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Abstract. This paper provides a new numerical strategy to solve fractional in space reaction-4
diffusion equations on bounded domains under homogeneous Dirichlet boundary conditions. Using5
the matrix transfer technique the fractional Laplacian operator is replaced by a matrix which, in6
general, is dense. The approach here presented is based on the approximation of this matrix by the7
product of two suitable banded matrices. This leads to a semi-linear initial value problem in which8
the matrices involved are sparse. Numerical results are presented to verify the effectiveness of the9
proposed solution strategy.10
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1. Introduction. Fractional-order in space mathematical models, in which an13

integer-order differential operator is replaced by a corresponding fractional one, are14

becoming increasingly used since they provide an adequate description of many pro-15

cesses that exhibit anomalous diffusion. This is due to the fact that the non-local16

nature of the fractional operators enables to capture the spatial heterogeneity that17

characterizes these processes.18

There are however some challenges when facing fractional models. First of all,19

there is no unique way to define fractional in space derivatives and, in general, these20

definitions are not equivalent especially when more than one spatial dimension is21

considered [17]. In addition, considering that the value of the solution at a given22

point depends on the solution behavior on the entire domain, it is intuitive to un-23

derstand that the boundary conditions deserve a particular attention and should be24

appropriately chosen in order to model the phenomenon properly.25

In this paper we consider the following fractional in space reaction-diffusion dif-26

ferential equation27

(1)
∂u(x, t)

∂t
= −κα (−∆)α/2u(x, t) + f(x, t, u), x ∈ Ω ⊂ Rn, t ∈ (0, T ),28

subject to homogeneous Dirichlet boundary conditions29

(2) u(x, t)|Ω̂ = 0, Ω̂ = Rn \ Ω,30

and the initial condition31

(3) u(x, 0) = u0(x),32

where κα represents the diffusion coefficient and the forcing term f and u0 are suf-33

ficiently smooth functions. The symmetric space fractional derivative −(−∆)α/2 of34

order α (1 < α ≤ 2) is defined through the spectral decomposition of the homogeneous35

Dirichlet Laplace operator (−∆), [9, Definition 2]. Assuming that Ω is a Lipschitz36
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domain, the spectrum of (−∆) is discrete and positive, and accumulate at infinity.37

Thus,38

(4) − (−∆)α/2u =

∞∑
s=1

µα/2s csϕs,39

where cs =
∫

Ω
uϕs are the Fourier coefficients of u, and {µs}, {ϕs} are the eigenvalues40

and the eigenvectors of (−∆), respectively.41

We remark that the fractional power of the Laplace operator is alternatively de-42

fined in the literature using the Fourier transform on an infinite domain [12], with43

a natural extension to finite domain when the function u vanishes on and outside44

the boundary of the spatial domain. In this case, in fact, it is possible to consider45

non-local problems on bounded domains by simply assuming that the solution of frac-46

tional problem is equal to zero everywhere outside the domain of interest. Using such47

definition and assuming to work with homogeneous Dirichlet boundary conditions,48

in [15, Lemma 1] it has been proved that the one-dimensional fractional Laplacian49

operator −(−∆)α/2 as defined in (4) is equivalent to the Riesz fractional derivative.50

Hence, it can be approximated by the ‘fractional centered derivative’ introduced by51

Ortigueira in [11]. Çelik and Duman in [5] have used such a method for solving a52

fractional diffusion equation with the Riesz fractional derivative in a finite domain.53

Moreover, by exploiting the decay of the coefficients characterizing the method, in54

[10] a ‘short memory’ version of the scheme has been implemented. However, both55

the original and the modified methods only work for one-dimensional problems.56

A mainstay in the numerical treatment of partial differential problems of type57

(1)–(3) is to apply the method of lines. Discretizing in space with a uniform mesh of58

stepsize h in each domain direction and using the matrix transfer technique proposed59

in [8, 9] by Ilić et al., we obtain60

−(−∆)α/2u ≈ − 1

hα
Lα/2u,61

where h−2L is the approximate matrix representation of the standard Laplacian ob-62

tained by using any finite difference method. Consequently, (1) is transformed into a63

system of ordinary differential equations64

(5)
du

dt
= −κα

hα
Lα/2u + f(t,u),65

where u and f(t,u) denote the vectors of node values of u and f, respectively. The66

matrix L raised to the fractional power α/2 is, in general, a dense matrix which could67

be also very large depending on the numbers of mesh points used for the spatial68

discretization. Therefore, the computational effort for solving (5) could be really69

heavy, independently of the integrator used. Recently, some authors have developed70

techniques for reducing this cost. In particular, an approach which can be equally71

applicable to fractional-in-space problems in two or three spatial dimensions has been72

considered in [4]. The key point of this approach is the efficient computation of the73

fractional power of a matrix times a vector.74

In this paper, we propose a solution strategy based on a suitable approximation75

of Lα/2. In particular, we look for a decomposition of the type76

Lα/2 ≈M−1K,77
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where M and K are both banded matrices arising from a rational approximation of the78

function zα/2−1, based on the Gauss-Jacobi rule applied to the integral representation79

of Lα/2, cf. [6]. The poles of the formula depends on a continuous parameter whose80

choice is crucial for a fast and accurate approximation. The above factorization allows81

to approximate the solution of (5) by solving82

(6) M
dv

dt
= −κα

hα
Kv +M f(t,v).83

By virtue of the structure of the matrices M and K the numerical solution of (6)84

may be computed in a more efficient way with respect to the one of (5). We remark85

that the approach is independent of the Laplacian working dimension.86

87

The paper is organized as follows. In section 2, the main results about the matrix88

transfer technique are recalled. Section 3 is devoted to the construction of the rational89

approximation together with the analysis of the asymptotically optimal choices of the90

poles. In section 4 a theoretical error analysis is presented. Numerical experiments91

are carried out in section 5, and the conclusions follow in section 6.92

2. Background on the matrix transfer technique. For an independent93

reading, in this section the basic facts concerning the matrix transfer technique pro-94

posed by Ilić et al. in [8, 9] to discretize the one-dimensional fractional Laplacian95

operator are recalled. In addition, since in this work we also lead with problems in96

two spatial dimensions, we refer to the results given in [16] as well.97

98

Working with the basic assumption that the fractional Laplacian operator with99

Dirichlet boundary conditions can be defined as the fractional power of the standard100

Laplacian, the matrix transfer technique simply consists in approximating the oper-101

ator −(−∆)α/2 through the matrix −h−αLα/2, where h−2L is any finite-difference102

approximation of (−∆) on a uniform mesh of size h. The only important requirement103

is that the matrix L is positive definite so that its fractional power is well defined. This104

requirement is fulfilled by the existing standard central difference schemes. Working105

like that, the original problem (1)–(3) is then transformed into the semi-linear initial106

value problem107

du

dt
= −κα

hα
Lα/2u + f(t,u), t ∈ (0, T ),(7)108

u(0) = u0,109

where u0 denotes the vector of node values of u0.110

It is important to remark that while L is typically sparse, when α 6= 2, the ma-111

trix Lα/2 loses its sparsity and becomes dense. Observe moreover that the stiffness112

property of (7) for α = 2 is essentially inherited by the fractional counterpart so that113

an implicit scheme or an exponential integrator is generally needed for solving this114

initial value problem. In both cases the density of Lα/2 may lead to a computational115

demanding integrator when the discretization is sharp. In order to overcome the limi-116

tations in terms of computational efficiency, we propose a strategy based on a suitable117

approximate factorization of Lα/2. In the next section we focus on the construction118

of such approximation.119

3. Approximation to the matrix fractional power. From the theory of120

matrix functions (see [7] for a survey) we know that the fractional power of a generic121
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matrix A can be written as a contour integral122

Aβ =
A

2πi

∫
Γ

zβ−1(zI −A)−1dz,123

where Γ is a suitable closed contour enclosing the spectrum of A, σ(A), in its interior.124

The following known result (see, e.g., [2]) expresses Aβ in terms of a real integral.125

The proof is based on a particular choice of Γ and a subsequent change of variable.126

Proposition 1. Let A ∈ Rm×m be such that σ(A) ⊂ C\ (−∞, 0] . For 0 < β < 1127

the following representation holds128

Aβ =
A sin(βπ)

βπ

∫ ∞
0

(ρ1/βI +A)−1dρ.129

In order to confine the dependence of β to a weight function, we consider the130

change of variable131

(8) ρ1/β = τ
1− t
1 + t

, τ > 0,132

which yields133

1

β

∫ ∞
0

(ρ1/βI +A)−1dρ134

= 2

∫ 1

−1

(
τ

1− t
1 + t

)β−1(
τ

1− t
1 + t

I +A

)−1
τ

(1 + t)
2 dt135

= 2τβ
∫ 1

−1

(1− t)β−1
(1 + t)

−β
(τ (1− t) I + (1 + t)A)

−1
dt,136

137

and hence138

(9) Aβ = A
sin(βπ)

π
2τβ

∫ 1

−1

(1− t)β−1
(1 + t)

−β
(τ (1− t) I + (1 + t)A)

−1
dt.139

The above formula naturally suggests the use of the k-point Gauss-Jacobi rule and140

consequently a rational approximation of the type141

(10) Aβ ≈ Rk(A) := A

k∑
j=1

γj(ηjI +A)−1,142

where the coefficients γj and ηj are given by143

γj =
2 sin(βπ)τβ

π

wj
1 + ϑj

, ηj =
τ(1− ϑj)

1 + ϑj
,144

in which wj and ϑj are, respectively, the weights and nodes of the Gauss-Jacobi145

quadrature rule with weight function (1 − t)β−1(1 + t)−β . Of course, the above ap-146

proximation can be used in our case with β = α/2 whenever A = h−2L represents147

the discrete Laplacian operator with Dirichlet boundary conditions, whose spectrum148

is contained in R+. At this point, denoting by z Pk−1(z) and Qk(z) the polynomials149

of degree k such that Rk(z) = (z Pk−1(z))/Qk(z), we can approximate the solution150

of (7) by solving (6) with M = Qk(L) and K = LPk−1(L). We remark that the use151
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of the Gauss-Jacobi rule ensures that γj > 0 and ηj > 0 for each j, and hence it is152

immediate to verify that the spectrum of Rk(L) is strictly contained in the positive153

real axis. This condition is fundamental to preserve the stability properties of (7)154

whenever Lα/2 is replaced by Rk(L).155

We need to mention that in the field of fractional calculus the approximation (10)156

has already been used in [1] for the approximation of the Caputo’s fractional deriva-157

tive. Here, however, the definition of τ in (8), and the subsequent error analysis will158

be completely different because of the spectral properties of the Laplacian operator159

with respect to the ones of the first-derivative.160

3.1. Choice of τ . The choice of the parameter τ in the change of variable (8)161

is crucial for the quality of the approximation attainable by (10). Assuming that the162

generic matrix A is symmetric and positive definite, let λmin and λmax be its smallest163

and largest eigenvalue, respectively. Let moreover Λ = [λmin, λmax]. It is well known164

that165

(11)
∥∥Aβ −Rk(A)

∥∥
2
≤ max

Λ

∣∣λβ −Rk(λ)
∣∣ .166

In this view, looking at (9), a good choice of τ is the one that minimizes, uniformly167

with respect to λ ∈ Λ, the error of the Gauss-Jacobi formula when applied to the168

computation of169 ∫ 1

−1

(1− t)β−1
(1 + t)

−β
(τ (1− t) + (1 + t)λ)

−1
dt, λ ∈ Λ.170

From the theory of best uniform polynomial approximation and its application to171

the analysis of the Gauss quadrature rules (see e.g. [14] for a recent study) it is known172

that the position of the poles of the integrand function with respect to the interval of173

integration defines the quality of the approximation. In our case, we observe that for174

each τ ∈ Λ the poles of the integrand function175

fτ,λ(t) = (τ (1− t) + (1 + t)λ)
−1
,176

are functions of λ defined by177

pτ (λ) =
τ + λ

τ − λ
,178

and we clearly have pτ (λ) > 1 for λ < τ , and pτ (λ) < −1 for λ > τ . Our aim is to179

define τ in order to maximize the distance of the set180

Qτ = { pτ (λ), λ ∈ Λ }181

from the interval of integration [−1, 1] ⊂ R\Qτ . We observe that for λmin < τ < λmax182

the worst case is given by λ = λmin or λ = λmax since we have respectively183

min
λ∈Λ

dist(pτ (λ), [−1, 1]) = pτ (λmin)− 1,184

or185

min
λ∈Λ

dist(pτ (λ), [−1, 1]) = −pτ (λmax)− 1.186

As consequence, the idea is to set τ such that187

pτ (λmin)− 1 = −pτ (λmax)− 1,188
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Fig. 1. Example of function pτ (λ) for λmin = 0.5, λmax = 4. The choice of τ as in (12) ensures
the symmetry of the set Qτ . The minimum distance of the curve pτ (λ) from the set [−1, 1] is given
by γ − 1 and is attained either in λ = λmin or λ = λmax.

that leads directly to the equation189

τ + λmin

τ − λmin
= −τ + λmax

τ − λmax
,190

whose solution is191

(12) τopt =
√
λminλmax.192

Formally, τopt is given by193

τopt = arg max
λmin<τ<λmax

min
λ∈Λ
|pτ (λ)| .194

In this way, the set Qτopt is symmetric with respect to the origin, that is Qτopt =195

(−∞,−γ) ∪ (γ,+∞), where196

(13) γ =

√
κ(A) + 1√
κ(A)− 1

,197

in which κ(A) denotes the spectral condition number of A. This situation is summa-198

rized in an example reported in Figure 1.199

4. Error analysis. In this section we analyze the error of the rational approx-200

imation (10) with the choice of τ = τopt in (8). We start with the following result,201

whose proof is given in [14, Theorems 4.3 and 4.4].202

Theorem 2. Let g(z) be a function analytic in an open subset of the complex203

plane containing the ellipse204

Γρ =

{
z =

1

2

(
ρeiθ +

1

ρeiθ

)
, ρ > 1, θ ∈ [0, 2π)

}
.205

Let moreover p∗k[g] be the polynomial of degree ≤ k of best uniform approximation of206

g in [−1, 1] and207

E∗k [g] = max
t∈[−1,1]

|g(t)− p∗k[g](t)| .208
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Then209

(14) E∗k [g] ≤ 2M(ρ)

(ρ− 1)ρk
,210

where211

M(ρ) = max
z∈Γρ

|g(z)| .212

Theorem 3. Let A be a symmetric positive definite matrix and 0 < β < 1. Then213

for k sufficiently large, the error of the rational approximation (10), generated by the214

Gauss-Jacobi rule applied to the integral (9) for τ = τopt , is given by215

∥∥Aβ −Rk(A)
∥∥

2
≤ C ‖A‖2 τ

β (ρM + 1)

(ρM − 1) (ρM − γ)

k

ρ2k
M

,216

where C is a constant independent of k, and217

ρM = γ +
√
γ2 − 1.218

Proof. For λ ∈ Λ let219

fλ(t) = (τopt (1− t) + (1 + t)λ)
−1
,220

and221

I(fλ) =

∫ 1

−1

(1− t)β−1
(1 + t)

−β
fλ(t)dt.222

Let moreover Ik(fλ) be the corresponding k-point Gauss-Jacobi approximation with223

weights wj , j = 1, . . . , k. By standard arguments we have that224

|I(fλ)− Ik(fλ)| ≤
∣∣I(fλ − p∗2k−1[fλ])

∣∣+
∣∣Ik(fλ − p∗2k−1[fλ])

∣∣225

≤ 2CβE
∗
2k−1[fλ],(15)226227

where, since wj > 0,228

Cβ =

k∑
j=1

|wj | =
k∑
j=1

wj =

∫ 1

−1

(1− t)β−1
(1 + t)

−β
dt.229

Now, independently of λ ∈ Λ, the choice of τ = τopt makes possible to use the bound230

(14) for each 1 < ρ < ρM where ρM solves231

1

2

(
ρM +

1

ρM

)
= γ,232

since Qτopt = (−∞,−γ) ∪ (γ,+∞). Thus by (15), (14) and using233

M(ρ) = max
z∈Γρ

|fλ(z)| ≤ 1

γ − 1
2

(
ρ+ 1

ρ

) ,234

we obtain235

(16) |I(fλ)− Ik(fλ)| ≤ 4Cβ

(ρ− 1)ρ2k−1
(
γ − 1

2

(
ρ+ 1

ρ

)) , 1 < ρ < ρM .236
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Now, neglecting the factor 1/(ρ− 1) and then minimizing with respect to ρ yields237

ρ =
2k − 1

2k

(
γ +

√
γ2 − 1 +

1

(2k − 1)2

)
238

≈ 2k − 1

2k
ρM =: ρ∗.239

240

Hence, for k large enough (we need ρ∗ > 1), we can use ρ∗ in (16), obtaining241

(17) |I(fλ)− Ik(fλ)| ≤ 8keCβ (ρM + 1)

(ρM − 1) ρ2k
M (ρM − γ)

.242

Indeed, defining k∗ such that243

2k − 1

2k
≥ 2

ρM + 1
for k ≥ k∗244

we have245
1

2k−1
2k ρM − 1

≤ ρM + 1

ρM − 1
.246

Moreover, in (17) we have used the inequalities247

1(
2k−1

2k ρM
)2k−1

≤ e

ρ2k−1
M

,248

γ − 1

2

(
2k − 1

2k
ρM +

2k

2k − 1

1

ρM

)
≥ ρM (ρM − γ)

2k
.249

250

Finally, since by (9)251

∥∥Aβ −Rk(A)
∥∥

2
≤
‖A‖2 sin(βπ)

π
2τβ max

λ∈Λ
|I(fλ)− Ik(fλ)| ,252

using (17) we obtain the result.253

Corollary 4. The asymptotic convergence factor fulfills254

lim
k→∞

∥∥Aβ −Rk(A)
∥∥1/k

2
≤

(
4
√
κ(A)− 1

4
√
κ(A) + 1

)2

.255

Proof. By (13)256

ρM = γ +
√
γ2 − 1 =

4
√
κ(A) + 1

4
√
κ(A)− 1

.
257

Remark 5. From the above analysis it is easy to observe that for the Laplacian258

operator h−2L, discretized with standard central differences (3-points or 5-points in259

one or two dimensions, respectively), we have260 (
4
√
κ(L) + 1

4
√
κ(L)− 1

)2

≈ 1 +
2π

N
,261

where N represents the number of discretization points in one dimension.262
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Fig. 2. Relative error of the rational approximation versus k, the number of points of the
Gauss-Jacobi rule, for some values of α. The one- and the two-dimensional cases are on the left and
on the right, respectively. In the first case the dimension of the problem is 200 and in the second
one it is 400.

In Figure 2 we plot the relative error for the one- and two-dimensional Laplacian263

discretized as in the previous remark for some values of α. The geometric conver-264

gence theoretically proved in this section is clear in the pictures, together with the265

substantial independence of α, which is absorbed by the weight function. It is also266

quite evident that the method is particularly effective for the two-dimensional case;267

this represents an important feature since most of the standard techniques for the268

discretization of the fractional Laplacian only works in one dimension.269

5. Solving fractional in space reaction-diffusion problems. As already270

said in Section 2, if we discretize on a uniform mesh the fractional Laplacian operator271

occurring in (1), we obtain the initial value problem272

du

dt
= −κα

hα
Lα/2u + f(t,u), u(0) = u0.(18)273

274

Therefore, the application of the rational approximation (10) of Lα/2, based on the275

k-point Gauss-Jacobi rule and given by Rk(L) ≡M−1K, leads to the following initial276

value problem277

dv

dt
= −κα

hα
Rk(L)v + f(t,v), v(0) = u0.(19)278

279

Denoting by280

Ek = Rk(L)− Lα/2281

the error of the rational approximation, (19) can be equivalently written as282

dv

dt
= −κα

hα

(
Lα/2 + Ek

)
v + f(t,v), v(0) = u0.(20)283

284

The solution v(t) is therefore the solution of the perturbed version of (18). Setting285

g(t,u) = −κα
hα
Lα/2u + f(t,u),286
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we assume that g satisfies the one-sided Lipschitz condition287

(21) 〈g(t,u1)− g(t,u2),u1 − u2〉 ≤ m ‖u1 − u2‖22 , m < 0, u1,u2 ∈ RN ,288

where 〈·, ·〉 denotes the scalar product corresponding to the Euclidean norm ‖ · ‖2. We289

are interested in an a priori upper bound on the distance of u and v. The difference290

w(t) = u(t)− v(t) is the solution of the initial value problem291

dw

dt
= g(t,u)− g(t,v) +

κα
hα
Ekv, t ∈ (0, T ),292

w(0) = 0.293294

Calculating the scalar product of w(t) with both sides of the differential equation, we295

find for the left-hand side296 〈
dw(t)

dt
,w(t)

〉
=

1

2

d

dt
〈w(t),w(t)〉 =

1

2

d

dt
‖w(t)‖22 = ‖w(t)‖2

d

dt
‖w(t)‖2 .297

From (21) and Schwarz’ inequality we obtain for the right-hand side298 〈
g(t,u)− g(t,v) +

κα
hα
Ekv,w(t)

〉
= 〈g(t,u)− g(t,v),w(t)〉+

κα
hα
〈Ekv,w(t)〉299

≤ m ‖w‖22 +
κα
hα
‖Ekv‖2 ‖w‖2 .300

301

Combining these results we find for the scalar function ‖w(t)‖2 :302

d

dt
‖w(t)‖2 ≤ m ‖w(t)‖2 +

κα
hα
‖Ekv(t)‖2 .303

Now, since w(0) = 0, by the Grönwall inequality we obtain304

(22) ‖w(t)‖2 ≤
κα
hα
‖Ek‖2

∫ t

0

em(t−s) ‖v(s)‖2 ds.305

This immediately provides the proof of the following result.306

Proposition 6. If u and v are solutions of (18) and (19), respectively, and m307

is the one-sided Lipschitz constant introduced in (21), assuming that ‖v(s)‖2 ≤ c for308

each s ∈ [0, t], then309

(23) ‖u(t)− v(t)‖2 ≤
κα
hα
‖Ek‖2

c

m

(
emt − 1

)
.310

A more sharper condition estimate may be derived if also the right-hand side of (20)311

satisfies a one-sided Lipschitz condition.312

Proposition 7. Assume that there exists m < 0 such that for each u1,u2 ∈ RN313

(24)
〈
g(t,u1)− g(t,u2)− κα

hα
Ek(u1 − u2),u1 − u2

〉
≤ m ‖u1 − u2‖22 .314

Moreover, assume that the zero solution is an equilibrium point for (18), that is,315

f(t,0) = 0. Then there exists m̃ < 0 such that316

(25) ‖u(t)− v(t)‖2 ≤
κα
hα
‖Ek‖2 ‖v(0)‖2 t e

m̃t.317
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Proof. Condition (24) ensures that for each z(t), solution of (19) with initial318

condition z(0) = z0, we have319

‖v(t)− z(t)‖2 ≤ e
m̄t ‖v(0)− z(0)‖2 .320321

Since we have assumed that z ≡ 0 is a solution, we have322

‖v(t)‖2 ≤ e
m̄t ‖v(0)‖2 .323324

Now, let m̃ := max(m, m̄). Replacing m with m̃ in (22) and m̄ with m̃ in the above325

inequality, (25) immediately follows.326

5.1. Choice of k. The above propositions can easily be adopted to select a value327

of k that allows to keep the error below a given tolerance. Indeed, for using (23) one328

can consider the approximation329

(26) m ≈ −kα
hα

(λmin(L))
α/2

330

and define c := ‖v(0)‖2 . If v(0) = 0 some information about v can be obtained331

working in small dimesion. The approximation (26) can also be used for m̃ whenever332

it is possible to employ (25). Finally, since (see (11))333

‖Ek‖2 ≤
∣∣∣Rk(λmin(L))− (λmin(L))

α/2
∣∣∣ ,334

working scalarly we can easily select k such that335

‖u(t)− v(t)‖2 ≤ C tol,336

where tol is a given tolerance and the constant C plays the role of a scaling factor337

that should be set equal to c or ‖v(0)‖2 when using (23) or (25), respectively (this338

to avoid the dependence of k on the magnitude of the solution). Anyway, we remark339

that this procedure may provide a conservative value of k, because of the bounds used340

for obtaining the estimate.341

5.2. Numerical examples. In this subsection, we provide the results of some342

numerical experiments we have conducted to prove the effectiveness of the proposed343

approach with respect to the matrix transfer technique. In order to take the advantage344

in terms of computational work and memory saving of the sparse structure of the345

matrices M and K, instead of (19), we solve the equivalent initial value problem346

M
dv

dt
= −κα

hα
Kv +M f(t,v), v(0) = u0.(27)347

348

In particular, we first focus on a fractional in space diffusion equation. Then, we con-349

sider two reaction-diffusion equations; in the second one the forcing term is dependent350

on the solution and we choose an initial data that does not satisfy the boundary condi-351

tions. All of these examples are in one spatial dimension. In each case, discretizing the352

spatial domain Ω = (a, b) with a uniform mesh having stepsize h = (b − a)/(N + 1),353

we consider the standard 3-points central difference discretization of the Laplacian354

h−2L = h−2tridiag(−1, 2,−1) ∈ IRN×N . Finally, we also report the results obtained355

by applying our approach for the numerical solution of a fractional reaction-diffusion356

example in two space dimensions. In this case, we discretize in space the problem via357

the 5-points finite difference stencil. The matrix L is therefore a block tridiagonal358
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Fig. 3. Comparison of the analytic solution of the problem in Example 1 with the numerical
solutions provided by the rational approach and the matrix transfer technique at t = 0.4 (left) and
corresponding errors (right).

matrix of size N2 having the following form L = tridiag(−I,B,−I), with I denoting359

the identity matrix of size N and B = tridiag(−1, 4,−1) ∈ IRN×N .360

361

In all examples, we solve (18) and (27) by the MATLAB routine ode15s. More-362

over, we indicate by ‘exact’ the analytical solution, by ‘MT’ the solution of the363

problem (18), obtained by applying the matrix transfer technique, and by ‘rational’364

the solution arising from (27).365

Example 1. Consider the problem (1) on the spatial domain Ω = (0, π), with366

κα = 0.25 and f = 0. According to [15, Section 3.1], the analytic solution correspond-367

ing to the initial condition u0(x) = x2(π − x) is given by368

u(x, t) =

∞∑
n=1

8(−1)n+1 − 4

n3
sin(nx) exp(−καnαt).369

Setting α = 1.8, at time t = 0.4 in the left-hand side of Figure 3 the exact solution370

is compared with the numerical solutions of the semi-discrete problems (18) and (27)371

with h = π/201 (that is h = 0.0157) and k = 4. On the right picture, the step-by-step372

maximum norm of the difference between the analytic solution and the numerical ones373

is reported. As one can see, the numerical solution provided by the rational approxi-374

mation is in good agreement with the one obtained by the matrix transfer technique.375

For this choice of t, the bounds (23) and (25) essentially coincide and an error com-376

parable to the one obtained experimentally is predicted by choosing k = 20. Of course,377

a smaller value of k would be obtained for t > 0.4 since the bound (25) rapidly goes378

to zero as t grows.379

Example 2. Consider the problem (1) on the spatial domain Ω = (−1, 1), with380

u0(x) = (1− x2)1+α/2 and the source term fixed such that the exact solution is given381

by382

u(x, t) = (t+ 1)γ(1− x2)1+α/2, γ < 0.383

In our experiments, we select the model parameters κα = 0.1, α = 1.2, γ = −1 and we384
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Fig. 4. Comparison of the errors provided by solving the problem of the Example 2 using both
rational with k = 1 (blue dashed-dot-line), k = 3 (red dashed-line) and k = 5 (black dot-line) and
MT (green solid-line).

discretize the spacial domain using N = 100. In Figure 4 we report the step-by-step385

error provided by the numerical solutions obtained by applying the Gauss-Jacobi rule386

with k = 1, 3, 5 at t = 0.1 compared with the one obtained by solving directly (18).387

As expected, the solution provided by the rational approach is able to mimic, as k388

increases, the one derived by applying the matrix transfer technique. In particular,389

when k = 5 the corresponding error ‖u − v‖2 = O(10−2) while, by the theoretical390

estimate (23), we would obtain this bound for k = 7.391

Example 3. Consider now equation (1) in the one-dimensional case with non-392

linear source term393

f(x, t, u) = u(1− u),394

known in the literature as the fractional Fisher-KPP reaction-diffusion equation. In395

this example, we set κα = 1, α = 1.5 and Ω = (−100, 100). We use N = 500 and396

we compute the numerical solutions provided by the matrix transfer technique and the397

rational approximation with k = 3. In particular, in the two pictures on the top of398

Figure 5 we have drawn the solutions profiles corresponding to the initial condition399

u0(x) = 0.5 while, in the ones on the bottom, the solutions profiles corresponding to400

u0(x) = (100 + x)2(100− x)2 at time t = 1 (left) and t = 10 (right), respectively. As401

one can see, the two numerical solutions match very well and behave similarly with402

the theoretical one as t grows, cf. [13].403

Example 4. We solve the fractional reaction-diffusion equation in two space di-404

mensions405

∂u(x, y, t)

∂t
= −κα (−∆)α/2u(x, y, t) + f(x, y, t, u), (x, y) ∈ (0, 1)× (0, 1),406

with407

f(x, y, t, u) = tα
κα
16

4∑
j=1

(1 + µ
α/2
j )vj + αtα−1 sin3(πx) sin3(πy)− καu,408
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Fig. 5. Comparison of the numerical solutions of the problem in Example 3 provided by MT
and rational at t = 1 (left) and t = 10 (right) for two different choice of u0.

where409

v1 = 9 sin(πx) sin(πy), µ1 = 2π2,410

v2 = −3 sin(πx) sin(3πy), µ2 = 10π2,411

v3 = −3 sin(3πx) sin(πy), µ3 = 10π2,412

v4 = sin(3πx) sin(3πy), µ4 = 18π2,413414

subject to u(x, y, 0) = 0 and homogeneous Dirichlet boundary conditions [3].415

The exact solution to this problem is416

u(x, y, t) = tα sin3(πx) sin3(πy).417

The numerical solution provided by the rational approach based on the Gauss-418

Jacobi rule with k = 7 and the matrix transfer technique are drawn at t = 1 in419

Figure 6 using α = 1.5, κα = 10 and N = 40 points in each domain direction. It is420

worth noting that in order to obtain the same accuracy, the matrix transfer technique421

costs three times the rational approach.422

6. Conclusions. In this paper we have proposed a rational approximation to423

the discrete fractional Laplacian. When applied for solving the reaction-diffusion424

equations this leads to a semi-discrete problem which can be solved in an efficient425

way due to the band structure of the matrices occurring in the definition of the426

approximation. With respect to the existing approaches based on the discretization of427

the Riesz derivative the main advantages are the ones of the matrix transfer technique428

itself, that is: the approach can be generalized to work in more than one dimension429

without modifying the overall solution methodology, it does not require to work with430

a uniform grid in space, all linear algebra tasks are with sparse matrices.431
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[6] A. FROMMER, S. GÜTTEL, M. SCHWEITZER, Efficient and stable Arnoldi restarts for443
matrix functions based on quadrature, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 661-444
683.445

[7] N. J. HIGHAM, Functions of matrices. Theory and computation, SIAM, Philadelphia, PA,446
2008.447
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