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Abstract

In the image reconstruction context the nonnegativity of the computed
solution is often required. Conjugate Gradient (CG), used as a reliable
regularization tool, may give solutions with negative entries, particularly
when large nearly zero plateaus are present. The active constraints set, de-
tected by projection onto the nonnegative orthant, turns out to be largely
incomplete leading to poor effects on the accuracy of the reconstructed
image. In this paper an inner-outer method based on CG is proposed to
compute nonnegative reconstructed images with a strategy which enlarges
subsequently the active constraints set. This method appears to be es-
pecially suitable for the reconstruction of images having large nearly zero
backgrounds. The numerical experimentation validates the effectiveness
of the proposed method when compared to other strategies for nonnega-
tive reconstruction.

Key words: Image Reconstruction, Conjugate Gradient, Nonnegativity Con-
straints.

1 Introduction

A Fredholm integral equation of the first kind

g(s) =

∫
K̂(s, t)f(t) dt (1)

is often used for modeling the image formation process, where f(t) and g(s)

represent a real object and its image, respectively. The kernel K̂(s, t), called
the point spread function (PSF) and assumed to be square integrable, represents
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the imaging system and is responsible for the blurring of the image. In practical
applications the blurred image g(s) is not available, being replaced by a finite
set g of measured quantities, and is degraded by the noise which affects the
process of image recording. Hence the problem of restoring f(t) from g is an ill-
posed problem. The linear system obtained by the discretization of (1) inherits
this feature, in the sense that the resulting matrix is severely ill-conditioned,
and regularization methods must be used to solve it [2, 14, 24]. This kind of
problem arises for example in the reconstruction of astronomical images taken
by a telescope and of medical and microscopy images.

One of the main features of the problem is the nonnegativity of the func-
tions involved in (1). When discretized, the equation leads to a linear problem
whose solution is constrained to be nonnegative. Iterative methods applied as
regularization techniques may give solutions with negative entries. A projec-
tion onto the nonnegative orthant may have poor effects on the accuracy of
the reconstructed image. In this paper an inner-outer method based on CG is
proposed to compute nonnegative reconstructed images with a strategy which
enlarges subsequently the active constraints set. This method appears to be
especially suitable for images having large zero backgrounds. For this type of
problems, one naturally wonders if the zeros of the original image are correctly
reconstructed. As a matter of fact, an algorithm can fail by putting to zero
nonzero values of the original image (false positive) or by giving nonzero values
in correspondence to zero values of the original image (false negative). This be-
havior will be analyzed using the well-known measures of Information Retrieval,
namely the F1 score [22], which takes into account both types of errors.

The outline of the paper is the following: first, in Section 2 the problem under
consideration is introduced and in Section 3 some strategies for nonnegative
regularization present in the literature are recalled. In Section 4 our proposed
inner-outer algorithm is motivated and described. In Section 5 the results of
a numerical experimentation which compares the performance of our algorithm
with those of four chosen methods are presented and discussed.

Notation: Throughout the paper, ∥v∥ denotes the Euclidean norm of the vector
v, i.e. ∥v∥2 = vTv. The elementwise multiplication and division between two
vectors are denoted by ⊙ and ⊘.

2 The problem

Let b̂ = Ax̂ be the discretized version of equation (1). In image reconstruction
problems the N -vector x̂ stores columnwise the pixels of an n × n original
object, with N = n2, and b̂ analogously stores the blurred image. The imaging
system is represented by a large not necessarily square matrix A, often severely
ill-conditioned with singular values decaying to zero without significant gap to
indicate numerical rank. The matrix A might not be explicitly available, as
long as the products Ax and ATx are computable for any vector x. A common
special case is the one which occurs when the PSF is bandlimited space invariant,
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i.e. invariant with respect to translations and with a bounded support, and A
is a square 2-level Toeplitz matrix with a limited bandwidth. Moreover, it
may happen that the image has sufficiently large zero background along the
boundary, so that periodic boundary conditions can be safely imposed. In this
case A becomes a 2-level circulant matrix and the matrix-by-vector product can
be computed by low cost Fourier transforms. This is the structure we assume
for our numerical examples, but the proposed algorithm can be applied equally
well to general matrices A.

In practical problems vector b̂ is not exactly known, because it is contami-
nated by measurement inaccuracies or discretization. Hence only a noisy image
b = b̂+ η is available, where the noise level is measured by

η =
∥b− b̂∥
∥b̂∥

, (2)

and in some cases can be roughly estimated. The system to be solved is thus

Ax = b. (3)

In this paper we consider the case where the entries of the noise vector η are
normally distributed with zero mean and normalized in such a way that η ranges
in a given interval.

The ith component of the vectors x̂, b̂ and b represents respectively the light
intensity or the radiation emitted by the ith pixel of the object, arriving at the
ith pixel of the blurred image and recorded in the ith pixel of the noisy image.
The component aij of matrix A measures the fraction of the light or of the
rays emitted by the ith pixel of the object which arrives at the jth pixel of the
image. Because of the ill-conditioning of A and of the presence of the noise, the
solution A† b of (3), where A† is the Moore-Penrose generalized inverse, may be
quite different from the original image x̂.

All the quantities involved in the problem, i.e. A, x̂, b̂ and b, are assumed
componentwise nonnegative. Actually, when simulated test problems are con-
sidered for the experimentation, negative entries of b could arise corresponding
to very small nonnegative entries of b̂. In this case the vector b is further pro-
jected onto the nonnegative orthant. Anyway, it is reasonable to expect the
approximation of x̂ obtained by solving (3) to be nonnegative. The constrained
least squares approximation to the solution x̂ is given by

xls = argmin
x≥0

ϕ(x), where ϕ(x) =
1

2
∥b−Ax∥2. (4)

The gradient of ϕ(x) is gradx ϕ(x) = ATAx−AT b = −ATr, where r = b−Ax
is the residual vector. The function ϕ(x) is convex and its minimum points are
found by solving the system gradx ϕ(x) = 0, i.e. the so-called normal equations

ATAx = AT b. (5)
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Due to the large dimension of system (5) and to the presence of the noise η,
a regularization method must be employed, coupled with suitable strategies
for enforcing nonnegativity. Iterative methods enjoying the semiconvergence
property are often used. According to this property, an integer K exists for
which the error attains a minimum. After the Kth iteration, the computed
vectors xk are progressively contaminated by the noise and move away from
x̂ toward A†b which can be largely different from A†b̂. A good terminating
procedure is hence needed to detect the correct index K where to stop the
iteration.

In the following we assume that both Ax ̸= 0 and ATx ̸= 0 for any x ≥ 0
with x ̸= 0, and that Ae > 0 and ATe > 0, where e is the vector of all ones
(i.e. the sums by rows and columns of A are all nonzero).

3 Nonnegativity strategies

We recall here how classic and more recent nonnegativity techniques can be
applied to iterative regularization methods.

Actually, the two classic methods “Expectation Maximization”(EM) [17, 21,
23] and “Iterative Space Reconstruction Algorithm”(ISRA) [5] enjoy the non-
negativity feature in a natural way when x0 > 0, in the sense that the zero
components of xk produced at the kth iteration are kept at all the subsequent
iterations. Unfortunately, they suffer from slow convergence rate, as shown in
[9].

Descent methods have the form

xk+1 = xk + αkpk, (6)

where the direction pk satisfies pT
k gk < 0, with gk = gradx ϕ(xk), and the step

size αk is chosen in such a way that ϕ(xk+1) < ϕ(xk). The iteration is carried
out for k = 0, . . . ,K−1 steps, until xK satisfies the stopping condition imposed
by the regularization request. The choice αk = −gT

k pk / ∥Apk∥2 satisfies the
minimum problem

ϕ(xk + αkpk) = min
α

ϕ(xk + αpk),

but the vectors xk so computed may have negative components even if x̂ is
nonnegative.

A simple technique for imposing nonnegativity consists in choosing a reduced
step size αk to guarantee that xk+1 ≥ 0 if xk ≥ 0. This technique, for example,
is implemented in MRNSD, which is a modified version of the “Residual Norm
Steepest Descent” method (RNSD) [1, 19]. The direction is pk = Xkgk, where
Xk = diag(xk) and the step size is

αk = αk if pk ≥ 0, otherwise αk = min
{
αk, min

j∈K−
−(xk)j

/
(pk)j}, (7)

where K− is the set of indices j such that (pk)j < 0. The drawback of this
technique is that small αk may occur, inducing slow convergence rate.
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Another technique for imposing nonnegativity consists in performing at each
iteration the projection of xk onto the nonnegative orthant by setting to zero
its negative components.

The Conjugate Gradient method (CG) is known for its good convergence
rate and its regularizing properties (see [13, 14, 20]). CG has the form (6) with
directions pk that are ATA-conjugate. Unfortunately, if nearly zero plateaus
are present in the original image x̂, CG may produce many negative components
in the neighborhood of these areas, so a projection step should be performed.
Theoretically, the projection should be applied at each iteration, but in the case
of CG the directions pk would stop being ATA-conjugate, i.e. the method would
lose its most important feature, which is the basis of its success. For this reason,
when CG is used, the projection is only applied to the final iteration xK which
satisfies the given stopping condition, but its projected vector x̃K might not
satisfy the stopping condition. In this event x̃K could not be accepted as a
regularized solution.

Thanks to its fast convergence rate, CG is used as a basis for regularizing
nonnegative schemes. As an inner-outer scheme, [4] suggests to apply an itera-
tive improvement to x̃K . The residual vector rK = b− Ax̃K is computed and
the system Ay = −rK is solved using again CG. The regularized solution is used
to update x̃K . If the vector so obtained still has negative components, it is
projected and the improvement step is repeated. This first scheme, called in [4]
“Projected Restarted Iteration” (here denoted PRI) is tested in [18] against a
more refined scheme which restricts the update to the components correspond-
ing to the nonactive constraints having positive Lagrangian multipliers. This
second scheme is called “Active Set-type Method” (here denoted ASM).

An inner-outer scheme is also implemented in a new method described in [10]
under the name NN-FCGLS. In the inner iterations, the step size αk is bounded as
in (7) but the direction, scaled through the premultiplication byXk, is computed
by a Krylov method instead of a RNSD method. In particular, fixed an integer
k̂ the chosen Krylov method is a CGLS-like method where the direction pk is

obtained by a linear combination of at most k̂ previously computed pj with

j varying in
{
max{0, k − k̂}, . . . , k − 1

}
. If a maximum number of iterations

kmax is assigned for the inner cycle, the choice k̂ = kmax corresponds to a full
recursion, while a lower k̂ corresponds to a truncated recursion and with k̂ = 1,
only the last computed vector pk−1 is used. The outer cycle relies on suitable
restarts, in order to avoid stagnation. In the following this scheme is denoted
NNFCG.

Finally, we recall the “Scaled Gradient Projection” (SGP) methods [3]. The
methods of this class use the projection for imposing the nonnegativity, but do
not adopt an inner-outer scheme. They have the form (6) with directions pk and
step size αk which depend on a diagonal scaling matrix. Their performances
have been analyzed in [6] and have shown good reconstruction accuracy and
convergence rate. One of the most effective methods of this class generalizes
ISRA. The direction is computed in the following way. Denoting wk = xk ⊘
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(ATAxk), sk = xk − xk−1 and zk = wk ⊙
(
gk − gk−1

)
, the vector

uk = xk − γwk ⊙ gk, where γ = sTk zk / ∥zk∥2,

is computed. Let uk be its projection. The direction and step size at the kth
step in (6) are

pk = uk − xk and αk = max
{
θ,min

{
1,− gT

k pk / ∥Apk∥2
}}

,

where θ > 0 is a bound for αk from below (typically θ = 10−3). The bounds
on αk guarantee that xk+1 ≥ 0 if xk ≥ 0. Note that this method applies the
projection to the direction uk and not to the approximated solution xk. In [6]
this method is identified by the name SGP-GcB, but for simplicity we denote it
here just SGP).

On the basis of the convergence rate, the four methods PRI, ASM, NNFCG and
SGP will be considered in order to test the performance of our algorithm.

4 The algorithm we propose

In this section we describe an algorithm, called ”Inner-Outer CG” (IOCG), based
on restarted CG, coupled with a projection technique which exploits both the
regularizing properties and the good convergence rate of CG.

IOCG and ASM share the same inner-outer scheme, with CG used for the inner
process and an active set based technique for dealing with the constraints. The
main difference is that ASM lets the constraints enter or leave the active set at
each outer step, while with IOCG the constraints that belong to the active set are
not allowed to leave it in the subsequent outer steps and the active set can only
expand. The progressive enlargement of the active set ensures convergence. In
a certain sense, this behavior reminds the EM and ISRA behaviors.

IOCG detects a sequence of progressively enlarged sets A(h), h = 0, 1, . . . , H
of active constraints for the solution. On each set A(h) the algorithm computes
a regularized solution y(h) with the components belonging to A(h) fixed to
zero, stopping when no further enlargement is required. Note that, unlike the
standard iterative methods, the outer iteration has a natural termination.

Note: the projection ỹ of a vector y onto the nonnegative orthant can be
formally implemented by means of a projection matrix P , i.e. a diagonal matrix
of zeros and ones. In the pseudo-code of IOCG we will refer to a function project

which constructs ỹ and the diagonal d of P .

4.1 Outline

We recall here some basic facts on which IOCG relies. In the formulas a permu-
tation matrix Π appears, having only the descriptive role of shifting the zeros
upward, in order to simplify the notation. Since its use is irrelevant, no reference
to Π will appear in the pseudo-code.
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Let xk, k = 1, 2, . . ., be the sequence of vectors obtained by applying CG to
the normal equations (5), starting with a vector x0. Because of the semiconver-
gence property, an optimal index K exists such that

∥x̂− xK∥ ≤ ∥x̂− xk∥, for any k.

If xK ≥ 0, then it is accepted as the regularized solution of (4). Otherwise, let
P be its projection matrix and x̃K = PxK . Since x̂ ≥ 0, it is

∥x̂− PxK∥ < ∥x̂− xK∥.

Let Π be a permutation matrix such that

Π PxK =

[
0
xK

]
, with xK > 0.

Applying the same projection and permutation to x̂ we have

ΠP x̂ =

[
0
x

]
where Π x̂ =

[
x
x

]
,

then
∥x̂− PxK∥2 = ∥Π x̂−Π PxK∥2 = ∥x∥2 + ∥x− xK∥2. (8)

The basic assumption on which IOCG relies is that the negative components
of xK , which have been set to zero in x̃K , really correspond to nearly zero
components of x̂, so that the zero components of PxK are correctly placed in the
active constraints set A. The experimentation will show that this assumption
is reasonable for images having a large zero background.

The matrix APΠ T = [O |A ] is obtained by zeroing the columns with the
indices in A and shifting them to the left. Then

ΠPATAPΠ T =

[
O O

O ATA

]
,

and system (5) becomes ΠPATAPΠ Ty = ΠPAT b, where x = PΠ Ty. Setting

y =

[
y
y

]
and ΠPAT b =

[
0
c

]
,

we get
ATAy = c. (9)

The smallest ∥x∥ in (8), the most effective the approximation of x obtained by
solving (9) in a regularization sense. Then we apply CG to system (9) starting
with y

0
= xK . The semiconvergence will push the iterates y

k
toward x, i.e.

after K ′ iterations a vector y
K′ is obtained such that ∥x − y

K′∥ ≤ ∥x − y
k
∥,

for any k. The vector

yK′ =

[
0
y

K′

]
verifies

∥Π x̂− yK′∥ ≤ ∥Π x̂−Π PxK∥ = ∥x̂− PxK∥.
If also y

K′ has negative components, the previous arguments are repeated to
further improve the approximation to x̂ starting from yK′ , and so on.
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4.2 The inner-outer structure

The previous considerations suggest an algorithm of inner-outer type for finding
a regularized nonnegative solution of problem (4), which appears to be especially
suitable for the reconstruction of images having large nearly zero backgrounds.
The algorithm consists of two loops:

(a) the outer loop generates a sequence of projection matrices P (h), h =
0, 1, . . ., starting with P (0) = I and for any h calls the inner loop;

(b) starting with x
(h)
0 ≥ 0, the inner loop computes the sequence x

(h)
k , k =

1, . . . ,Kh by applying CG to the system

A(h)TA(h) x = A(h)T b, where A(h) = AP (h). (10)

The first inner loop is stopped at indexK0 according to a suitable inner stopping

rule. The vector y(0) = x
(0)
K0

is assumed as the regularized solution of (10) for

h = 0. If y(0) has negative components, a new inner loop starts: the vector y(0)

is projected and the corresponding projection matrix P (1) is constructed. The

starting vector for the new inner loop is x
(1)
0 = P (1)y(0) and a new regularized

solution y(1) = x
(1)
K1

of (10) is computed for h = 1, and so on. As the outer

loop goes on, the hth initial vector x
(h)
0 has more zeros than the previous initial

vector x
(h−1)
0 . The stopping condition for the outer loop is satisfied by the first

h such that y(h) has all nonnegative components. When this happens, we say
that the algorithm has reached its natural termination and the last computed
vector is assumed as the regularized solution xreg of problem (3).

Thanks to the semiconvergence property, an excessive precision in the com-

putation of the last x
(h)
Kh

is not required at the hth outer phase. For this reason
we will impose an upper bound to the number of iterations allowed during an
inner loop through a parameter kmax.

The kth iteration of CG applied to (10) is

z
(h)
k = A(h)p

(h)
k , α

(h)
k = ∥q(h)

k ∥2/∥z(h)
k ∥2, x

(h)
k+1 = x

(h)
k + α

(h)
k p

(h)
k ,

r
(h)
k+1 = r

(h)
k − α

(h)
k z

(h)
k , q

(h)
k+1 = A(h)T r

(h)
k+1, β

(h)
k = ∥q(h)

k+1∥2/∥q
(h)
k ∥2,

p
(h)
k+1 = q

(h)
k+1 + β

(h)
k p

(h)
k ,

(11)

where x
(h)
0 is the projection of x

(h−1)
Kh−1

, r
(h)
0 = b − A(h) x

(h)
0 and p

(h)
0 = q

(h)
0 =

A(h)T r
(h)
0 .

Due to the presence of the zeros introduced by the matrix P (h), system (10)
has an effective size smaller than the size N of system (5). This fact could be
exploited to reduce the computational cost of CG at the hth inner loop. However,
when A has a structure that can be exploited to reduce the cost of the matrix-
vector products (which accounts for the greatest part of the computational cost
of the method) and matrix A(h) loses this structure (as it happens with Toeplitz
matrices), it is more convenient to keep the matrix A unchanged and to transfer
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the effect of P (h) to the vectors, by setting

q
(h)
k+1 = d(h) ⊙AT r

(h)
k+1, (12)

where d(h) is the diagonal of P (h). By effect of the recursion, also the vectors

x
(h)
k and p

(h)
k have zero in the positions indicated by d(h) for any k if this holds

for k = 0.

4.3 Stopping conditions

The execution flow of the algorithm is ruled by the stopping conditions for the
outer and the inner loop. From a theoretical point of view the two stopping
conditions could be independent, but in practice it is better to relate them. In
fact, nearly stall situations where only few components are eliminated by each
inner step for the current outer step should be avoided. This suggests to repeat
the outer iterations until the Boolean

outer stop cond = (min(y(h)) < τ) & (kin > kmin) & (h ≤ hmax)

becomes false. The constant τ is a projection threshold, kmin is a small fixed
integer, kin is the number of iterations performed in the current inner step, hmax

bounds the number of allowed outer iterations (in the experiments we have set
τ = −10−15, kmin = 4 and hmax = 512). In any case, it is not possible to
continue the outer iteration after its natural termination.

For the inner condition, we note that it is not worthwhile to solve (10) too
accurately, for example by determining with a good precision small positive
components which would be probably eliminated in a further step. Moreover,
the choice of the index k at which the hth inner loop should be stopped may be
critical. We assume a stopping condition of the form

inner stop cond = (δ
(h)
k < δ

(h)
k−1) & (k ≤ kmax), (13)

where kmax bounds the number of allowed inner iterations and δ
(h)
k is a quantity

that must be specified in such a way that its minimum is reached when the noise
starts contaminating the computation. Ideally, the inner hth loop should be

stopped when the relative error ϵ
(h)
k = ∥x̂−x

(h)
k ∥ / ∥x̂∥ starts increasing, but of

course such an ideal condition cannot be exploited in a realistic context, where
a more practical condition must be implemented.

For an acceptable approximation of the optimal index we use the Generalized
Cross Validation method (GCV) described in [11, 25]. The performance of GCV
has been tested in [7, 8] and it resulted that GCV is more effective than other
stopping rules when information about the entity of the noise is not available.

Given a sequence xk generated by an iterative method applied to solve sys-
tem (3), the GCV functional is defined as

Vk =
N ∥b−Axk∥2

(N − trace (Ak))2
, (14)
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where the influencematrix Ak is such that Akb = Axk. The minimizer of Vk can
be taken as an estimate for the optimal index. If the applied iterative method
is CG, it is not easy to say how Ak depends on b and an approximated estimate
of the trace of Ak must be provided. Different reliable techniques for estimating
the trace are proposed in [8].

Another stopping condition which could be applied is based on the discrep-
ancy rule, according which the iteration should stop when the residual vector
rk = b−Axk verifies ∥rk∥ ≤ ϑ η, with ϑ ≥ 1 a constant and η as given in (2).

To validate the use of the GCV functional, we have performed a prelimi-
nary ad-hoc experimentation on the problems considered in the next section,
for which the exact solution x̂ is known. By comparing the minima of the

sequences ϵ
(h)
k and V

(h)
k obtained for fixed h, we have found that the two in-

dications are comparable, even if in the majority of cases the index indicated
by GCV is slightly smaller than the one indicated by the error, leading to an
anticipated stop of the inner loop. This outcome is considered not damaging in
a regularizing context. An analogous experimentation has shown that the use
of the discrepancy rule resulted in too anticipated stops of the inner loop.

4.4 Implementation

A pseudo-code for IOCG, specifically tailored for circulant matrices, is given at
the end of the section. It calls the function inner which applies CG with the
GCV stopping condition implemented in function isc. A function project is
also used, but not coded.

For our experiments we have chosen Toeplitz matrices having the circulant
structure which arises when periodic boundary conditions are set. For these
matrices the product of A and AT by a vector can be performed using a low cost
algorithm based on the fast Fourier transform (FFT), which is briefly recalled
below [12].

A circulant matrix A of size N = n2 is diagonalized by the Fourier matrix
F , whose elements are

fr,s =
1

n
ωrs, r, s = 0, . . . , N − 1, with ω = exp(2πi/N).

Denoting by aT the first row of A, it holds A = n F diag(F a) F∗, where F∗ is
the inverse (i.e. transpose conjugate) of F . Hence the product z = Av, where
v and z are N -vectors, can be so computed

ã = Fa, ṽ = F∗v, z = n F (ã⊙ ṽ). (15)

To obtain the product z = ATv it is sufficient to take the first column of A
as a or to replace ã by its conjugate ã ∗. The multiplications by F and F∗

can be efficiently computed by calling two FFT routines, with a computational
cost of order O(N logn). Using (15), the single step (11) of CG requires 4 FFT
computations and 7 vector or scalar by vector products, giving a cost of order
O(N log n) per iteration of the algorithm.
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A further reduction of the cost when A is circulant is obtained by shifting
the computation from the signal domain where A, x and b live to the frequency
domain, i.e. by replacing matrices and vectors with their transformations in
the Fourier basis. All the instructions of the k-th iteration of CG in (11) can
be performed in the frequency domain, except instruction (12) which must be
performed in the signal domain, as shown in the pseudo-code of function inner.

Since A has a 2-level circulant structure, we look for a 2-level circulant ap-
proximation Ck of the matrix Ak required by GCV, i.e. Axk ≈ Ck b. Denoting
by cTk the first row of Ck, we have Ck b = F diag(Fck)F∗b, hence

Fck ≈ F∗(Axk)⊘F∗b = n ã⊘ b̃⊙ x̃k, where b̃ = F∗b, x̃k = F∗xk,

and trace (Ak) ≈
∑

i(Fck)i. Thus in the hth outer loop we use (13) with

δ
(h)
k = V

(h)
k = N ∥r(h)k ∥2/(N − trace (A

(h)
k ))2. (16)

A function isc which constructs the sequence δ
(h)
k according to (16) is included

in the pseudo-code.

function xreg = IOCG (A, b)
the code is specifical for circulant matrices

ã = Fa; b̃ = F∗b; s̃ = ã⊘ b̃;

x
(0)
0 = AT b; d(0) = ones(N, 1);

outer stop cond = true;
h = 0;
while outer stop cond

y = inner(x
(h)
0 , d(h));[

x
(h+1)
0 , d(h+1)

]
= project(y);

h = h+ 1;
outer stop cond = (min(y) < τ) & (kin > kmin) & (h ≤ hmax);

end

xreg = x
(h+1)
0 ;

end

function
[
y, kin

]
= inner (x0,d)

k = 0;

x̃0 = F∗x0; r̃0 = b̃− n ã⊙ x̃0;
p̃0 = q̃0 = F∗(d⊙F(n ã∗ ⊙ r̃0)

)
;

inner stop cond = true;
while inner stop cond

z̃k = n ã⊙ p̃k;

αk = ∥q̃k∥2/∥z̃k∥2;
x̃k+1 = x̃k + αk p̃k;

r̃k+1 = r̃k − αkz̃k;
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q̃k+1 = F∗(d⊙F(n ã∗ ⊙ r̃k+1)
)
;

βk = ∥q̃k+1∥2/∥q̃k∥2;
p̃k+1 = q̃k+1 + βk p̃k;

k = k + 1;
inner stop cond = isc(x̃k, r̃k);

end

y = F x̃k−1;
kin = k − 1;

end

function χ = isc(x̃k, r̃k)
t = n s̃⊙ x̃k; δk = N ∥r̃k∥2/(N −

∑
i ti)

2;
χ = (δk < δk−1) & (k ≤ kmax);

end

5 Numerical experiments

The numerical experimentation has been conducted with double precision arith-
metic. We consider three reference objects, namely a satellite image [16], a star
cluster1 and the Hoffman phantom [15], widely used in the literature for test-
ing image reconstruction algorithms. The corresponding images (see Figure 1)
are of size N = 2562, normalized between 0 and 1. The percentage of zeros

Figure 1: the satellite image (left), the star cluster (middle) and the Hoffman
phantom (right).

is 90% for the satellite and 75% for the others. In the images the zeros are
associated to a white background. We have adopted this version instead of the
standard version which associates zeros to black points, to improve readability.
Note that the satellite and the phantom have a large solid interconnected zero
background, while the background of the cluster is punctuated by many stars

1star cluster Messier 5 at http://www.skycrumbles.net/img info/m5/
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and no large zero areas exist. This difference, as we will see, has a certain effect
on the reconstructions.

The matrix A which performs the blur is a 2-level Toeplitz matrix gener-
ated by a positive space invariant bandlimited PSF with a bandwidth ν = 8,
normalized in such a way that the sum of the elements is equal to 1. For the
astronomical images (satellite and star cluster) we consider a motion-type PSF,
which simulates the one taken by a ground-based telescope, represented by the
following mask:

mi,j = exp(−α(i+ j)2 − β(i− j)2), −ν ≤ i, j ≤ ν, α = 0.04, β = 0.02.

For the medical image (the phantom), we consider a Gaussian PSF represented
by the following mask:

mi,j = exp(−α i2 − βj2), −ν ≤ i, j ≤ ν, α = β = 0.1.

Since the images have sufficiently large zero background along the boundary,
the coefficient matrix is approximated by a 2-level circulant matrix.

For each image, 4 test problems are generated by adding to b̂ = Ax̂ Gaussian
noises with zero mean and different variances. The test problems so obtained
have an average relative noise level η ranging from 1.5% to 5.5% and are solved
by IOCG algorithm with a maximum number kmax = 10 of allowable inner
iterations. Experiments with larger values of kmax have also been carried out,
without significant differences from the point of view of the error, but with a
waste of iterations.

We give for comparison purposes also the results of the four methods PRI,
ASM, NNFCG and SGP recalled in Section 3 applied with the discrepancy rule as a
stopping condition, as suggested in the papers [4, 18, 10, 6]. Since SGP cannot
start with the null vector, the vector AT b is chosen as initial starting point for
all the methods.

For what concerns NNFCG, in [10] it is shown that the quality of the computed

results depends on the number k̂ only for the early iterations. We report in the
tables the results obtained by setting k̂ = 10; other values of k̂ have given very
similar results, of course with different storage requirements.

It is easy to see that the cost per iteration of IOCG is dominated by two
matrix-by-vector products. This holds also for the other considered methods.
Hence only the number of iterations is given in the tables.

Besides the standard measures used to evaluate the effectiveness of a numer-
ical iterative algorithm, i.e. the iteration number and the obtained final error,
we borrow from Information Retrieval [22] a tool to measure the ability of the
algorithm to correctly detect the zeros of the original image. Let xreg be the
computed solution. Denote “true zeros” the zeros of x̂ and define

◦ tp as the number of zeros in xreg which are also true zeros (true positives),
◦ fp as the number of zeros in xreg which are not true zeros (false positives),
◦ fn as the number of nonzeros in xreg which are true zeros (false negatives),
◦ tn as the number of nonzeros in xreg which are true nonzeros (true nega-

tives),
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◦ by p = tp/(tp+ fp) the precision,
◦ by r = tp/(tp+ fn) the recall.

The precision can be seen as a qualitative measure of exactness and the recall
can be seen as a quantitative measure of completeness. In simple terms, a large
p indicates that the algorithm returns substantially more positive results than
irrelevant ones, while a large r means that the algorithm returns most of the
relevant results. A measure which combines p and r is the harmonic mean of
the two,

F1 =
2

1/p+ 1/r

called balanced F1 score. The largest F1, the best the performance of the algo-
rithm.

The tables show the results corresponding to the four different noise levels
for the three problems and all the considered methods. For each noise level
five different realizations of the random noise vector η are considered. Column
“it” lists the averages of the total number of iterations, column “err” lists the
averages of the final relative errors ∥x̂ − xreg∥/∥x̂∥ and column F1 lists the
averages of the balanced F1 score. The symbol − for this last measure, which
occurs for NNFCG, means that less than 1% of the zeros of the original image
were detected.

noise level η = 1.5%

satellite star cluster Hoffman

method it err F1 it err F1 it err F1

IOCG 125.6 0.221 0.91 83.4 0.432 0.56 70.6 0.292 0.88

PRI 45.2 0.251 0.61 50.6 0.440 0.37 28.8 0.312 0.62

ASM 29.2 0.249 0.60 35.0 0.440 0.38 23.2 0.311 0.60

NNFCG 29.4 0.253 − 103.0 0.429 − 22.8 0.314 −

SGP 23.0 0.248 0.33 31.2 0.438 0.02 27.0 0.313 0.45

noise level η = 2.5%

satellite star cluster Hoffman

method it err F1 it err F1 it err F1

IOCG 77.2 0.228 0.87 41.0 0.439 0.51 42.8 0.299 0.83

PRI 24.0 0.265 0.45 22.4 0.446 0.31 15.2 0.323 0.49

ASM 19.2 0.261 0.47 20.2 0.446 0.33 15.4 0.322 0.51

NNFCG 18.0 0.262 − 56.4 0.437 − 15.0 0.323 −

SGP 15.6 0.255 0.23 25.0 0.440 0.01 15.2 0.323 0.28
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noise level η = 4%

satellite star cluster Hoffman

method it err F1 it err F1 it err F1

IOCG 51.6 0.236 0.83 31.0 0.443 0.48 37.0 0.306 0.80

PRI 9.0 0.284 0.31 13.6 0.451 0.25 9.4 0.335 0.35

ASM 10.4 0.278 0.36 14.0 0.451 0.21 11.0 0.333 0.33

NNFCG 12.0 0.277 − 35.4 0.444 − 9.8 0.336 −

SGP 11.0 0.266 0.13 14.6 0.446 0.01 11.0 0.331 0.13

noise level η = 5.5%

satellite star cluster Hoffman

method it err F1 it err F1 it err F1

IOCG 40.4 0.244 0.78 20.2 0.448 0.41 28.0 0.312 0.75

PRI 7.0 0.299 0.20 8.0 0.455 0.20 6.0 0.345 0.26

ASM 9.0 0.291 0.23 8.0 0.455 0.20 6.0 0.345 0.26

NNFCG 9.0 0.282 − 23.8 0.448 − 7.0 0.343 −

SGP 10.0 0.277 0.01 10.0 0.450 0.01 10.0 0.339 0.02

We note that from the error point of view, IOCG outperforms all the other
methods with the satellite and the phantom images, while with the star cluster
image sometimes NNFCG performs better. This means that IOCG is particularly
suitable for images having a large solid zero background. IOCG has a larger
number of iterations than the other methods, due to the fact that IOCG employs
GCV as the inner stopping condition and the natural termination for the outer
loop. The discrepancy rule is employed for both the inner and outer stopping
conditions with methods PRI, ASM and NNFCG and as unique stopping rule with
SGP. The better error performance of IOCG is not due only to the larger number
of iterations. To evidence this fact we have allowed all the other methods to run
until a maximum total number of iterations by ignoring the stop controlled by
the discrepancy rule. Figure 2 shows typical plots of the relative error histories
corresponding to noise level η = 2.5% and obtained by applying IOCG (solid black
line), ASM (dotted line), NNFCG (solid gray line) and SGP (dashed line). The plots
are limited to the first 85 iterates, except for IOCG which has its own natural
termination. The errors of PRI are not shown because nearly overlapped by the
errors of ASM. We see that if we let ASM continue ignoring the stop controlled by
the discrepancy rule, the error stagnates while the errors of the other methods
tend to decrease. In the case of the star cluster, NNFCG and SGP might obtain
better results than IOCG. On the contrary, for the other two images they do not
produce lower errors than IOCG.

We must note that improvements of the error of such small entities like the
ones appearing in the tables produce only slight improvements in the quality
of the reconstructed images. Figure 3 shows the enlarged central part of the
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Figure 2: histories of the relative error of IOCG (solid black line), ASM (dotted
line), NNFCG (solid gray line) and SGP (dashed line) for the satellite (left), the
star cluster (middle) and the Hoffman phantom (right) with η = 2.5%.

satellite image reconstructed using IOCG, ASM, NNFCG and SGP, compared to the
original and to the blurred images (the image produced by PRI do not differ
from the one produced by ASM).

Figure 3: upper row: original image (left), reconstructed images by IOCG (mid-
dle), by ASM (right); lower row: blurred image (left), reconstructed images by
NNFCG (middle), by SGP (right) for the satellite with η = 2.5%.

The parameter F1, which decreases with the increasing of the noise, shows
that when IOCG is applied, larger active sets imposed on the reconstructed so-
lution effectively correspond to zero components of the original solution. For
example, the score F1 = 0.83 of IOCG for the Hoffman phantom with η = 2.5%
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corresponds to

tp = 35520, fp = 568, fn = 14472, tn = 14976,

while the score F1 = 0.51 of ASM for the same problem corresponds to

tp = 17263, fp = 223, fn = 32729, tn = 15321,

showing that ASM produces less true results and more false results than IOCG.
As seen in the tables, the F1 scores of SGP in the case of larger noise levels

and of NNFCG for every noise levels are very small. For SGP this depends on
the fact that SGP does not apply the projection to the computed solutions but
to the directions, and this produces solutions with a reduced number of zeros,
especially when there is not a solid background in the original image. For NNFCG
this depends on the fact that only one or few zeros are produced at each inner
iteration, due to the reduced step length αk computed according to (7). Anyway,
the smallness of F1 does not prevent overall acceptable approximations, as shown
by the relative errors.

6 Conclusions

The inner-outer method IOCG has been proposed for the reconstruction of im-
ages having large nearly zero backgrounds. The method, tested on ill-posed
problems with this feature, appears to be more reliable than the other consid-
ered nonnegatively constrained regularization methods from the point of view
of the relative error and the number of the reconstructed zeros, even at the cost
of a larger number of iterations.
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