρ
j + qj ,

j = 1. . . 4, with qj the geocentric positions of the observer, from
the radar observations of the celestial body. The vectors rj would
be coplanar, if the orbit were perfectly Keplerian. In general this
holds only approximately, due to the observational errors and to the
perturbations which should be added to Kepler’s motion. We wish
to correct these position vectors and define coplanar vectors r ′

j ,
which are slightly different from rj and keep the measured value
ρ j of the topocentric radial distances. In the attempt to define a
good approximation of the plane of this idealized Kepler motion,
we compute the minimum of the function

ν 
→ Q(ν) =
4∑

j=1

(rj · ν)2

with the constraint |ν| = 1. We obtain the equation

4∑
j=1

(rj · ν)rj − λν = 0, (A7)

with the Lagrange multiplier λ ∈ R, and consider the solution νmin

of equation (A7) relative to the minimum eigenvalue λmin. We take
eν = νmin as the direction of the Kepler motion plane, denoted by
�ν . Then, for each j = 1, . . . , 4, we rotate the vectors ρj = ρj eρ

j

into a vector Rρj as follows (see Fig. A3).
Since we want to minimize the change in the line of sight, i.e.

the observation direction eρ
j , we rotate the latter around the axis

orthogonal to the plane generated by eν, eρ
j to reach the plane �ν .

In this way we draw a geodesic arc on the sphere with radius ρ j,
centred at the observer position defined by qj . This arc joins the
position of the observed body with the plane �ν .

To describe this procedure in coordinates we introduce the angles
θ j, φj ∈ [0, π] defined by

cos θj = eν · qj

qj

, cos φj = eν · eρ
j .

Figure A3. Sketch of the correction of the line of sight. Here we skip the
index j.

The rotated vector Rρj can be expressed as the linear combina-
tion

Rρj = Aj eν + Bj eρ
j ,

with Bj ≥ 0 (since we do not want to rotate the line of sight by more
than 90o).

Now set the following conditions:

(i) |Rρj | = ρj ,
(ii) [qj + Rρj ] · eν = 0.

We obtain

A2
j + B2

j + 2AjBj cos φj = ρ2
j ,

qj cos θj + Aj + Bj cos φj = 0.

From the second equation we obtain

Aj = −qj cos θj − Bj cos φj ,

that substituted into the first yields

Bj = 1

sin φj

√
ρ2

j − q2
j cos2 θj ,

so that

Aj = −
(

qj cos θj + cot φj

√
ρ2

j − q2
j cos2 θj

)
.

We observe that this procedure works provided

ρj ≥ qj cos θj , for j = 1, . . . , 4.
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