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In this paper we study the numerical error arising in the space-time approximation of unsteady generalized
Newtonian fluids which possess a stress-tensor with (p,δ )-structure. A semi-implicit time-discretization
scheme coupled with conforming inf-sup stable finite element space discretization is analyzed. The
main result, which improves previous suboptimal estimates as those in [A. Prohl, and M. Růžička, SIAM
J. Numer. Anal., 39 (2001), pp. 214–249] is the optimal O(k + h) error-estimate valid in the range
p ∈ (3/2,2], where k and h are the time-step and the mesh-size, respectively. Our results hold in three-
dimensional domains (with periodic boundary conditions) and are uniform with respect to the degeneracy
parameter δ ∈ [0,δ0] of the extra stress tensor.

Keywords: Non-Newtonian fluids, shear dependent viscosity, fully discrete problem, error analysis.

1. Introduction

We study the (full) space-time discretization of a homogeneous (for simplicity the density ρ is set equal
to 1), unsteady, and incompressible fluid with shear-dependent viscosity, governed by the following
system of partial differential equations

ut −divS(Du)+ [∇u]u+∇π = f in I×Ω ,

divu = 0 in I×Ω ,

u(0) = u0 in Ω ,

(NSp)

where the vector field u = (u1,u2,u3) is the velocity, S is the extra stress tensor, the scalar π is the kine-
matic pressure, the vector f = ( f1, f2, f3) is the external body force, and u0 is the initial velocity. We use
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the notation ([∇u]u)i = ∑
3
j=1 u j∂ jui, i = 1,2,3, for the convective term, while Du := 1

2 (∇u+∇u>) de-
notes the symmetric part of the gradient ∇u. Throughout the paper we shall assume that Ω = (0,2π)3 ⊂
R3 and we endow the problem with space periodic boundary conditions. As explained in Berselli et al.
(2009, 2010), this assumption simplifies the problem, allows us to prove suitable regularity results for
both the continuous and the time-discrete problems, so we can concentrate on the difficulties that arise
from the structure of the extra stress tensor. As usual I = [0,T ] denotes some non-vanishing time inter-
val.

We consider very general stress-tensors and the most standard example (of power-law like extra
stress tensors) which motivate the class under consideration (cf. Assumption 2.5) is, for p ∈ (1,∞),

S(Du) = µ (δ + |Du|)p−2Du,

where µ > 0 and δ > 0 are given constants. In particular, our results concern the so-called shear-thinning
case, that is the exponent p is smaller than 2.

The literature on this subject is very extensive (cf. Belenki et al. (2012); Berselli et al. (2009) and
the discussion therein) and we focus here to the case p < 2, which is treated in the cited references,
and for which it is possible to successfully consider also the degenerate case δ = 0. Observe also that
the approach for the linear steady problem in Belenki et al. (2012) allows for a unified treatment for all
values of p, by means of the use of shifted N-functions, see Sec. 2.1.

Based on the results in Belenki et al. (2012); Berselli et al. (2009) we find here a suitable setting
for the choice of the finite-element space-discretization and for the semi-implicit Euler scheme for time
advancing, in order to show a convergence result, which is optimal apart from the h-k coupling. Previous
results in this direction have been proved in Prohl & Růžička (2001) even if the lack of available precise

regularity results led to non-optimal results. In fact an error O(h+k)
5p−6

2p for p∈
] 3+

√
29

5 ,2[ was obtained
in the space-periodic three-dimensional case in Prohl & Růžička (2001) in the case of conforming and
non-conforming finite elements.

Here, we combine the optimal estimates for the time-discretization from Berselli et al. (2009) with
those for the stationary problem (without convective term) from Belenki et al. (2012), and also the results
for parabolic systems in Diening et al. (2007), to produce the optimal O(k+h) order of convergence for
a natural distance, see Theorem 2.8 for the precise statement of the result.

Plan of the paper: In Section 2 we introduce the notation, the main hypotheses on the stress-tensor,
and the properties of the numerical methods we consider. We also recall some technical results from
previous papers which we will need later on. The proof of the main estimate on the numerical error is
then postponed to Section 3.

2. Notation and preliminaries

In this section we introduce the notation we will use and we also recall some technical results which
will be needed in the proof of the main convergence result.

2.1 Function spaces

We use c,C to denote generic constants, which may change from line to line, but are not depending on
the crucial quantities. Moreover we write f ∼ g if and only if there exists constants c,C > 0 such that
c f 6 g6C f . Given a normed space X we denote its topological dual space by X∗. We denote by |M|
the n-dimensional Lebesgue measure of a measurable set M. The mean value of a locally integrable
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function f over a measurable set M ⊂ Ω is denoted by 〈 f 〉M := −
∫

M f dx = 1
|M|
∫

M f dx. Moreover, we
use the notation 〈 f ,g〉 :=

∫
Ω

f gdx, whenever the right-hand side is well defined.
We will use the customary Lebesgue spaces Lp(Ω) and Sobolev spaces W k,p(Ω), where Ω =

(0,2π)3 and periodic conditions are enforced. As usual p′ := p
p−1 . In addition, W k,p

div (Ω) denotes the
subspace of (vector valued) functions with vanishing divergence. We will denote by ‖ .‖p the norm in
Lp(Ω) and, in the case of zero mean value, we equip W 1,p(Ω) (based on the Poincaré Lemma) with the
gradient norm ‖∇ .‖p.

For the time-discretization, given T > 0 and M ∈ N, we define the time-step size as k := T/M > 0,
with the corresponding net IM := {tm}M

m=0, tm := mk, and we define the finite-differences backward
approximation for the time derivative as:

dtum :=
um−um−1

k
.

To deal with discrete problems we shall use the discrete spaces lp(IM;X) consisting of X-valued se-
quences {am}M

m=0, endowed with the norm

‖am‖lp(IM ;X) :=


(

k
M

∑
m=0
‖am‖p

X

)1/p

if 16 p < ∞ ,

max
06m6M

‖am‖X if p = ∞ .

For the space discretization, Th denotes a family of shape-regular, conformal triangulations, con-
sisting of three-dimensional simplices K. We denote by hK the diameter of K and by ρK the supremum
of the diameters of inscribed balls. We assume that Th is non-degenerate, i.e., maxK∈Th

hk
ρK
6 γ0. The

global mesh-size h is defined by h := maxK∈Th hK . Let SK denote the neighborhood of K, i.e., SK is
the union of all simplices of T touching K. By the assumptions we obtain that |SK | ∼ |K| and that the
number of patches SK to which a simplex belongs is bounded uniformly with respect to h and K.

The function spaces which we will use are the following

X :=
(
W 1,p(Ω)

)n
, V :=

{
u ∈ X : −

∫
Ω

udx = 0
}
,

Y := Lp′(Ω) , Q := Lp′
0 (Ω) :=

{
f ∈ Y : −

∫
Ω

f dx = 0
}
.

In the finite element analysis, we denote by Pm(Th), m ∈ N0, the space of scalar or vector-valued
continuous functions, which are polynomials of degree at most m on each simplex K ∈ Th. Given
a triangulation of Ω with the above properties and given k,m ∈ N we denote by Xh ⊂Pm(Th) and
Yh ⊂Pk(Th) appropriate conforming finite element spaces defined on Th, i.e., Xh, Yh satisfy Xh ⊂ X
and Yh ⊂ Y . Moreover, we set Vh := Xh∩V and Qh := Yh∩Q, while 〈 f ,g〉h := ∑K∈Th

∫
K f gdx denotes

the inner product in the appropriate spaces.
For the error estimates it is crucial to have projection operators well-behaving in terms of the natural

norms. As in Belenki et al. (2012) we make the following assumptions on the projection operators
associated with these spaces.

ASSUMPTION 2.1 We assume that P1(Th) ⊂ Xh and there exists a linear projection operator Π div
h :

X → Xh which
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1. preserves divergence in the Y ∗h -sense, i.e.,

〈divw,ηh〉= 〈divΠ
div
h w,ηh〉 ∀w ∈ X , ∀ηh ∈ Yh ;

2. preserves periodic conditions, i.e. Π div
h (X)⊂ Xh;

3. is locally W 1,1-continuous in the sense that

−
∫
K

|Π div
h w|dx6 c−

∫
SK

|w|dx+ c−
∫
SK

hK |∇w|dx ∀w ∈ X , ∀K ∈Th.

ASSUMPTION 2.2 We assume that Yh contains the constant functions, i.e. that R ⊂ Yh, and that there
exists a linear projection operator ΠY

h : Y → Yh which is locally L1-continuous in the sense that

−
∫
K

|ΠY
h q|dx6 c−

∫
SK

|q|dx ∀q ∈ Y, ∀K ∈Th.

The existence of Π div
h as in Assumption 2.1 is known (among the others) for the Taylor-Hood,

the Crouzeix-Raviart, and the MINI element in dimensions two and three; the Clément interpolation
operator satisfies Assumption 2.2. For a discussion and consequences of these assumptions we refer
to (Belenki et al., 2012, § 2 and Appendix A). In particular, we will need the following results:

PROPOSITION 2.3 Let r ∈ (1,∞) and let Π div
h satisfy Assumption 2.1. Then Π div

h has the following
local continuity property ∫

K
|∇Π

div
h w|r dx6 c

∫
SK

|∇w|r dx

and the following local approximation property∫
K
|w−Π

div
h w|r dx6 c

∫
SK

hr
K |∇w|r dx,

for all K ∈ Th and w ∈ (W 1,r(Ω))n. The constant c depends only on r and on the non-degeneracy
constant γ0 of the triangulation Th.

Proof. This is special case of Thm. 3.2 in Belenki et al. (2012). �

PROPOSITION 2.4 Let r ∈ (1,∞) and let ΠY
h satisfy Assumption 2.2. Then for all K ∈Th and q∈ Lr(Ω)

we have ∫
K
|ΠY

h q|r dx6 c
∫

SK

|q|r dx.

Moreover, for all K ∈Th and q ∈W 1,r(Ω) we have∫
K
|q−Π

Y
h q|r dx6 c

∫
SK

hr
K |∇q|r dx.

The constants depend only on r and on γ0.
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Proof. This is special case of Lemma 5.2 in Belenki et al. (2012). �

REMARK 2.1 By summing over K ∈ Th one can easily get global analogues of the statements in the
above Propositions.

As usual, to have a stable space-discretization, we use the following tri-linear form in the weak
formulation of (space) discrete problems

b(u,v,w) :=
1
2
[
〈[∇v]u,w〉h−〈[∇w]u,v〉h

]
,

observing that for periodic divergence-free functions (in the continuous sense) it holds b(u,v,w) :=
〈[∇v]u,w〉.

2.2 Basic properties of the extra stress tensor

For a second-order tensor A ∈ Rn×n we denote its symmetric part by Asym := 1
2 (A+A>) ∈ Rn×n

sym :=
{A ∈ Rn×n |A = A>}. The scalar product between two tensors A,B is denoted by A ·B, and we use
the notation |A|2 = A ·A>. We assume that the extra stress tensor S has (p,δ )-structure, which will be
defined now. A detailed discussion and full proofs of results from this section can be found in Diening
& Ettwein (2008); Růžička & Diening (2007).

ASSUMPTION 2.5 We assume that the extra stress tensor S : Rn×n→Rn×n
sym belongs to C0(Rn×n,Rn×n

sym )∩
C1(Rn×n \{0},Rn×n

sym ), satisfies S(A) = S
(
Asym

)
, and S(0) = 0. Moreover, we assume that the tensor S

has (p,δ )-structure, i.e., there exist p ∈ (1,∞), δ ∈ [0,∞), and constants C0,C1 > 0 such that

∑
n
i, j,k,l=1 ∂klSi j(A)Ci jCkl >C0

(
δ + |Asym|

)p−2|Csym|2, (2.1a)∣∣∂klSi j(A)
∣∣6C1

(
δ + |Asym|

)p−2
, (2.1b)

are satisfied for all A,C ∈ Rn×n with Asym 6= 0 and all i, j,k, l = 1, . . . ,n. The constants C0, C1, and p
are called the characteristics of S.

REMARK 2.2 We would like to emphasize that, if not otherwise stated, the constants in the paper depend
only on the characteristics of S but are independent of δ > 0.

Another important set of tools are the shifted N-functions {ϕa}a>0, cf. Diening & Ettwein (2008);
Diening & Kreuzer (2008); Růžička & Diening (2007). To this end we define for t > 0 a special N-
function ϕ by

ϕ(t) :=
∫ t

0
ϕ
′(s)ds with ϕ

′(t) := (δ + t)p−2t . (2.2)

Thus we can replace in the right-hand side of (2.1) the expression Ci
(
δ + |Asym|

)p−2 by C̃i ϕ ′′
(
|Asym|

)
,

i = 0,1. Next, the shifted functions are defined for t > 0 by

ϕa(t) :=
∫ t

0
ϕ
′
a(s)ds with ϕ

′
a(t) := ϕ

′(a+ t)
t

a+ t
.

For the (p,δ )-structure we have that ϕa(t)∼ (δ +a+t)p−2t2 and also (ϕa)
∗(t)∼ ((δ +a)p−1+t)p′−2t2,

where the ∗-superscript denotes the complementary function2. We will use also Young’s inequality: For

2For a N-function ψ the complementary N-function ψ∗ is defined by ψ∗(t) := sups>0(st−ψ(s)).



6 of 18

all ε > 0 there exists cε > 0, such that for all s, t,a> 0 it holds

ts6 ε ϕa(t)+ cε (ϕa)
∗(s) ,

t ϕ
′
a(s)+ϕ

′
a(t)s6 ε ϕa(t)+ cε ϕa(s).

(2.3)

Closely related to the extra stress tensor S with (p,δ )-structure is the function F : Rn×n → Rn×n
sym

defined through

F(A) :=
(
δ + |Asym|

) p−2
2 Asym . (2.4)

The main calculations of the paper can be performed by recalling the following lemma, which estab-
lishes the connection between S, F, and {ϕa}a>0 (cf. Diening & Ettwein (2008); Růžička & Diening
(2007)).

LEMMA 2.1 Let S satisfy Assumption 2.5, let ϕ be defined in (2.2), and let F be defined in (2.4). Then(
S(P)−S(Q)

)
·
(
P−Q

)
∼
∣∣F(P)−F(Q)

∣∣2 (2.5a)
∼ ϕ|Psym|(|Psym−Qsym|) (2.5b)

∼ ϕ
′′(|Psym|+ |Qsym|

)
|Psym−Qsym|2 (2.5c)

uniformly in P,Q ∈ Rn×n. Moreover, uniformly in Q ∈ Rn×n,

S(Q) ·Q∼ |F(Q)|2 ∼ ϕ(|Qsym|). (2.5d)

The constants depend only on the characteristics of S.

Moreover, we observe that

|S(P)−S(Q)| ∼ ϕ
′
|Psym|

(
|Psym−Qsym|

)
∀P,Q ∈ Rn×n, (2.6)

which allows us to introduce a “Natural distance” since by the previous lemma we have, for all suffi-
ciently smooth vector fields u and w,

〈S(Du)−S(Dw),Du−Dw〉 ∼ ‖F(Du)−F(Dw)‖2
2 ∼

∫
Ω

ϕ|Du|(|Du−Dw|)dx,

and again the constants depend only on the characteristics of S.

REMARK 2.3 The quasi-norms to properly estimate error terms in non-Newtonian fluids has been em-
ployed starting from the work of Barrett & Liu (1994). The natural distance is the quantity coming out
when performing energy-type estimates and its use allows to obtain estimates which are independent of
p.

In view of Lemma 2.1 one can deduce many useful properties of the natural distance and of the
quantities F, S from the corresponding properties of the shifted N-functions {ϕa}. For example the
following important estimates follow directly from (2.6), Young’s inequality (2.3), and (2.5).

LEMMA 2.2 For all ε > 0, there exist a constant cε > 0 (depending only on ε > 0 and on the character-
istics of S) such that for all sufficiently smooth vector fields u, v, and w we have

〈S(Du)−S(Dv),Dw−Dv〉6 ε ‖F(Du)−F(Dv)‖2
2 + cε ‖F(Dw)−F(Dv)‖2

2 .
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2.3 Some technical preliminary results

We recall some regularity results for fluids with shear dependent viscosities (both continuous and time-
discrete) and some convergence results we will need in the sequel.

First, we recall that for the continuous problem (NSp) we have the following existence and unique-
ness result for strong solutions (cf. (Berselli et al., 2010, Thm. 5.1)). In particular these are solu-
tions in the distributional sense, which are unique in their existence class and more regular (ut and
F(Du) are defined a.e. in Ω × [0,T ]), with respect to weak solutions such that u ∈ L∞(0,T ;L2(Ω))∩
L2(0,T ;W 1,p

div (Ω)).

THEOREM 2.6 Let S satisfy Assumption 2.5 with 7
5 < p6 2 and δ ∈ [0,δ0] with δ0 > 0. Assume that f∈

L∞(I;W 1,2(Ω))∩W 1,2(I;L2(Ω)) and also u0 ∈W 2,2
div (Ω), 〈u0,1〉 = 0, and divS(Du0) ∈ L2(Ω). Then,

there exist a time T ′ > 0 and a constant c0 > 0, both depending on (δ0, p,C0, f,u0,T,Ω) but independent
of δ , such that the system (NSp) has a unique strong solution u ∈ Lp(I′;W 1,p

div (Ω)), I′ = [0,T ′] such that

‖ut‖L∞(I′;L2(Ω))+‖F(Du)‖W 1,2(I′×Ω)+‖F(Du)‖
L

2 5p−6
2−p (I′;W 1,2(Ω))

6 c0 . (2.7)

In particular this implies, uniformly in δ ∈ [0,δ0],

u ∈ L
p(5p−6)

2−p (I′;W 2, 3p
p+1 (Ω))∩C(I′;W 1,r(Ω)) for 16 r < 6(p−1), (2.8a)

ut ∈ L∞(I′;L2(Ω))∩L
p(5p−6)

(3p−2)(p−1) (I′;W 1, 3p
p+1 (Ω)) . (2.8b)

The above theorem, whose proof employs in a substantial manner the hypothesis of space-periodicity,
has been used to prove the following optimal convergence result for the numerical error with respect to
a semi-implicit time discretization (cf. (Berselli et al., 2009, Thm 1.1, 4.1)).

THEOREM 2.7 Let S satisfy Assumption 2.5 with p∈
( 3

2 ,2] and δ ∈ [0,δ0], where δ0 > 0 is an arbitrary
number. Let f∈C(I;W 1,2(Ω))∩W 1,2(I;L2(Ω)), where I = [0,T ], for some T > 0, and let u0 ∈W 2,2

div (Ω)
with divS(Du0) ∈ L2(Ω) be given. Let u be a strong solution of the (continuous) problem (NSp)
satisfying

‖ut‖L∞(I;L2(Ω))+‖F(Du)‖W 1,2(I×Ω)+‖F(Du)‖
L

2 5p−6
2−p (I;W 1,2(Ω))

6 c1. (2.9)

Then, there exists k0 > 0 such that for k ∈ (0,k0) the unique time-discrete solution um of the semi-
implicit time-discrete iterative scheme

dtum−divS(Dum)+ [∇um]um−1 +∇π
m = f(tm) in Ω ,

divum = 0 in Ω ,
(NSk

p)

(endowed with periodic boundary conditions) satisfies the error estimate

max
06m6M

‖u(tm)−um‖2
2 + k

M

∑
m=0
‖F(Du(tm))−F(Dum)‖2

2 6 ck2,

where the constants k0 and c depend on c1 and on the characteristics of S, but are independent of δ .
Moreover, for each 16 r < 6(p−1), it holds

um ∈ l
p(5p−6)

2−p (IM;W 2, 3p
p+1 (Ω))∩ l∞(IM;W 1,r(Ω)), (2.10a)

dtum ∈ l∞(IM;L2(Ω))∩ l
p(5p−6)

(3p−2)(p−1) (IM;W 1, 3p
p+1 (Ω)). (2.10b)
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We observe that by parabolic interpolation –cf. (Berselli et al., 2009, Rem. 2.7)– it also follows that

dtum ∈ l
11p−12
3(p−1) (IM;L

11p−12
3(p−1) (Ω)),

and consequently

dtum ∈ l
p

p−1 (IM;L
p

p−1 (Ω)) = lp′(IM;Lp′(Ω)) if p >
3
2
. (2.11)

The latter property will have a relevant role to estimate in the error equation the term involving the
discrete pressure.

One main tool in the sequel will be also the following generalized Gronwall lemma, which is a minor
variation of that proved in great detail in (Berselli et al., 2009, Lemma 3.3).

LEMMA 2.3 Let 1 < p 6 2 and let be given two non-negative sequences {am}m and {bm}m, and two
sequences {rm}m and {sm}m for which there exists γ0 > 0 such that for all 0 < h < 1/

√
γ0:

a2
0 6 γ0 h2, b2

0 6 γ0 h2, k
M

∑
m=0

r2
m 6 γ0 h2, and k

M

∑
m=0

s2
m 6 γ0 h2. (2.12)

Further, let there exist constants γ1, γ2,γ3 > 0, Λ > 0, and some 0 < θ 6 1 such that for some λ ∈ [0,Λ ]
the following two inequalities are satisfied for all m> 1:

dta2
m + γ1(λ +bm)

p−2b2
m 6 bmrm + γ2bm−1bm + s2

m, (2.13)

dta2
m + γ1(λ +bm)

p−2b2
m 6 bmrm + γ3bmb1−θ

m−1aθ
m + s2

m. (2.14)

Then, there exist k, γ0 > 0 such that if h2 < γ0 k and if (2.13), (2.14) hold for 0 < k < k 6 1, then there
exist γ4, γ5 > 0, independent of λ , such that

max
16m6M

bm 6 1, (2.15)

max
16m6M

a2
m + γ1(λ +Λ)p−2k

N

∑
m=1

b2
m 6 γ4 h2 exp(2γ5k M). (2.16)

Proof. The proof of this result is a simple adaption of that of (Berselli et al., 2009, Lemma 3.3).
Nevertheless we report the main changes needed to accomplish the proof. In particular, later on we will
use it for am := ‖um−um

h ‖2 and bm := ‖Dum−Dum
h ‖p.

The proof goes by induction on 16 N 6M. Since in the inequality (2.14) the term bm−1 is present
and since contrary to Ref. Berselli et al. (2009) a0,b0 6= 0, some care has to be taken to start the induc-
tion argument. The most important part of the proof is that of showing that bm 6 1, because then the
estimate (2.16) will follow by applying the classical discrete Gronwall lemma. We will use the same
argument to check as starting inductive step that (2.16) is satisfied for N = 1, as well as to show that if
inequality (2.16) is satisfied for a given N > 1, then holds true also for N +1.

Let us suppose per absurdum that bN > 1, while bm 6 1 for m < N. We multiply (2.13) by k and we
sum over m, for m = 1, . . . ,N. It readily follows that:

a2
N + γ1k

N

∑
m=1

(λ +bm)
p−2b2

m 6

6 a2
0 +

γ1

2
k

N

∑
m=1

(λ +bm)
p−2b2

m +
1
γ1

k
N

∑
m=1

(λ +bm)
2−p(r2

m + γ
2
2 b2

m−1)+ k
N

∑
m=1

s2
m.
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We absorb the second term from the right-hand side in the left-hand side and we observe that (λ +
bm)

2−p 6 (λ +bN)
2−p 6 (λ +bN)

2(2−p), regardless of the value of λ > 0. Neglecting all terms on the
left-hand side, except the one with m = N, and dividing both sides by γ1

2 k(λ +bN)
p−2 6= 0 we get,

b2
N 6

2(λ +bN)
2(2−p)

kγ1

[
a2

0 +
1
γ1

k
N

∑
m=1

(r2
m + γ

2
2 b2

m−1)+ k
N

∑
m=1

s2
m

]
. (2.17)

Now, if we are dealing with the initial step N = 1, we have on the right-hand side of (2.17) a term
containing b2

0 on which we need to show that it satisfies (2.16). The hypothesis (2.12) and the restriction
on h imply that a0 6 γ0 h2 and b0 6 1. We also need to satisfy the same estimate (2.16) when m = 0,
namely:

γ1(λ +Λ)p−2k b2
0 6 γ4 h2 exp(2γ5k M).

Since k 6 1, and given γ0 > 0, it is enough to choose γ4 > 0 large enough such that the following
inequality is satisfied

γ0 6min
{

1,
(2Λ)2−p

γ1

}
γ4 exp(2γ5k M). (2.18)

Observe that this choice is always possible since p6 2.
On the other hand, in the calculations with N > 1 we can simply use (2.16) (which starts at N = 1

if (2.18) is satisfied) as inductive assumption to estimate the right-hand side of (2.17).
As a result of the choice of γ4, in both cases it follows with the same algebraic manipulations

of (Berselli et al., 2009, Lemma 3.3) that we can bound the right-hand side of (2.17) as follows:

1 < b2(p−1)
N 6

h2

k
2(1+Λ)2(2−p)

γ1

[
γ0 +

γ0

γ1
+

γ2
2 γ4

γ1(λ +Λ)p−2 exp(2γ5k N)+ γ0

]
.

This gives a contradiction, provided that

h2

k
6

γ1

2(1+Λ)2(2−p)

[
γ0 +

γ0

γ1
+

γ2
2 γ4

γ1(λ +Λ)p−2 exp(2γ5k N)+ γ0

]−1

:= γ0.

This finally proves that bN 6 1. Then the rest of the proof goes exactly as in the cited lemma, with a
further application of the standard discrete Gronwall lemma. It is in this last step that one has to assume
the limitation k < k := min{1,(2γ5)

−1}. �

Inspecting the proof it is clear that we have also the following result, where the doubling of the
constant on the right-hand side comes from having the same estimate separately for a0,b0 and for am,bm,
for m > 1.

COROLLARY 2.1 Let the same hypotheses of Lemma 2.3 be satisfied, then in addition we have that

max
06m6M

bm 6 1, (2.19)

max
06m6M

a2
m + γ1(λ +Λ)p−2k

M

∑
m=0

b2
m 6 2γ4 h2 exp(2γ5k M). (2.20)
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2.4 Numerical algorithms

We write explicitly the numerical algorithms we will consider and state some basic existence results for
the space-time-discrete solutions.

Given a net IM , a triangulation Th of Ω , and conforming spaces Vh, Qh, (recall notation from
Sec. 2.1) for the space-time-discrete problem, we use the following algorithm:

Algorithm (space-time-discrete, Euler semi-implicit) Let u0
h = Π div

h u0. Then, for m> 1 and um−1
h ∈

Vh given from the previous time-step, compute the iterate (um
h ,π

m
h ) ∈Vh×Qh such that for all ξξξ h ∈Vh,

and ηh ∈ Qh

〈dtum
h ,ξξξ h〉h+〈S(Dum

h ),Dξξξ h〉h+b(um−1
h ,um

h ,ξξξ h)−〈divξξξ h,π
m
h 〉h = 〈f(tm),ξξξ h〉h,

〈divum
h ,ηh〉h = 0.

(Qm
h )

REMARK 2.4 The nonlinear term related to the extra stress tensor is treated fully implicitly, while the
convective term is treated semi-explicitly.

We also observe that the (space-continuous) time-discrete scheme (NSk
p) from Theorem 2.7 can be

formulated in a weak form as follows: Let be given u0 = u0, m > 1, and um−1 ∈ V evaluated from the
previous time-step, compute the iterate (um,πm) ∈V ×Q such that for all ξξξ ∈V , and η ∈ Q

〈dtum,ξξξ 〉+ 〈S(Dum),Dξξξ 〉+b(um−1,um,ξξξ )−〈divξξξ ,πm〉= 〈f(tm),ξξξ 〉,
〈divum,η〉= 0.

(Qm)

The existence of a solution (um,πm) and its uniqueness follow from Thm. 2.7, concerning strong solu-
tions um ∈V (0) of (NSk

p). This solution is a fortiori also a weak solution of the following problem: Find
um ∈V (0) such that for all ξξξ ∈V (0)

〈dtum,ξξξ 〉+ 〈S(Dum),Dξξξ 〉+b(um−1,um,ξξξ ) = 〈f(tm),ξξξ 〉, (Pm)

where V (0) := {w ∈ V : 〈divw,η〉 = 0, ∀η ∈ Y}. The existence of the associated pressure πm ∈ Q
follows then from the DeRham theorem and the inf-sup condition.

The situation for the space-time-discrete problem is similar: The existence of the solution (um
h ,π

m
h )

can be inferred in the following way. First, for Vh(0) = {wh ∈Vh : 〈divwh,ηh〉= 0, ∀ηh ∈Yh} consider
the following algorithm, given um−1 ∈Vh(0) find um ∈Vh(0) such that for all ξξξ h ∈V (0)

〈dtum
h ,ξξξ h〉h + 〈S(Dum

h ),Dξξξ h〉h +b(um−1
h ,um

h ,ξξξ h) = 〈f(tm),ξξξ h〉h . (Pm
h )

The existence of a weak solution for (Pm
h ) follows directly by applying the Brouwer’s theorem, see

also (Prohl & Růžička, 2001, Lemma 7.1). Uniqueness follows from the semi-implicit expression for
the convective term and from the monotonicity of S. Moreover, the following energy estimate holds
true:

max
06m6M

‖um
h ‖2

2 + k
M

∑
m=0
‖Dum

h ‖p
p 6C(u0, f),

which is obtained by using um
h ∈Vh(0) as test function. Coming back to Problem (Qm

h ), the existence of
the associated pressure πm

h ∈ Qh such that (um
h ,π

m
h ) is a solution of (Qm

h ) is derived from the previous
result of existence of a solution for (Pm

h ) and the inf-sup condition. See also (Belenki et al., 2012,
Lemma 4.1) for such inequality in the setting of Orlicz spaces.

The main result of this paper is the following error estimate.
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THEOREM 2.8 Let S satisfy Assumption 2.5 with p ∈
( 3

2 ,2] and δ ∈ [0,δ0], where δ0 > 0 is an ar-
bitrary number. Let f ∈ C(I;W 1,2(Ω))∩W 1,2(I;L2(Ω)), where I = [0,T ], for some T > 0, and let
u0 ∈W 2,2

div (Ω), 〈u0,1〉 = 0, with divS(Du0) ∈ L2(Ω) be given. Let u be a strong solution of the (con-
tinuous) problem (NSp) satisfying

‖ut‖L∞(I;L2(Ω))+‖F(Du)‖W 1,2(I×Ω)+‖F(Du)‖
L

2 5p−6
2−p (I;W 1,2(Ω))

6 c2. (2.21)

Let Th be a triangulation as introduced in Sec. 2 and let (um
h ,π

m
h ) be the unique solution of the space-

time-discrete problem (Qm
h ) corresponding to the data (Π div

h u0, f). Then, there exists a time-step k1 > 0

and a mesh-size h1 > 0 such that, if max{h
3p−2

2 ,h2}6 c3 k for some c3 > 0, for all k ∈ (0,k1) and for all
h ∈ (0,h1), then the following error estimate holds true:

max
06m6M

‖u(tm)−um
h ‖2

2 + k
M

∑
m=0
‖F(Du(tm))−F(Dum

h )‖2
2 6 c4 (h2 + k2).

The constants k1, h1, c3 and c4 depend only on c2, the characteristics of S, and |Ω |, but they are inde-
pendent of δ ∈ [0,δ0].

REMARK 2.5 As explained in Berselli et al. (2009), in the space periodic setting we are able to ob-
tain (2.21) starting from the assumptions on the data of the problem, at least in a small time interval
[0,T ′], see Thm. 2.6. On the other hand, the analysis performed below is correct also in the Dirich-
let case, provided one can show the regularities (2.21) and (2.10) for the continuous and time-discrete
problem, respectively.

In the case of Dirichlet data, the semi group approach of Bothe & Prüss (2007) proves the existence
and uniqueness of a strong solution in a small interval [0,T ′] for p> 1, under the hypothesis of smooth
data and δ > 0. Note that their analysis does not ensure the regularity of the time derivative stated
in (2.21). However, one can easily prove this property based on the results proved in Bothe & Prüss
(2007) by standard techniques.

Unfortunately the needed space regularity is still open even for steady problems with (p,δ )-structure
in the Dirichlet case, and this would be the basis for the regularity of the time-discrete problem. For
partial results in the steady case, see for instance Beirão da Veiga (2009).

We also wish to point out that one of the main difficulties in the Dirichlet case is that of having
estimates independent of δ , which is one of the key points in our analysis also of the degenerate problem.

3. Proof of the main result

The proof of Thm. 2.8 is obtained by splitting the numerical error as follows:

u(tm)−um
h = u(tm)−um +um−um

h =: εεε
m + em,

For the error εεεm Thm. 2.7 ensures

max
06m6M

‖u(tm)−um‖2
2 + k

M

∑
m=0
‖F(Du(tm))−F(Dum)‖2

2 6 ck2.

Hence, we need to focus only on the second part of the error, namely em.
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The main error estimate is obtained by taking the difference between the equation satisfied by um

and that for um
h , and using as test function ξξξ h ∈ Vh ⊂ V . In this way we obtain the following error

equation for all ξξξ h ∈Vh

〈dtem,ξξξ h〉h + 〈S(Dum)−S(Dum
h ),Dξξξ h〉h +b(um−1,um,ξξξ h)

−b(um−1
h ,um

h ,ξξξ h)−〈divξξξ h,π
m−π

m
h 〉h = 0.

(3.1)

Clearly, a “natural” test function ξξξ h to get the error estimate would be em := um−um
h , which cannot be

used, since it is not a discrete functions, that is em 6∈Vh. The error estimate is then obtained by using as
test function the projection ξξξ h := Π div

h em ∈Vh and treating the various terms arising from the following
identity:

Π
div
h em = Π

div
h (um−um

h ) = Π
div
h um−um

h = Π
div
h um−um +um−um

h

=: Rm
h + em,

where we used that Π div
h = id on Vh. Let us start from the first term from the left-hand side of the error

equation, that one concerning the discrete time-derivative. We have the following result

LEMMA 3.1 The following estimate holds true

1
2

dt‖em‖2
2 +

k
4
‖dtem‖2

2−
1
k
‖Rm

h ‖2
2 6 〈dtem,Π div

h em〉h.

Proof. By standard manipulations of the discrete time-derivative we get

〈dtem,Π div
h em〉h = 〈dtem,em〉h + 〈dtem,Rm

h 〉h

=
1
2

dt‖em‖2
2 +

k
2
‖dtem‖2

2 + 〈dtem,Rm
h 〉h.

Observe now that, by Young’s inequality, we have∣∣〈dtem,Rm
h 〉
∣∣6 k

4
‖dtem‖2

2 +
1
k
‖Rm

h ‖2
2,

hence the statement. �
Next, we treat the second term from the left-hand side of the error equation (3.1), that one related

with the extra stress-tensor.

LEMMA 3.2 There exists c > 0, independent of h and δ , such that

c
(
‖F(Dum)−F(Dum

h )‖2
2−‖F(Dum)−F(DΠ

div
h um)‖2

2
)

6 〈S(Dum)−S(Dum
h ),D(Π div

h em)〉h.

Proof. From standard properties concerning the structure of S, as recalled in Sec. 2.2, we get

〈S(Dum)−S(Dum
h ),D(Π div

h um−um
h )〉h

= 〈S(Dum)−S(Dum
h ),Dum−Dum

h 〉h + 〈S(Dum)−S(Dum
h ),DΠ

div
h um−Dum〉h

= ‖F(Dum)−F(Dum
h )‖2

2 + 〈S(Dum)−S(Dum
h ),D(Π div

h um−um)〉h.
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The latter term on the right-hand side can be estimated with the help of Lemma 2.2 as follows∣∣〈S(Dum)−S(Dum
h ),D(Π div

h um−um)〉h
∣∣

6 ε‖F(Dum)−F(Dum
h )‖2

2 + cε‖F(Dum)−F(DΠ
div
h um)‖2

2,

ending the proof. �
Some care is needed also to handle the two terms coming from the convective term, which are

estimated in the following lemma, by using the regularity results for the solution um of the time-discrete
problem.

LEMMA 3.3 There exist c > 0 and θ ∈]0,1[, not depending on h and δ , such that∣∣b(um−1,um,Π div
h em)−b(um−1

h ,um
h ,Π

div
h em)

∣∣
6 c
(
‖∇Rm

h ‖ 3p
p+1
‖Dem‖p +‖em−1‖θ

2 ‖Dem−1‖1−θ
p ‖Dem‖p

)
.

(3.2)

Proof. Adding and subtracting b(um−1,Π div
h um,Π div

h em) and in a second step b(um−1
h ,Π div

h um,Π div
h em)

and, by observing that b(um−1
h ,Π div

h em,Π div
h em) = 0, we get

b(um−1,um,Π div
h em)−b(um−1

h ,um
h ,Π

div
h em)

= b(um−1,um−Π
div
h um,Π div

h em)+b(um−1
h ,Π div

h (um−um
h ),Π

div
h em)

+b(um−1−um−1
h ,Π div

h um,Π div
h em)

= b(um−1,Rm
h ,Π

div
h em)+b(em−1,Π div

h um,Π div
h em)

=: I1 + I2.

Since divum−1 = 0 (in the continuous sense) the first term is estimated as follows, by using Hölder
inequality

I1 = b(um−1,Rm
h ,Π

div
h em) = 〈[∇Rm

h ]u
m−1,Π div

h em〉h
6 ‖um−1‖ 3p

3p−4
‖∇Rm

h ‖ 3p
p+1
‖Π div

h em‖ 3p
3−p

provided that p > 4
3 . By a Sobolev embedding theorem, the Korn’s inequality (valid in the case of

functions vanishing at the boundary or with zero mean value), and by the continuity of the interpolation
operator Π div

h (cf. Prop. 2.3, Rem. 2.1) we can write

‖Π div
h em‖ 3p

3−p
6 c‖∇Π

div
h em‖p 6 c‖Dem‖p.

Thus we arrive at I1 6 c‖um−1‖∞‖∇Rm
h ‖ 3p

p+1
‖Dem‖p and now observe that, by using regularity (2.10) of

the solution um, this term is bounded by the first one from the right-hand side of (3.2).
Concerning I2, by using the definition of b( . , . , .), we split it as follows

I2 = I2,1 + I2,2 :=
1
2
〈[∇Π

div
h em]em−1,Π div

h um〉h−
1
2
〈[∇Π

div
h um]em−1,Π div

h em〉h.

We estimate I2,1 with the Hölder inequality:

I2,1 6 c‖Π div
h um‖α‖em−1‖s1‖∇Π

div
h em‖p,
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for some s1 ∈ (p′, p∗) =
( p

p−1 ,
3p

3−p

)
and α = ps1

ps1−s1−p < ∞. We have that 2 6 p′, hence, by standard

convex interpolation with θ ∈ (0,1) such that 1
s1
= θ

2 + (1−θ)
p∗ , by the properties of Π div

h (cf. Prop. 2.3,
Rem. 2.1), by Korn’s inequality, and since (2.10) implies ‖um‖α 6 c‖um‖∞ ∈ l∞(IM), we obtain that

I2,1 6 c‖um‖α‖em−1‖θ
2 ‖Dem−1‖1−θ

p ‖∇Π
div
h em‖p

6 c‖em−1‖θ
2 ‖Dem−1‖1−θ

p ‖Dem‖p.

For the term I2,2 we have, by Hölder inequality

I2,2 6
1
2
‖∇Π

div
h um‖r‖em−1‖s2‖Π

div
h em‖ 3p

3−p
,

for some 1 < r < 6(p− 1) and s2 =
rp∗

rp∗−r−p∗ . A straightforward computation shows that for any 3
2 <

p 6 2 one can choose r close enough to 6(p− 1) in such a way that s2 < p
p−1 < s1. Hence, by using

again the properties of the interpolation operator (cf. Prop. 2.3, Rem. 2.1), since by (2.10) we have
that ‖∇um‖r ∈ l∞(IM) for all r < 6(p− 1), by Hölder and Korn’s inequality, and by the embedding
Ls1(Ω)⊂ Ls2(Ω), we get

I2,2 6 c‖em−1‖s1‖Dem‖p.

Thus the right-hand can be estimated as I2,1, which completes the proof. �

Now we need to estimate the term involving the pressure which can be handled by using the same
approach as in Belenki et al. (2012). Note that the regularity for the gradient of the pressure represents
an outstanding open problem, with only partial results. In fact, at present, for the time evolution (either
continuous or discrete) there are only results which exclude the degenerate case δ = 0, see Berselli et al.
(2009, 2010). Let us now show how the last term in (3.1) is estimated only in terms of the external force
and of the velocity, by using once again the equations, as done in Belenki et al. (2012).

LEMMA 3.4 For each ε > 0 there exists cε > 0, not depending on h and δ , such that∣∣〈divΠ
div
h em,πm−π

m
h 〉h
∣∣

6 c ∑
K

∫
K

(
ϕ|Dum|

)∗(h|f(tm)|+h|dtum|+h|um−1| |∇um|
)

dx

+ c ∑
K

∫
SK

|F(Dum)−〈F(Dum)〉SK |
2 dx

+ ε

(
‖F(Dum)−F(DΠ

div
h um)‖2

2 +‖F(Dum)−F(Dum
h )‖

2
2

)
.

Proof. We start by observing that for all ξξξ h ∈Vh(0) we have

〈divξξξ h,π
m−π

m
h 〉h = 〈divξξξ h,π

m−η
m
h 〉h ∀η

m
h ∈ Yh.

Then, if we use (in the same way as in (Belenki et al., 2012, Lemma 3.1)) the divergence-preserving pro-
jection operator Π div

h , we can estimate the term involving the pressure in the error equation as follows:



SPACE-TIME DISCRETIZATION FOR GENERALIZED NEWTONIAN FLUIDS 15 of 18

For each ηm
h ∈ Yh it holds

|〈divΠ
div
h em,πm−π

m
h 〉h|= |〈div(Π div

h um−um
h ),π

m−η
m
h 〉h|

6
∫

Ω

|DΠ
div
h um−Dum +Dum−Dum

h | |πm−η
m
h |dx

6 ε

∫
Ω

ϕ|Dum|(|DΠ
div
h um−Dum|)+ϕ|Dum|(|Dum−Dum

h |)dx

+ cε

∫
Ω

(ϕ|Dum|)
∗(|πm−η

m
h |)dx

6 ε c
(
‖F(Dum)−F(DΠ

div
h um)‖2

2 +‖F(Dum)−F(Dum
h )‖

2
2

)
+ cε

∫
Ω

(ϕ|Dum|)
∗(|πm−η

m
h |)dx.

In particular we can choose ηm
h = ΠY

h πm. By using also Assumption 2.2 the latter term is estimated by
using the same techniques as in (Belenki et al., 2012, Lemma 6.4) as follows:

∫
K
(ϕ|Dv|)

∗(|πm−Π
Y
h π

m|)dx6 c
∫

K

(
ϕ|Dv|

)∗
(h|f(tm)|+h|dtum|+h|um−1| |∇um|)dx

+ c
∫

SK

|F(Dv)−〈F(Dv)〉SK |
2 dx.

Finally, summing over K ∈Th we get the assertion. �

By collecting the above results we can now prove the main result of the paper.
Proof of Theorem 2.8. By gathering the results from Lemmas 3.1-3.4 we get the following discrete
inequality: exists c > 0, independent of δ and h, and θ ∈ (0,1) such that

dt‖em‖2
2+k‖dtem‖2

2 +‖F(Dum)−F(Dum
h )‖2

2 +(δ +‖Dem‖p)
p−2‖Dem‖2

p

6 c
[ 1

k
‖Rm

h ‖2
2 +‖F(Dum)−F(DΠ

div
h um)‖2

2 +‖∇Rm
h ‖ 3p

p+1
‖Dem‖p

+‖em−1‖θ
2 ‖Dem−1‖1−θ

p ‖Dem‖p

+∑
K

∫
K

(
ϕ|Dv|

)∗
(h|f(tm)|+h|dtum|+h|um−1| |∇um|)dx

+∑
K

∫
SK

|F(Dum)−〈F(Dum)〉SK |
2 dx
]
,

and by using a Sobolev embedding we can also obtain the following bound

‖em−1‖θ
2 ‖Dem−1‖1−θ

p ‖Dem‖p 6 c‖Dem−1‖p‖Dem‖p.
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With this observation and by setting

am := ‖em‖2,

bm := ‖Dem‖p,

rm := ‖∇Rm
h ‖ 3p

p+1
,

s2
m := ‖F(Dum)−F(DΠ

div
h um)‖2

2 +∑
K

∫
SK

|F(Dum)−〈F(Dum)〉SK |
2 dx

+∑
K

∫
K

(
ϕ|Dv|

)∗
(h|f(tm)|+h|dtum|+h|um−1| |∇um|)dx+

‖Rm
h ‖2

2
k

,

we have that the two inequalities (2.13), (2.14) are satisfied. Hence, in order to apply Lemma 2.3, we
need just to verify the hypotheses on the initial values a0,b0 and on rm and sm.

To this end, first we observe that e0 = u0−Π div
h u0. By using the assumption u0 ∈W 2,2

div , by the
properties of the interpolation operator Π div

h , and due to p6 2 we obtain:

‖e0‖2 6 ch2 and ‖De0‖p 6 ch (3.3)

We now check the hypotheses needed on rm and we observe, that if um ∈W 2, 3p
p+1 (Ω), then

‖∇Rm
h ‖ 3p

p+1
6 ch‖∇2um‖ 3p

p+1
,

by the properties of the interpolation operator (cf. Prop. 2.3, Rem. 2.1). Hence, under the assumptions
of regularity of um, we also obtain that

k
M

∑
m=0
‖∇Rm

h ‖2
3p

p+1
6 ch2,

for some constant c independent of δ and h.
Let us now consider sm and we recall that if F(Dum) ∈W 1,2(Ω), then uniformly with respect to

K ∈Th (cf. (Belenki et al., 2012, Thm 3.7,Thm 5.1))

‖F(Dum)−F(DΠ
div
h um)‖2

2 6∑
K

∫
SK

|F(Dum)−〈F(Dum)〉SK |
2 dx

6 ch2‖∇F(Dum)‖2
2.

We now estimate the third term in the definition of s2
m by defining the following non-negative sequence

{gm}m
gm := |f(tm)|+ |dtum|+ |um−1| |∇um|.

By Young’s inequality and by using the following inequality for ϕ defined in (2.2)

(ϕa)
∗(κ t)6 cκ

2 (ϕa)
∗(t)

valid for κ ∈ [0,κ0] and p6 2 with a constant c independent of δ ,a, and t (cf. Belenki et al. (2012)), we
have

∑
K

∫
SK

(
ϕ|Dum|

)∗
(hgm)dx6 ch2

∑
K

∫
SK

(
ϕ|Dum|

)∗
(gm)dx

6 ch2
∑
K

∫
SK

ϕ(|Dum|)+ϕ
∗(gm)dx.
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Pointing out that

k
M

∑
m=0

∫
Ω

ϕ
∗(gm)dx6 k

M

∑
m=0
‖gm‖p′

p′ +(δ |Ω |)p′ ,

we need just to check that gm ∈ lp′(IM). This follows by interpolation from Thm. 2.7, and especially
from the observation in (2.11)

To conclude we need also to estimate the term k−1‖Rm
h ‖2

2. There is another (we also have one in
the discrete Gronwall Lemma 2.3) h-k coupling that enters the proof at this point. In fact, by Sobolev
embedding, the standard properties of interpolation operators in Sobolev space (see e.g. (Ciarlet, 1978,

Thm. 3.1.6)), and the assumptions on Th we get ‖Rm
h ‖2 6 ch

5p−2
2p ‖∇2um‖ 3p

p+1
. Then, by using the

regularity on um from Thm. 2.7 we obtain

k
M

∑
m=0

‖Rm
h ‖2

2
k
6

h
5p−2

p

k
k

M

∑
m=0
‖∇2um‖2

3p
p+1
6 c

h
5p−2

p

k
,

and if h
3p−2

p 6 ck, then

k
M

∑
m=0

‖Rm
h ‖2

2
k
6 ch2

This coupling between k and h derives from the natural regularity of the problem, which is at the moment
at disposal under rather general assumptions on the data. We believe that this condition, appearing also
in simpler parabolic problems with p-structure Diening et al. (2007), is only of technical character.

Then, by collecting all the previous estimate, we obtain that all the hypotheses of Lemma 2.3 are
satisfied, hence we end the proof. �
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RŮŽIČKA, M. & DIENING, L. (2007) Non-Newtonian fluids and function spaces. NAFSA 8—Nonlinear analysis,
function spaces and applications. Vol. 8. Prague: Czech. Acad. Sci., pp. 94–143.


