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Abstract

We analyze the implications of innovation and social interactions on economic growth in a stylized

endogenous growth model with heterogenous research firms. A large number of research firms decide

whether to innovate or not, by taking into account what competitors (i.e., other firms) do. This is due

to the fact that their profits partly depend on an externality related to the share of firms which actively

engage in research activities. Such a share of innovative firms also determines the evolution of technology

in the macroeconomy, which ultimately drives economic growth. We show that when the externality

effect is strong enough multiple BGP equilibria may exist. In such a framework, the economy may face

a low growth trap suggesting that it may end up in a situation of slow long run growth; however, such

an outcome may be fully solved by government intervention. We also show that whenever multiple BGP

exist, they are metastable meaning that the economy may cyclically fluctuate between the low and high

BGP as a result of shocks affecting the individual behavior of research firms.
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1 Introduction

Technological progress is by far the most important determinant of economic growth in industrialized

economies. During the last two decades, after the seminal works of Romer (1986), Aghion & Howitt (1992),

and Grossman & Helpman (1994), many efforts have been put forward to try understanding and explaining

the sources of technological advances. All the resulting works take the nature of the research sector as given,

and the interaction among firms in the research industry has never been analyzed in depth thus far1. This is

however one of the main fields of interest of computational and evolutionary economics; heterogeneous agent

models, for instance, may help in explaining how innovation occurs, which are the dynamics of innovation

and how innovation determines technological progress (see Dawid (2006) for an extensive survey). The goal

of this paper is to bridge these two different branches of literature by developing a stylized but analytically

∗We are indebted to two anonymous referees for their constructive comments helping us to substantially improve our paper.

We also acknowledge the financial support from MIUR under grant “Robust decision making in markets and organizations”

(PRIN20103S5RN3) and the support from Ca’ Foscari University Venice under the grant “Interactions in complex economic

systems: contagion, innovation and crises”.
†University of Wollongong, School of Accounting, Economics and Finance, Northfields Avenue, Wollongong 2522 NSW,

Australia. Contact: simonem@uow.edu.au
‡Universitá Ca’ Foscari Venezia, Department of Management, Cannaregio 873, 30121 Venice, Italy. Contact: tolotti@unive.it
1Schumpeterian growth models to some extent model the interaction in the research sector by allowing for a business-stealing

effect, determining the likelihood that an incumbent innovator loses its monopoly power because of a success in the innovation

process by a new entrant (Acemoglu (2009)). Apart from this type of characterization, the endogenous growth literature has

not emphasized how the choice of research firms are related and interdependent.
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tractable and micro-founded agent based model of innovation to shed some light on the role that interactions

among research firms might play in the process of economic growth. Once an almost traditional economic

growth model is extended to allow some form of interaction among research firms along the lines outlined

in Brock & Durlauf (2001) and Blume & Durlauf (2003), some traditional results, like the uniqueness of

equilibrium, found in growth theory vanish. Indeed, such an interaction among research firms, by determin-

ing the rate of technological progress, plays a critical role in shaping the whole macroeconomic dynamics.

We show that, under certain parameter conditions, the economy may be characterized by a multiplicity of

balanced growth path (BGP) equilibria, and a situation of low growth trap. We also show that the economy

may eventually (endogenously) fluctuate between the low and high BGP generating thus a growth cycle in

which periods of low and high economic growth rates follow one another. Such a cycling behavior is due to

the probabilistic nature characterizing the research industry; indeed, under a certain model parametrization

the BGP equilibria turn out to be metastable: on a short time scale they appear to be stable attractors,

while on a longer time scale unpredictable random jumps lead the economy to sudden shifts towards the

other BPG equilibrium. In this context economic policy, aiming to modify the incentives associated with

research activities, may be very effective in order to completely solve the low growth trap problem, avoiding

also fluctuations in economic activity.

Our paper is thus related to different branches of the economic literature, namely computational and

evolutionary economics, economic growth and business cycles theory. From the computational and evolu-

tionary economics literature we simply borrow the interest in analyzing the interaction between research

firms and its eventual implications for technological progress and the long run economic growth (Nelson

and Winter (1982), Dawid (2006), Dosi et al. (2010)). However, from a methodological point of view our

approach is substantially different since we develop a very simple and tractable model, in which most of the

results are analytically derived; simulations in our paper play only a marginal role and are instrumental to

exemplify some interesting and potential outcomes. Economic growth theory is the main benchmark for our

analysis since the model is an almost standard continuous time model of optimal growth with endogenous

technological progress (Acemoglu (2009)). With respect to what traditionally assumed in this literature

(Romer (1986), Grossman & Helpman (1994)), we allow for a certain degree of diffusion in the pattern of

innovation, meaning that in our framework technical progress is driven by the interaction among research

firms2. To the best of our knowledge, no other study has thus far focused on the firms interaction in the

research industry in a way comparable to ours; moreover, all the works identify a unique BGP equilibrium

thus cyclical behavior cannot occur3. The understanding and characterization of cyclical patterns is the

main interest of the business cycle theory4 (Kydland and Prescott (1982), King et al. (1988a), King et al.

(1988b)), which besides adopting a discrete time framework5 (Evans et al. (1998); Canton (2002); Furukawa

2This is in line with what suggested by the seminal work by Bass (1969) in the context of diffusion of durables. The Bass

model is a particular case of a larger class of epidemiological models. We refer the reader to Hethcote (2000) for a recent survey

on the topic.
3Few exceptions in which endogenous growth and cyclical fluctuations may be simultaneously experienced exist. Most

of these papers focus on an expanding variety model characterized by innovation cycles in which the mechanism underlying

economic fluctuations varies from the existence of different investment regimes (Matsuyama (1999) and Matsuyama (2001))

to international trade and foreign spillovers (Furukawa (2015)). Others focus instead on the mutual relation between human

capital investments and productivity growth (Kaas and Zink (2007)). Our approach is substantially different since we rely on

a simple capital accumulation model in which the evolution of the total factor productivity is the result of firms’ interactions

within the research industry.
4Cyclical outcomes are also analyzed in growth theory by characterizing the eventual existence of equilibrium indeterminacy

(Benhabib and Farmer (1994); Benhabib and Farmer (1998); Lahiri (2001)). Also this approach is substantially different from

ours, since our BGP equilibria are all determinate and are due to the presence of noisy components affecting the research

industry costs.
5Because of the similarity with our paper and their qualitative results, the seminal work by Evans et al. (1998) deserves

some specific comments. Indeed, also Evans et al. (1998) show that under specific conditions a stylized economic growth model

may give rise to a low growth trap and a growth cycle in which the economy stochastically switches between periods of low

and high growth. However, the underlying argument and the type of dynamics at the basis of their analysis is substantially
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(2007)), it also relies upon stochastic growth models in which the source of the shock is completely ex-

ogenous (Walde (2005)). Probably, the work most close to ours is Bambi et al. (2014), which analyzes an

endogenous growth model with expanding product variety showing that cyclical fluctuations may arise as a

result of implementation delays in the innovation process. Despite their setting is quite similar to ours (an

almost traditional endogenous growth model) the mechanism underlying output fluctuations is substantially

different since we do not allow for time delays but simply for some sort of interaction among firms operating

in the research industry. Moreover, different from theirs, our model shows the existence of a growth trap

threshold, allowing to clearly distinguish economies which will experience low and high growth rates, which

is again simply due to the interaction among research firms.

Our paper is also closely related to the literature on poverty traps. The eventual existence and char-

acteristics of poverty traps have been extensively analyzed in literature since the seminal work by Skiba

(1978). Different explanations of why multiplicity of equilibria and thus poverty traps may exist have been

put forward, and they include increasing returns and imperfect competition, coordination failure, matching

problems and increasing returns (see Azariadis and Stachurski (2005) for an exhaustive survey). However,

all these theories proposed thus far outline sources of multiplicity in levels, suggesting thus that under cer-

tain conditions an economy may eventually end up in poverty, that is a situation of stagnation with no

long run growth. Our model instead suggests the potential existence of equilibrium multiplicity in growth

rates, meaning that an economy may eventually end up in a situation of long run growth characterized by

low growth rates. In order to distinguish this result from what traditionally discussed in the poverty traps

literature we refer to such an outcome as a “low growth trap”. To the best of our knowledge, apart from

the very recent paper by Agénor and Canuto (2015) in an overlapping generation setting, there is no other

study characterizing the eventual existence of low growth traps. The implications of the existence of a low

growth trap threshold are however very intuitive and in line with empirical evidence: some countries will

experience fast economic growth while others slow economic growth, meaning that income gaps will tend to

widen over time characterizing thus a situation of long run divergence, as traditionally found in the empirics

on economic growth, especially between developed and developing countries6 (Dowrick (1992), Pritchett

(1997)). Finally, our model predicts a very important role for economic policy, since in the case of a low

growth trap the government, by simply rising the level of taxation on households in order to increase the

revenues granted to research firms, may be able to completely solve the trap problem. This does not simply

mean that the low growth trap threshold may be exceeded, as the traditional policy implication of poverty

trap models (see for example Sachs et al (2004), or more recently La Torre et al. (2015)), but that the

threshold itself will cease to exist ensuring thus that the economy is able to experience fast economic growth.

The paper proceeds as follows. Section 2 focuses on the research industry and describes its peculiarities

without considering its implications for the whole economy. Specifically, the research industry is populated

by a large number of profit-seeking firms facing a dichotomous choice. On the one hand, these firms are

heterogeneous in their propensity to innovate, and on the other hand, their decision whether to innovate or

not is partly affected by the behavior of other firms in the industry through an externality component. We

characterize the research industry dynamics deriving in the infinite dimensional case an explicit expression

different from ours, since, apart from relying on a discrete time setup, the driver of the entire economic dynamics in their model

is represented by shocks on agents’ expectations which affect the learning dynamics associated with multiple perfect-foresight

equilibria. Our results, instead, are derived in a micro-founded model where firm-specific shocks within the research industry,

by determining the evolution of technology, propagate in the whole economy eventually generating growth cycles; the concept

of endogenous fluctuations we describe is thus not related to either expectational indeterminacy or self-fulfilling growth cycles,

which represent the traditional mechanisms discussed in the business cycle literature (Evans et al. (1998); Furukawa (2007)).

The fact that such very different setups allow to generate qualitatively similar dynamics suggests that endogenous growth cycles

and low growth traps are not only rare theoretical possibility but rather outcomes quite common whenever we depart from the

traditional economic growth framework.
6Despite the existence of some (absolute) convergence within a small number of industrialized countries (see, for example,

Barro and Sala–i–Martin (1995)), convergence clubs represent more the exception rather than the rule in the empirics of economic

growth.
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which allows us to describe the (aggregate) behavior of research firm in terms of the share of firms actively

engaged in research activities. Section 3 integrates the research industry in a traditional macroeconomic

model of endogenous growth, where the government finances research by taxing households, and the overall

level of technology in the economy depends on the share of firms engaged in innovation. Section 4 shows

that the BGP equilibrium, which strictly depends upon the behavior of research firms, may or may not be

unique according to the magnitude of the externality-induced profit component; we also characterize the

dynamic properties of different BGP equilibria, identifying the eventual existence of a low growth trap along

with its policy implications. In Section 5 we focus on one important implication of the eventual multiplicity

in BGP equilibria for the finite dimensional case; we show that when the number of research firms is finite,

the probabilistic nature of the model implies that the locally stable equilibria turn out to be metastable:

sudden and unpredictable regime switchings among the low and high regimes happen along trajectories,

resulting thus in a cycling economic behavior. In Section 6 we propose a generalization of our baseline

model in which the incentive to innovation is no longer constant, but it depends on the overall level of

technological advancement in the economy; we show that despite the higher degree of sophistication in the

model’s structure, the results are qualitatively similar to those in its baseline version. In Section 7 we discuss

how our model relates to the middle-income trap hypothesis, suggesting that after a first stage of take off

characterized by rapid growth developing countries may face a significant growth slowdown; differently from

previous research which identify mainly inter-sectoral dynamics as a potential source of growth slowdowns,

we argue that this may also be the result of intra-sectoral dynamics (driven by social interactions and

technology diffusion) within the research industry. Section 8 presents concluding remarks and proposes

directions for future research. Technical details about the rationale behind the random utility approach

characterizing research firms’ payoff, and the metastability and probabilistic features of the transition times

associated with the finite dimensional model are discussed in Appendix A and B, respectively.

2 Research Activities and Intra-Industry Interactions

We consider a research industry populated by a large number of research firms which try to maximize the

profits associated with their research activities; specifically, there exist N firms indexed by i = 1, . . . , N .

For the sake of simplicity we assume that the research choice is just binary, thus we do not try to properly

quantify research efforts. Thus, any research firm needs to decide whether to engage in research activities or

not, thus it needs to compare the profit it will obtain by performing research with the zero-profit associated

with no research activities.

If a firm actively engages in research activities it will give rise with no uncertainty to an innovation, which

generates a given (fixed) amount of revenues h ≥ 0 associated with the sale of the (unitary) innovation7. In

order to produce one unit of innovation, the firm faces a (stochastic) production cost z + ζi, where z ≥ 0

denotes the cost common to all the firms and ζi is a random firm-specific shock. Apart from these private

components of the profit structure, research profits are also affected by a social component associated with

the number of firms actively engaged in research activities. Specifically, the size of the research industry

through an externality8 channel determines whether profits, ceteris paribus, tend to rise or fall. There are

two different cases that need to be considered: an increase in the number of firms actively engaged in research

may increase the profit for the whole research industry and thus rise the profit of the individual research

firm; alternatively, an increase in the number of firms actively engaged in research may decrease the profit

7For the time being we do not look at the demand side of the innovation market, but this will be introduced in a very

stylized way in Section 3, where we assume that the government buys such an innovation. The amount of revenue h can thus

be interpreted as the incentive provided by the government to induce firms to perform research activities, or alternatively as

the price at which it purchases the innovation from research firms.
8This externality in research profits may be interpreted in terms of the availability of potential trading partners for the

innovation, which reflects into a larger or smaller willingness to produce according to the sign of J in (1). With this respect,

the market for innovation is similar to the trading market proposed in Diamond (1982).
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for the whole research industry and thus lower the profit of the individual research firm. The former case

represents the so-called “standing-on-the-shoulder effect”, that is innovation by some firms increases the

possibility of further innovation by others, while the latter case the “fishing-out effect”, that is innovation

by some firms decreases the possibility of further innovation by others (Jones (2005)). Formally, we model

the individual firm research profits as in random utility models (see Brock & Durlauf (2001) and Barucci

& Tolotti (2012)). Each firm is thus characterized by its specific innovative attitude ωi,t ∈ {0; 1}, where

ωi,t = 1 (ωi,t = 0) denotes that firm i is (is not) innovating at time t. The decision to engage in research

activities to produce innovation is based on the following profit structure:

πi(ωi) = ωi

[
h− (z + ζi) + J

(
x̃ei −

1

2

)]
. (1)

If the firm does not innovate (ωi,t = 0) the profit above is simply null, πi(0) = 0. If the firm does innovate

(ωi,t = 1) the profit is equal to πi(1) = [h− (z + ζi) + J(x̃ei − 1/2)], where the first two terms represent the

private component of profit while the third term is the social component related to the effect of externalities.

The impact of the research externality is equal to J(x̃ei − 1/2), where J ∈ R determines the sign and the

magnitude of the externality effect and x̃ei is the expectation of firm i about the average of the choices of

other firms: x̃ei = 1
N−1E[

∑
j 6=i ωj ]. Note that the sign of J determines the type of externality affecting

research firms: whenever J > 0 individual profits tend to increase as a result of the research performed by

others (standing-on-the-shoulder effect), while whenever J < 0 individual profits tend to fall (fishing-out

effect). The term (x̃ei − 1/2) states that in quantifying the impact of the (positive or negative) externality-

induced profit component firms look at what the majority of other firms does. Indeed, the term 1/2 refers

exactly to one half of the total population of research firms, thus if x̃ei > 1/2 then firm i will expect more

than half of the firms to do research. Finally, the random components of cost, ζi, i = 1, . . . , N are i.i.d.

random shocks drawn from a common distribution η, which affect with different intensity the perceived

profit of individual firms. Two remarks on the profit structure are needed. First of all, note that the profit

π depends on the subjective expectation of the firm about others’ actions. With this respect, it can be seen

as the realized profit once conditioned on agent’s expectation about others’ actions. Secondly, the random

component of the profit is entirely related to the cost structure. We could in principle build a profit structure

where randomness may inpact jointly or separately both revenues and costs. Besides amounting in a more

complicated probabilistic structure, this woud not have any significant qualitative implications. For a more

comprehensive discussion about the rationale behind the profit structure as in (1), we refer the reader to

Appendix A.

It can be easily verified that profits as in (1) turn into a probabilistic choice model where:

P(ωi = 1| x̃ei ) = η

[
h− z + J

(
x̃ei −

1

2

)]
. (2)

As shown in the literature on social interactions (see Blume & Durlauf (2003)), a dynamic counterpart of

such a model can be derived. Define

xNt =
1

N

N∑
i=1

ωi,t (3)

as the fraction of innovative firms at time t and assume this quantity is observable; we refer to xNt as the

“innovation share”. Similarly as in the static model, we assume that firms can decide whether to invest or

not at any time t by considering its potential revenue h, cost z and the current value of the innovation share

x̃ei . Indeed,

P(ωi,t+∆t = 1|ωi,t, xNt ) = η

[
h− z + J

(
xNt −

1

2

)]
. (4)

It turns out that the Markovian dynamics induced by (4) are difficult to study in the finite dimensional

population model; nevertheless, it is possible to describe in closed-form the (deterministic) dynamics emerg-

ing from the asymptotic system when letting the number of research firms go to infinity. In particular, the
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following result describes the time evolution of xt which is the fraction of innovative firms at time t when

we let N → ∞. To this aim, we assume that the shocks ζi follow a centered logistic distribution9 with

parameter β > 0:

η(x) = P(ζi ≤ x) =
1

1 + e−β x
.

In this context, β is a measure of the dispersion of opinion in the population of firms: β = 0 would represent

a situation in which the firms decide to innovate or not by tossing a coin; on the contrary, β → ∞ would

mean that the firms do not receive any stochastic signal (i.e., the random cost component) and decide just

by looking at the sign of h− z + J
(
xNt − 1

2

)
. In the next proposition, we provide a law of large numbers10

for the stochastic process xNt , showing that it converges to a limiting (deterministic) process xt, whose law

of motion is described by a suitable differential equation characterizing the (deterministic) evolution of the

share of innovative firms.

Proposition 1. Let xNt = 1
N

∑N
i=1 ωi,t be the share of innovative firms at time t. Suppose limN→∞ x

N
0 = x0.

Then, when N → ∞, the family of stochastic processes (xN )N≥0, where xN := (xNt )t≥0, converges almost

surely to x := (xt)t≥0, where xt solves

ẋt =
1

2
tanh

{
β

[
h− z + J

(
xt −

1

2

)]}
− xt +

1

2
, (5)

for a given initial condition x0.

Proof. We can recover the standard Blume & Durlauf (2003) framework by rearranging the state variables

to take values on {−1; +1}. Define ζi = 1 when ωi = 1 and ζi = −1 when ωi = 0. In this case, we have that

P(ζi,t = 1| ζi,t,mN
t ) = η(h− z + J/2 ·mN (t)),

P(ζi,t = −1| ζi,t,mN
t ) = 1− η(h− z + J/2 ·mN (t)),

where now mN (t) = 1
N

∑
i ζi,t takes values on [−1, 1]. Arguing similarly as in Barucci & Tolotti (2012), it

can be shown that, under the assumptions of Proposition 1,

lim
N→∞

mN
t = mt,

where mt is the unique solution to

ṁt = tanh
{
β
(
h− z + J · mt

2

)}
−mt; m0 = 2x0 − 1. (6)

Since xt = mt+1
2 , equation (5) immediately follows. �

Proposition 1 allows to approximate the random dynamic behavior of research firms through a deter-

ministic equation which provides us with a simple but useful benchmark to characterize the outcome in

the research industry. This allows us to analytically derive the outcome in the approximated deterministic

version of the model that we shall introduce in a while and compare this with the “true outcome” in its

stochastic version. Note, moreover that in order to derive the approximated dynamic equation (5), random

shocks play an essential role in generating heterogeneity in research firms’ behavior and thus in giving rise

9We could in principle use any continuous probability distribution. The logistic is vastly used in the context of random utility

models. One reason being that the dynamics obtained under this assumption have a logistic shape which seems to represent

patterns underlying many social phenomena (see Anderson et al. (1992)).
10We provide here a straightforward proof based on the argument developed in Blume & Durlauf (2003). A more detailed

and alternative proof of the law of large numbers will be provided in Section 6 in a more general setting. Note that in that

case, we can only provide a weak convergence result, being the proof based on the convergence of generators of the underlying

Markov processes.
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to potentially nontrivial outcomes (see Appendix A for further details). In the following, we shall restrict

our analysis to the nontrivial situation in which random shocks do affect firms’ decision and thus firms are

effectively heterogeneous in their propensity to innovate. In such a framework, the quantity xt characterizes

the (approximated) fraction of innovative firms in a large economy of research firms subject to externalities

and private signals. Since (5) provides us with an explicit expression for describing the behavior of research

firms, as we shall see in the next section, it is now straightforward to incorporate the research industry in

a canonical endogenous growth model. This allows us to understand to what extent the presence of firm

interactions in the research industry is going to affect the macroeconomic outcome, further distinguishing be-

tween the standing-on-the-shoulders and the fishing-out cases. Since the role of the fixed cost z is negligible

in our setting, for the sake of simplicity in the remainder we will set it equal to zero.

3 The Macroeconomic Model

Apart from the characterization of the research market which to some extent resembles what discussed

in Marchese at al. (2014), the model is an almost standard endogenous growth model characterized by

households, productive and research firms, and a government. Households try to maximize their lifetime

welfare, by determining how much to consume given the dynamic evolution of capital. Productive firms

produce competitively the unique final consumption good, by determining how many workers and how

much capital to employ given the available technology. Research firms determine whether to invest or not in

innovation, and overall technological progress depends on the share of research firms which actively engage

in research activities. The government aiming at maintaining a balanced budget at any point in time levies

taxes on households to finance such research activities. Households and productive firms are homogeneous,

thus we analyze their behavior as traditional representative agents. Research firms are instead heterogeneous

in their propensity to innovate, and their behavior is consistent with what discussed in the previous section.

The representative household’s problem consists of maximizing its welfare given its initial capital en-

dowment k0 and the law of motion of capital, kt, by choosing how much to consume, ct, and supplying

inelastically labor. The household size, L, is constant and it is assumed to be infinitely large. Welfare is

defined according to the average utilitarian criterion11, thus it is equal to the infinite discounted sum (ρ is

the pure rate of time preference) of instantaneous utilities, which depend solely upon consumption. The

instantaneous utility function is assumed to take the following isoelastic form: u(ct) =
c1−σt −1

1−σ , where σ > 1

is the inverse of the intertemporal elasticity of substitution. As usual lowercase letters denote per capita

variables while uppercase letters aggregate variables. The household’s problem in per capita terms can be

written as:

max
ct

W =

∫ ∞
0

c1−σ
t − 1

1− σ
e−ρtdt (7)

s.t. k̇t = (1− τt)(rtkt + wt)− ct, (8)

where rt is the capital rental rate, wt the wage rate and τt a (time-varying) income tax rate. The first terms

in the RHS of (8) represent the disposable income which needs to be allocated between consumption (ct)

and capital investments (k̇t).

Output is produced by competitive productive firms according to a Cobb-Douglas production function,

combining labor, L (inelastically supplied by households), and capital, Kt. The production function in per

11Note that since household size is constant, in our model the difference between welfare as defined according to either the

average or total utilitarian criterion is simply a constant, equal to household size (see Marsiglio (2014) for a recent discussion

of the implications of average and total utilitarianism on economic growth). However, since the size of household is assumed

infinitely large (why this is needed will become clear later) we cannot rely on total utilitarianism since this would imply that

household’s objective function is infinite.
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capita terms takes the following form:

yt = Atk
α
t (9)

where α ∈ (0, 1) is the capital share while At a technological factor, representing total factor productivity.

Productive firms take the level of technology as given and maximize their instantaneous profits, determining

thus the rental rate of capital, rt (and the wage rate, wt).

Research firms indexed by i = 1, . . . , N are heterogeneous in their propensity to innovate ωi,t and try to

maximize the profits associated with their research activities. Their behavior is identical to what discussed

in the previous section, thus is determined by the comparison between their profit when innovating (ωi,t = 1)

and when not (ωi,t = 0). Whenever innovating they will sell their innovation at a price h̃t = hyt to the

government,12 which does somehow finance the research activities in the overall economy. We assume the

number of research firms is infinitely large such that Proposition 1 holds.

The government, by taxing households, collects a tax revenue τtyt from each household, which is used

to buy innovations at a price h̃t (in units of output) from each research firm actively engaged in research

activities,
∑

i ωi. In order to maintain a balanced budget at any point in time, the government budget

constraint reads as τtytL = hyt
∑

i ωi,t, implying that τt
L
N = h

∑
i ωi,t
N . Since the number or research firms N

is infinitely large the previous equation can be non-trivially verified only if the number of households L is

infinitely large as well, such that the household to research firm ratio ` = lim(L,N)→(∞,∞)
L
N > 0 is constant

and finite. Provided that both the number of households and research firms are infinitely large, the budget

constraint can be rewritten as follows:

τt` = hxt, (10)

where xt is the share of innovative firms whose dynamics is given in (5). Once an innovation is bought by

the government, it is immediately released in the public domain to allow productive firms to use such an

innovation for free to produce the final consumption good (Marchese at al. (2014)). This means that the

government plays an essential role by spreading innovations in the economy by buying them from firms,

solving thus an important coordination problem. This is consistent with recent evidence suggesting that

most technological advances have effectively been made possible by entrepreneurial activities pursued by

governments (Mazzucato (2013)).

By financing research activities the government determines the time evolution of the total factors pro-

ductivity. Indeed, the overall level of technology is determined by the interaction among research firms.

Specifically, we assume that it evolves according to the following law of motion:

Ȧt = φxtAt, (11)

where φ > 0 is a scale parameter and xt represents the share of research firms which actively engage in

innovative activities. According to (11) for technological progress to occur it does not matter the size of the

research industry (i.e., how many research firms exist) but the relative size of innovative firms with respect to

the industry. If none does research (xt = 0) then technological progress does not occur, while if all firms do

research (xt = 1) then technological progress occurs at a strictly positive rate φ. For any situation different

from these two extreme cases, the rate of technological progress will lie between 0 and φ; which specific rate

will arise depends on the behavior of research firms and their interaction within the research industry.

12Note that in the research firms’ profit structure (1), only the constant term h appears. We, in fact, use a “per unit” measure

of (perceived) profit h = h̃t/yt. Such a measure is more appropriate to study firms interaction since h̃t diverges to infinity over

time exactly as yt. Although still tractable (see Example 6.2), the formulation with the “non-discounted” h̃t turns out to be

trivial and thus less interesting, since the private profit component (related to h̃t) is not comparable with the social component

(which is bounded). See Section 6, where we provide some examples related to the more general case of a time-varying ht,

including also the non-discounted h̃t case.
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In general equilibrium, all agents maximize their objective function and all markets clear. The economy

is completely characterized by the following system of differential equations and the given initial conditions

k0, x0 and A0:

ċt
ct

=
1

σ

[(
1− h

`
xt

)
αAtk

α−1
t − ρ

]
(12)

k̇t =

(
1− h

`
xt

)
Atk

α
t − ct (13)

ẋt =
1

2
tanh

{
β

[
h+ J

(
xt −

1

2

)]}
− xt +

1

2
(14)

Ȧt = φxtAt (15)

Note from the above equations that the research industry dynamics turns out to be independent from other

macroeconomic variables. Despite this might seem a strong limitation of our model, as we shall see in

Section 6, results will not be qualitative different even in a more sophisticated formulation in which research

industry and macroeconomic outcomes affect each other. It seems convenient thus to present the model first

in its simplest possible form. Apart from the case in which xt converges to zero (which however will never

be an equilibrium), the above system (12), (13), (14) and (15) is not stationary (i.e., it does not show any

equilibrium at all), thus in order to study its dynamic behavior it may be convenient to recast the system in a

stationary system as traditionally done in the endogenous growth literature. From the equilibrium properties

of this latter system, we will then be able to infer the properties of the BGP equilibrium associated with

(12), (13), (14) and (15). A BGP equilibrium denotes a situation in which all variables grow at a constant

(possibly non-negative) rate, and deriving and discussing the characteristics of the BGP equilibrium is our

main goal in next section.

4 BGP Equilibrium

By introducing the variables χt = ct
kt

and ϕt = Atk
α−1
t , denoting the consumption to capital ratio and the

average product of capital respectively, it is possible to recast the above system in the following stationary

system:

χ̇t
χt

= χt −
ρ

σ
− σ − α

σ

(
1− h

`
xt

)
ϕt (16)

ϕ̇t
ϕt

= φxt − (1− α)

(
1− h

`
xt

)
ϕt + (1− α)χt (17)

ẋt =
1

2
tanh

{
β

[
h+ J

(
xt −

1

2

)]}
− xt +

1

2
(18)

At equilibrium the above system is characterized by the following steady state values:

χ =
(1− α)ρ+ (σ − α)φx

α(1− α)
(19)

ϕ =
(1− α)ρ+ σφx

α(1− α)(1− h
` x)

, (20)

x =
1

2
tanh

{
β

[
h+ J

(
x− 1

2

)]}
+

1

2
(21)

where x cannot be determined explicitly. However since xt ∈ [0, 1] it follows that x will always be non-

negative. This means that provided that ` > h, the steady state values χ and ϕ will be strictly positive. We

summarize the results about the BGP equilibria and their stability in the following proposition.

9



Proposition 2. Assume ` > h; then along a BGP equilibrium, the economic growth rate, γ, is strictly

positive and given by the following expression:

γ ≡ γc = γk =
γA

1− α
= γy =

φx

1− α
> 0, (22)

where x denotes the steady state value of xt. Moreover, there exist two positive threshold levels, J t(β) and

ht(J, β), given by the following expressions

J t(β) =
2

β

ht(J, β) =
J

2

√
βJ − 2

βJ
+

1

β
ln

(√
βJ

2
−
√
βJ − 2

2

)
,

such that:

i) if J < J t(β), there exists a unique γ∗ and the unique BGP equilibrium is saddle-point stable with a

two-dimensional stable manifold;

ii) if J > J t(β), then two alternative outcomes are possible:

a) if h > ht(J, β), there exists a unique γ∗ and the unique BGP equilibrium is saddle-point stable

with a two-dimensional stable manifold;

b) if h < ht(J, β), there exist three BGP equilibria corresponding to three values γL < γM < γH .

The intermediate one is saddle-point stable with a one-dimensional stable manifold, whereas the

two extreme ones are (locally) saddle-point stable, each with a two-dimensional stable manifold.

Proof. By plugging the steady state values of χt and ϕt back in the original equations (12)–(15), it is

straightforward to derive the BGP growth rate γ, as in (22). The characteristics of γ strictly mimic those

of x. Indeed, multiplicity is due to the possible multiplicity of the steady states of equation (5). As already

shown in the literature (see Brock & Durlauf (2001)), it turns out that, depending on the values of the

parameters, we can have a unique stable equilibrium (x̄) for (5) or three equilibria (xL < xM < xH), two of

which are locally stable (xL and xH). A similar threshold value for J , equal to 1/β, is also derived by Brock

& Durlauf (2001); note that the factor 2, appearing in our statement, depends on the transformation from

the variable mt to the rescaled variable xt as shown in the proof of Proposition 1.

Concerning the value of ht, in Olivieri and Vares (2005) (see Sections 4.1.1. and 4.3) it is shown

that the fixed point problem m = tanh(β̃(m + h̃)) admits multiple solutions as soon as β̃ > 1 and h̃ <√
β̃−1

β̃
+ 1

β̃
ln

(√
β̃ −

√
β̃ − 1

)
. According to (6) and assuming z = 0 without loss of generality, we can

rewrite our equation in x in the form m = tanh(βh + βJ
2 m). Therefore, ht is derived from the above

expressions by setting β̃ = βJ/2 and h̃ = 2h/J . From (22), if there are multiple equilibria for x, then the

system admits multiple equilibria as well.

Concerning stability, by linearization around a steady state it is possible to analyze the (local) stability

properties of the above system by deriving the following Jacobian matrix:

J(χ, ϕ, x) =

 χ −σ−α
σ (1− h

` x)χ σ−α
σ

h
`ϕχ

(1− α)ϕ −(1− α)(1− h
` x)ϕ φϕ+ (1− α)h`ϕ

2

0 0 Λ

 , (23)

where Λ = ∂ẋt
∂xt
|xt=x. It is straightforward to show that the eigenvalues are given by the following expressions

λ1 = Λ, and λ2,3 = ∆±
√

∆2+Θ
2 , where ∆ = χ−(1−α)(1− h

` x)ϕ > 0 and Θ = 4ασ (1−α)(1− h
` x)χ ϕ > 0, from

which it directly follows that λ2 > 0 and λ3 < 0. Independently of what the sign of Λ is, there exists at least
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one positive and one negative eigenvalue, thus any possible equilibrium is saddle-point stable. Moreover, it

is possible to show that Λ < 0 for x̄L and x̄H and Λ > 0 for x̄M . Therefore, the stable manifold associated

with the three equilibria has dimension 2 for γL and γH and dimension one for γM . �

The parameter condition required by Proposition 2 is needed in order to ensure that the BGP equilibrium

is well defined. Intuitively, it requires that the household to research firm ratio (`) is large enough to provide

the government with the resources needed to promote research activities (h). Along a BGP the economic

growth rate γ depends negatively on α and positively on φ and, more importantly on the equilibrium share

of innovative firms x. This means that our model economy does not show any scale effect, since the growth

rate is independent of any aggregate variable13. However, since the equilibrium share of research firms may

not be unique14, also the BGP equilibrium turns out to be not unique, and this is strictly related to the

size of the externality parameter, J . Indeed, Proposition 2 suggests that in the fishing-out case (J < 0)

there always exists a unique saddle-point stable BGP equilibrium; however, in the standing-on-the-shoulder

case (J > 0) there is a richer variety of possible outcomes. Whenever the standing-on-the-shoulder effect is

weak (i.e., the magnitude of the positive externality is small) a unique stable equilibrium will emerge. In the

case of a sufficiently large externality, then the number of equilibria depends on the value of the incentive

mechanism provided by the amount of revenues obtained, h. A large h makes the equilibrium unique,

whereas, a small h gives rise to the presence of two locally stable equilibria15. As a matter of expositional

simplicity, in the following we will refer to the case (i) in Proposition 2 as the “small externality case” and

to the case (ii) as the “large externality case”. Note that the macroeconomic behavior closely resembles the

behavior on the innovation share, and when the equilibrium innovation share is unique (multiple) then the

BGP equilibrium is unique (multiple) as well. Specifically, in the case of multiple equilibria, if x0 < xM
then xt will converge to xL (and the BGP growth rate will be low, γL), while if x0 > xM then xH will be

reached instead (and the BGP growth rate will be high, γH). Thus, the initial fraction of innovative firms

plays a crucial role in determining which BGP equilibrium will be effectively achieved16.

In order to understand more in depth what are the characteristics of the BGP equilibrium, we now

analyze the behavior of the economy under a realistic model’s parametrization. Specifically, we set the

inverse of the intertemporal elasticity of substitution, σ, equal to 2, the rate of time preference, ρ, to 0.04,

the capital share, α to 0.33 (Mullingan and Sala–i–Martin (1993)); the scale parameter determining the

rate of growth of technology, φ is calibrated to 0.04, in order to obtain an economic growth rate equal to

0.03 (in the case in which the equilibrium share of innovative firms is exactly equal to one half); the other

parameter values, are set arbitrarily in order to make sure that the assumption required in Proposition 2 is

met and that our qualitative results are as clear as possible. We thus set the households to research firm

ratio, `, equal to 1,000, the measure of the dispersion of opinion in the population of research firms, β equal

to 1, while we let the revenue provided to research firms, h, and the size of the externality parameter, J ,

vary in order to see how they affect the BGP economic growth rate γ. Table 1 summarizes the parameter

values employed in our analysis.

In Figure 1 we show how the BGP growth rate γ varies for different values of the externality parameter,J ,

13An increase in the number of firms in the research industry does not rise the overall economic growth rate. This rate can

increase only if the equilibrium share of innovative firms rises.
14Note that the eventual multiplicity in the equilibrium of the innovation share is due to the heterogeneity in research firms.

As more specifically discussed in Appendix A, in the case of homogeneous research firms the equilibrium innovation share will

necessarily be unique and equal to either zero or one, meaning that the BGP growth rate will be either null or maximal,

respectively. Such an outcome is clearly possible but also trivial, thus in our discussion we focus only on the most interesting

case in which research firms are heterogeneous.
15Note that the intermediate equilibrium γM , although saddle point stable, is derived from an innovation share xM which is

linearly unstable on its own. Therefore, unless we assume that the economy is exactly tuned on x0 = x̄M , this equilibrium will

never emerge. For this reason, we will not consider it as a possible realist economic outcome.
16The importance of the initial share of innovative firms for the model’s outcome is further discussed in Section 5 where we

focus on the finite-number of research firms case. We will show that in such a (stochastic) framework the presence of multiple

equilibria might give rise to growth cycles.
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σ ρ α ` φ β

2 0.04 0.33 1, 000 0.04 1

Table 1: Parameter values employed in our simulation.

whenever the revenue parameter, h is set equal to 0. As expected from Proposition 2, for negative and positive

but small enough values of the externality parameter a unique BGP and thus a unique economic growth

rate, γ∗ = φx∗

1−α (equal to 0.03), exists. For larger values, three equilibria, namely γL = φxL
1−α , γM = φxM

1−α and

γH = φxH
1−α with γL < γM < γH , exist and the gap between the high and low economic growth rate, γH − γL

rises with J .

-1 0 1 2 3 4

J

0

0.01

0.02

0.03

0.04

0.05

0.06

γ

Figure 1: Changes in the economic growth rate, γ, for different values of the externality parameter, J

(revenue parameter, h set equal to 0).

Since the existence of either a unique or multiple BGP equilibrium is related to the size of the externality

parameter, it may be convenient to separately analyze the cases in which the externality parameter is either

small or large. In Figure 2 we thus consider two alternative values J = 1.9 and J = 2.5, lying below and

above the threshold value J t = 2 (see Figure 1) respectively, and show how the BGP growth rate γ varies

with the revenue parameter, h. As discussed above, the small externality case represents a situation in

which the research sector is characterized by either fishing-out (J < 0) or weak standing-on-the-shoulder

(0 < J ≤ J t) effects. In both the cases, equation (18) shows a unique stable equilibrium and consequently

the BGP equilibrium is unique as well: γ∗ = φx∗

1−α . The convergence to the steady state of the system (16)

- (18) will occur along a two-dimensional stable manifold. We can see that the unique economic growth

rate increases with h, thus the higher the incentive for research firms to engage in research activities the

faster the economic growth (Figure 2, left panel). The large externality case represents instead a situation

in which the research sector is characterized by a strong standing-on-the-shoulder (J > J t) effect. In this

case, equation (18) shows three equilibria (xL < xM < xH), two of which are locally stable (xL and xH).

As a consequence, the BGP equilibrium is not unique as well: we need to distinguish three BGP equilibria,

characterized by an economic growth rate equal to γL = φxL
1−α , γM = φxM

1−α and γH = φxH
1−α with γL < γM < γH ,

respectively. As seen from Proposition 2, the convergence to such three steady states of the system (16) -

(18) will occur either along a two-dimensional stable manifold (for γL and γH) or along a one-dimensional

stable manifold (for γM ). We can see that the high and low economic growth rate, γH and γL increase

with h, while the medium one γM falls with h; thus the higher the incentive for research firms to engage

in research activities the faster the economic growth in each of the two stable equilibria (Figure 2, right

panel). The threshold value for h provided by Proposition 2 (and confirmed by our numerical simulation)

is ht ≈ 0.078; only whenever h < ht, three equilibria exist.

12



0 0.05 0.1 0.15 0.2

h

0.025

0.03

0.035

0.04

0.045

0.05

0.055

γ

0 0.05 0.1 0.15 0.2

h

0

0.01

0.02

0.03

0.04

0.05

0.06

γ

Figure 2: Changes in the growth rate, γ, for different values of the revenue parameter h (0 ≤ h ≤ 0.2); the

externality parameter J set equal to either 1.9 (left panel) or 2.5 (right panel).

Figure 2 suggests some interesting policy implications, since it clearly shows how the revenue parameter

impacts on the equilibrium economic growth rate. Indeed, in the large externality case whenever the revenue

provided to research firms is small (h < ht), three different BGP equilibria exist, and this is strictly related

to the existence of three different equilibrium values for the innovation share. Therefore, the same economy

may experience different growth rates according to how many research firms actively engage in research

activities: if this share is small the economic growth rate will be low while if it is large the economic growth

rate will be high. This means that the economy is potentially faced with a low growth trap, which may

condemn it to grow slower than what it could potentially do. In such a framework it is natural to wonder

what policymakers can do in order to deal with this problem. As traditionally discussed mainly in the

context of poverty traps (Sachs et al (2004)), an economy may escape its low growth trap by increasing

the innovation share, allowing thus the initial share of research firms (x0) to exceed its unstable middle

equilibrium (xM ). Such an outcome might be implemented by simply opening the economy to international

trade and providing some incentive for foreign firms actively engaged in research activities to operate also

on the domestic market; research activities at international level may thus provide the economy with the

push it needs to achieve fast economic growth. However, policymakers may do much more than this, since

they can effectively allow the economy not only to escape its low growth trap, but to even solve completely

the trap problem. Indeed, by rising enough the revenue provided to each research firm such that h > ht, the

innovation share will naturally converge towards its unique (higher) equilibrium value; the economic growth

rate at equilibrium will be high, and thus the economy will not be trapped into a low growth equilibrium.

Such an outcome can be easily implemented by increasing the tax rate applied to households’ income in

order to finance the increase in the revenue parameter. Indeed, in our model’s parametrization the tax

parameter τ̂ needed to escape the low growth trap is τ̂ = h
` x ≈ 0.0413%. The result should be clear from

Figure 2; it can also be seen from Figure 3 where we plot the equilibrium values of x for two different values

of the revenue parameter h. This clearly show that with a higher h a unique equilibrium x (and thus also a

unique BGP) may exist.

5 Metastability and Endogenous Cycles

As already stressed in Section 2, the infinite dimensional research market obtained by letting N go to infinity

is just a deterministic approximation of the more complex finite N dimensional heterogeneous research

industry described by equations (1) - (4). We now focus on some important implications of the fact that the

“true” model is actually not deterministic but stochastic since characterized by some intrinsic randomness.
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Figure 3: Equilibrium values x ∈ [0, 1] (marked with a star) found as the intersection between the bisector

line and f(x) = 1
2 tanh

{
β
[
h+ J

(
x− 1

2

)]}
+ 1

2 (see equation (21)). Parameters values: h = 0 (left panel)

and h = 0.15 (right panel), with J = 2.5.

Indeed, when multiple BPG equilibria exsits17, the finite dimensional system described in Section 2 has

the remarkable property to exhibit a “metastable behavior”. As discussed in Mathieu and Picco (1998),

a probabilistic system exhibits a metastable behavior when it remains for long times close to an apparent

equilibrium, called metastable, and then it suddenly shifts to another attractor. We shall prove that, for

some values of the parameters, these transition times happen with probability one and are unpredictable,

in the sense that their distribution shows lack of memory. This phenomenon gives rise to a cycling behavior

of the finite dimensional system: due to the sudden switching of the system towards the other attractor

the trajectories oscillate for long times close to one of the two (metastable) equilibria. Put differently, it

is as if there were two different time scales: on a short time scale, the equilibria described in Proposition

2 are, apparently, stable; on a longer time scale, we instead observe a cycling behavior generated by the

endogenous fluctuations between the two regimes18. Let us focus on the large externality case and specifically

on a situation in which multiple BGP equilibria exist (case ii.b in Proposition 2). In such a case two stable

BGP equilibria exist; as discussed above which equilibrium our economy will achieve depends upon the initial

conditions (χ0, ϕ0, x0), and in particular a critical role is played by the initial condition on xt. Indeed, the

initial share of innovative firms determines whether the equilibrium share will be high or low, determining

thus whether the economic growth rate, γ, will be high or low. While this outcome is clear in the infinitely

large number of research firms version of the problem, whether this holds true also for the finite version is

not so obvious. In fact, in the finite version of the model, research firms are subject to random shocks which

determine whether they will decide to innovate or not; in the infinite version the effects of such shocks cannot

be analyzed since the approximation provided by equation (18) turns out to be completely deterministic.

Let us denote by xNt the proportion of innovative firms at time t among a total population of N firms.

As said, under the assumptions of case ii.b in Proposition 2, the trajectory xNt has a metastable behavior:

it fluctuates close to one of the two equilibria, say x̄L and, after a random time, it suddenly jumps to values

close to x̄H (and viceversa). We now state a proposition collecting the main properties of the so called

tunneling time, i.e., the time needed for a trajectory to leave the basin of attraction of one equilibrium.

17When a unique equilibrium exists, the finite dimensional system is still stable in the sense that shocks generate fluctuations

around the unique equilibrium. In this case, the long time scale effect is not present since there is no possibility of cycling

between equilibria. We thus focus our discussion in this section on the most interesting case in which multiple equilibria exist

and the implications of metastability.
18We would like to stress the fact that, as mentioned earlier, such a metastable behavior pertains also to the finite dimensional

version of classical random utility models such as the Brock & Durlauf (2001) model. To the best of our knowledge, such a

peculiarity of this type of systems has never been discussed within the economics literature.
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The cycling behavior is due to a sequence of such (random) tunneling times. Unfortunately, the results

describing the probabilistic properties of the tunneling times are rather technical; in order to make the

discussion more clear, we prefer to maintain this section as simple as possible avoiding technicalities and

postpone to Appendix B a more involved mathematical discussion. In order to define TN , the tunneling

time of the process xNt , we introduce two significant values in the state space of xNt :

xNL =
dN x̄Le
N

; xNM =
dN x̄Me
N

;

these are the values that the process xNt can reach and that better approximate (from above) the real values

x̄L and x̄M , respectively. The tunneling time of the process xNt is defined as the time needed to cross the

basin of attraction of x̄H , when starting close to x̄L. More precisely,

TN = min
t>0

{
xNt = xNM , xN0 = xNL

}
. (24)

Note that this is exactly the first time at which the trajectory starting close to the equilibrium x̄L will cross

x̄M , hence entering the basin of attraction of x̄H . Once the process has crossed x̄M , it rapidly converges

towards x̄H . The main properties of the tunneling time are summarized in the next proposition.

Proposition 3. Consider the process xNt as described by (3) - (4). Assume that J > J t(β) and h < ht(J, β),

where the thresholds are as defined in Proposition 2. Then there exists a suitable constant ∆ depending on

β, J, h such that the tunneling time TN has the following properties:

a) for all δ > 0, limN→∞ P
(
eN(∆−δ) < TN < eN(∆+δ)

)
= 1;

b) TN/E[TN ] converges in law to a unit-mean exponential random variable, as N →∞.

A formal proof of the proposition is presented in Appendix B where the explicit functional form of ∆

is also provided. As suggested by Proposition 3, the random jumps happen with probability one for each

trajectory, although the jump times TN could be possibly large. Specifically, the transition times tend, for

N →∞, to an exponentially distributed random variable with expectation proportional to e∆N , where ∆ is

a suitable constant depending on the parameters of the model. It turns out that, for values of J close to J t,

the random time needed to exit the basin of attraction of the two locally stable equilibria is relatively small

and trajectories showing growth cycles arise. In Figure 4 (right panel), we provide an example showing that,

for J = 2.05 (recall that J t = 2), this random time is reached early enough to be seen in the trajectory. More

precisely, we show that the (stochastic) time series of xNt may deviate from its expected behavior predicted

by equation (18). Recall that xt describes exactly the deterministic evolution of the system under the

modeling assumption that N is infinite. In the left panel we show that xNt may converge to the equilibrium

it is not supposed to achieve. Indeed, since the initial condition x0 = 0.1 is greatly lower than xM = 0.4178,

we would expect the time series of xNt to fluctuate around the red-dashed trajectory x
(L)
t leading to the low

equilibrium. However, in this particular simulation, this is not the case: the trajectory deviates and start

fluctuating around the high equilibrium xH . In the right panel, as said, we show that the finite dimensional

trajectory xNt may spend quite a long time close to one of the two equilibria and then depart from it to reach

the other one. What discussed for xNt has clear implications also in terms of the macroeconomic outcome:

differently from what suggested by the (deterministic) theory, the system, even when the initial conditions

are very close to the high BGP equilibrium, may converge towards the low BGP equilibrium or oscillate

between the two BGP equilibria without converging to a steady state. Note that in the small externality

case, in which the equilibrium is unique, such an effect naturally disappears. This suggests that government

intervention may be essential not only to allow the economy to solve its eventual low growth trap problem

but also to reduce the fluctuations (occurring with probability one) in economic activity.

We provide now some estimates of the expected tunneling time for the process xNt . When considering

the values of the parameters as in Table 1, h = 0 and J = 2.05 (see Figure 4, right panel), ∆ ≈ 1.92 · 10−4
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Figure 4: The evolution of xNt (in blue) for a finite dimensional system of N = 1, 000 firms. In the left

panel, we see the deviation from the expected trajectory x
(L)
t suggested by the model in favor of x

(H)
t . In

the right panel we have a trajectory fluctuating around the two attractors. Parameters are as in Table 1

with h = 0.01 and J = 2.14 (left panel) and h = 0 and J = 2.05 (right panel).

so that e∆N ≈ 1.212. This means that, on average, we expect e∆N ·N ≈ 1212 single transitions (i.e., single

firms deciding to change their innovation policy) to actually observe a tunneling time. As a comparison,

in Figure 5, we show a trajectory of xNt where parameters are the same exept for J which is now higher:

J = 2.14. In this case, ∆ = 3.217 · 10−3 and e∆N ≈ 24.965. Now, we expect 24965 single transitions to

observe a tunneling time. The comparison with the right panel of Figure 4 shows that, as expected, the

tunneling times are now less frequent: a longer time scale is needed in order to capture the transitions from

one BGP equilibrium to the other.
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Figure 5: The evolution of xNt (in blue) for a finite dimensional system of N = 1, 000 firms. Parameters

are as in Table 1 with h = 0 and J = 2.14. The BGP innovation share equilibria are x̄H = 0.7156 and

x̄L = 0.2844.

We conclude this section by providing an intuition about the effects of metastability on macroeconomic

variables, and in particular on how metastibility results in output fluctuations generating thus a growth

cycle. To this aim, in order to simplify computational problems we consider the special case in which the

inverse of the intertemporal elasticity of substitution and the capital share perfectly coincide, that is σ = α.

Such a case has been frequently analyzed in order to fully characterize transitional dynamics in similar

growth models (Smith (2006); Xie (1994)) since allowing to decouple some variables in the system (16) -

(18) and thus to obtain an explicit analytical expression for the evolution of main variables. Whenever
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σ = α, it is straightforward to show that the evolution of capital is given by the following expression:

k̇t =
(
1− h

` xt
)
At k

α
t −

ρ
α kt, from which it is then possible to characterize the evolution of output from

yt = At k
α
t . We wish to provide an intuition about the trajectories of yNt , the level of per capita output,

under the assumption that xt is now substituted by xNt . This can be done by discretizing the system of

differential equations to obtain a (approximated) difference equations system where the variables are now

(kNt , A
N
t , y

N
t ) where kN0 = k0, AN0 = A0,{

kNt+1 = kNt +
(
1− h

` x
N
t

)
ANt (kNt )α − ϕ

α k
N
t

ANt+1 = φANt x
N
t

and yNt = ANt (kNt )α, with yN0 = AN0 (kN0 )α. In Figure 6, we plot (on a log-scale) the trajectory of yNt
associated with the trajectory of xNt presented in Figure 5. It is straightforward to observe that the slope

of log(yNt ), representing the growth rate of per capita output, changes whenever a regime shift occurs: the

slope is steeper when xNt fluctuates around x̄H while it is flatter when xNt fluctuates around x̄L, meaning

that the growth rate fluctuates between high and low values giving thus effectively rise to a growth cycle.

Even if the difference in the growth rates might apparently seem small, this is not the case: from γ = φ x̄
1−α ,

we can compute that the two BGP rates are substantially different; indeed, γ̄H = 0.0427 and γ̄L = 0.0170

suggesting a 2.5% difference in the growth rate between the high and low regime.
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Figure 6: The evolution of yNt on a logarithmic scale (top panel) associated with the evolution of xNt (bottom

panel).

6 A Generalized Model

The model that we have focused on thus far is based on the assumption that the incentive for innovative

activities (i.e., the price paid by the government in order to purchase the innovation from research firms),

h, is constant and exogenously given. This might seem a merely convenient ad hoc simplification allowing

to decouple the research industry from other macroeconomic variables; however, as we shall see in a while

even extending the analysis to a more general setting would lead to results qualitative similar to those just

discussed in our baseline model. In order to look at this, we allow the incentive to be time-dependent

and endogenous since depending on other macroeconomic variables. In this case the government budget

constraint reads as follows:

τt` = htxt, (25)
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where ht = H(xt, At, t) for a suitable function H : R3 → [0, `]. Note that the upper bound is needed to ensure

that τt ≤ 1 for all t. This specification of ht suggests that the government may wish to provide stronger

or weaker incentives to innovative activities according to the overall level of technological advancement

At achieved in the economy. Therefore, the tax rate should also change with the level of technological

advancement: the tax rate is now defined as τt = T (At) where we do not impose any restriction a priori on

the shape of the function T (·). The above budget constraint in this case read as follows:

ht = H(xt, At, t) =
`

xt
T (At).

We will discuss one specific example at the end of this section, but we firstly provide a generalization of

Proposition 1 and Proposition 2. Note that, since now ht = H(xt, At, t), the Markov process xNt and the

relative limit xt are no longer disentangled from other macroeconomic variables: the dependence in At makes

the derivation of the law of large numbers more complicated19. Indeed, we need to define a suitable two-

dimensional stochastic process (xNt , A
N
t ) such that, when taking the limit for N → ∞, (xNt , A

N
t ) converges

to the pair (xt, At) defined by (14) - (15). This is formally stated in the following proposition.

Proposition 4. For all N ≥ 1, consider the stochastic process (xNt , A
N
t ) defined as:

xNt =
1

N

N∑
i=1

ωi,t , ANt := AN0 e
∫ t
0 φx

N
s ds

where φ > 0 and

P(ωi,t+∆t = 1|ωi,t, xNt , ANt ) = η

[
H(xNt , A

N
t , t)− z + J

(
xNt −

1

2

)]
. (26)

Moreover, assume that limN→∞ x
N
0 = x0 and limN→∞A

N
0 = A0. Then, when N →∞, the process (xNt , A

N
t )

weakly converges to (xt, At) solving

ẋt =
1

2
tanh

{
β

[
H(xt, At, t) + J

(
xt −

1

2

)]}
− xt +

1

2
(27)

Ȧt = φxtAt (28)

with initial conditions (x0, A0).

Proof. Note that, in principle, the definition of ANt introduces a dependence on the past of the process xNt ,

thus a loss of Markovianity. Nevertheless, we will see that the pair (xNt , A
N
t ) is still Markovian. To this

aim, we introduce the infinitesimal generator of the process (xNt , A
N
t ) applied to functions f : R3 → R with

compact support:

LNf(x,A, t) = N xNt η
−(xNt , A

N
t )

[
f

(
x− 1

N
,A, t

)
− f(x,A, t)

]
+

N (1− xNt ) η+(xNt , A
N
t )

[
f

(
x+

1

N
,A, t

)
− f(x,A, t)

]
+

φxNt A
N
t f
′
A(x,A, t) + f ′t(x,A, t),

where

η+(x,A) := η

(
H(x,A, t)− z + J

(
x− 1

2

))
19We are indebted to an anonymous referee for suggesting such a non-trivial model’s extension. Apart from generalizing our

previous results, this allows us to discuss the mathematics behind this formulation with endogenous ht = H(·) and compare it

with the classical random utility model with constant h. To the best of our knowledge, such a type of generalization has never

been discussed in the literature thus far, not even in other frameworks.
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represents the probability for an agent with ωi,t = 0 to become active (i.e., to decide to do research) at time

t and η− = 1− η+. Since LN only depends on the variables (xNt , A
N
t ) computed at time t, we conclude that

the stochastic process (xN , AN ) is Markovian.

Moreover, since all the derivatives are uniformly bounded, it turns out that

lim
N→∞

sup
(x,A,t)∈R3

|LNf(x,A, t)− Lf(x,A, t)| = 0 (29)

where

Lf(x,A, t) = [−x+ η+] f ′x(x,A, t) + Ȧ f ′A(x,A, t) + f ′t(x,A, t). (30)

The form of L provided in (30) follows from the fact that, taking the first order approximation of LN ,

LNf(x,A, t) = N xNt η
−(xNt , A

N
t )

(
− 1

N

)
f ′x(x,A, t) +

N (1− xNt ) η+(xNt , A
N
t )

(
1

N

)
f ′x(x,A, t) +

φxNt A
N
t f
′
A(x,A, t) + f ′t(x,A, t) + o

(
1

N

)
;

which can be rewritten as

LNf(x,A, t) = [−xNt + η+(xNt , A
N
t )] f ′x(x,A, t)+

φxNt A
N
t f
′
A(x,A, t) + f ′t(x,A, t) + o

(
1

N

)
. (31)

Now it is easy to show that the limit of LN is L as expressed in (30). Note that L is the infinitesimal

generator of the process (xt, At), where

ẋt = −xt + η+(xt, At); Ȧt = Atφxt.

This can be seen computing Lx and LA (i.e., considering f ≡ x and f ≡ A, respectively). Finally, by

the functional form of η+, we easily see that

ẋt = −xt +
1

2
+

1

2
tanh

(
H(xt, At, t)− z + J

(
xt −

1

2

))
. (32)

By virtue of Theorem 1.6.1 in Ethier and Kurtz (1986), equation (29) and the assumption on the

convergence of the initial conditions ensure that the stochastic process (xNt , A
N
t ) weakly converges to (xt, At).

�

Apart from the complication introduced by the need to deal with a two-dimensional stochastic process,

the results are qualitatively identical to those discussed earlier. When the number of research firms is

infinitely large, we can approximate the model’s outcome through some deterministic differential equations

describing the evolution of the innovation share and the evolution of technology. Differently from what

seen earlier in our baseline setup, now the research industry and the macroeconomic outcome are more

realistically mutually interconnected. By having generalized Proposition 1, it is now straightforward to

derive a generalization of Proposition 2.

Proposition 5. Consider the economy described by equations (16) - (18) where ht = H(xt, At, t) for a

differentiable function H : R3 → [0, `] such that limt→∞ ht = h̄ ∈ [0, `] is well defined. Then, along the

(asymptotic) BGP equilibria the economic growth rate is given by:

γ =
φx̄

1− α
, (33)

where x̄ is the solution of:

x̄ =
1

2
tanh

{
β

[
h̄+ J

(
x̄− 1

2

)]}
+

1

2
. (34)
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Proof. Just take the limit for t → ∞ and impose ẋ = 0 in (32). The rest of the proof follows arguing

similary as in Proposition 2. �

Proposition 5 characterizes the BGP in our generalized model in which the innovation incentive is

endogenous and time-varying. Note that the economic growth rate is the same as in our baseline model and

the only eventual difference between the two frameworks is due to the eventual different equilibrium share

of innovative firms. Concerning multiplicity/uniqueness of equilibria, the whole discussion of Proposition 2

still holds true as long as h is replaced by h̄ ∈ [0, `]. Indeed, two thresholds J t(β) and ht(J, β) still exist

although, differently from the baseline case, we are not able to characterize them explicitly. Propositions 4

and 5 jointly suggest that the results previously discussed in our baseline setup still hold true even in a more

sophisticated model in which innovation decisions are endogenous and related to macroeconomic outcomes.

Therefore, also the related discussion of policy implications still apply, confirming the importance of taking

into account social interaction within the research industry in order to understand the determinants of

macroeconomic performance. Finally, also in this more general case, when multiple BGP equilibria exist,

they are metastable in the sense of what discussed in Section 5; therefore, the trajectories of xNt will exhibit

cycling patterns and endogenous fluctuations will occur over the long run.

We exemplify the above discussion by considering some specific functional form for ht in order to further

clarify the results.

Example 6.1. Let us consider: ht = H(xt, At, t) = `
xt
T (At), where T (At) = τ · (1+e−At), for 0 < τ ≤ 1/2.

In this case, h̄ = τ `
x̄ . In Figure 7, we plot the value of the BGP growth rate γ as a function of the main

parameter. In the left panel we set τ = 4 · 10−5 and we let J vary, while in the right panel we set J = 3

and we let τ vary; all other parameter values are set accordingly to Table 1. We can see that the bifurcation

diagram is similar to what described in our baseline model. Finally, note that in case of multiplicity of

equilibria, the equilibrium value for the tax rate and the innovation incentive h̄, change with the equilibrium

prevailing in the economy. For instance, for J = 3 and τ = 4 · 10−5, h̄ takes value 0.2060 or 0.0427 if xL or

xH , respectively.

-1 0 1 2 3 4

J

0

0.01

0.02

0.03

0.04

0.05

0.06

γ

0 0.2 0.4 0.6 0.8 1

τ ×10-4

0

0.01

0.02

0.03

0.04

0.05

0.06

γ

Figure 7: Changes in the growth rate, γ, for different values of J (left panel) with −1 ≤ J ≤ 4 and h (right

panel) with 0 ≤ h ≤ 0.0001; τ = 4 · 10−5 in the left panel and J = 3 in the right panel.

Example 6.2. Consider the case of h̃t = ht · yt, where ht = H(xt, At, t) ∈ [0, `] and yt is the time-varying

per capita output. In this case, (26) reads as follows:

P(ωi,t+∆t = 1|ωi,t, xNt , ANt ) = η

[
H(xNt , A

N
t , t) · yt − z + J

(
xNt −

1

2

)]
.
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It is not difficult to show that Propositions 4 and 5 still apply. The result is however different: being H

bounded and yt diverging to infinity when t→∞, in (27) we have that h̄ is replaced by limt→+∞ h̃t = +∞.

Therefore, in this case, the unique solution to (27) is now x̄ = 1. This is rather obvious: if the incentive to

innovation explodes, it is worth to enter the market of innovation and the result is trivial.

7 Middle-Income Trap

An interesting line of interpretation of our stylized model is related to the middle-income trap hypothesis20.

This refers to the experience common to many developing countries (especially in Latin America and in the

Middle East) in the second half of the XIX century, in which growth has significantly slowed down after a

first stage of take off characterized by rapid growth (see Gill and Kharas (2007), Commission on Growth

and Development (2008)). This development process has allowed these economies to quickly move from

a low-income to a middle-income status, but not to make the further leap needed to become high-income

economies. This has advanced the hypothesis that there may exist a middle-income trap, preventing thus

some economies to fill the gap with more advanced countries. What might be the specific hindrances affecting

this second stage of economic development is still an open question, but these are likely to be substantially

different from those involving the first stage in which traditional poverty traps are in place.

Understanding what may be the reason why some fast growing economies have failed to achieve a high-

income status is an active and recent research question with clear policy implications. While empirical

evidence supporting the existence of a middle-income trap seems robust and convincing, much less clear is

from a theoretical point of view why fast growth might come to an end. On the empirical side, Eichengreen

et al. (2012) show that growth tends to slowdown at levels of per capita income of about $15,000 (at 2005

constant international PPP prices), suggesting that a critical role is played by a reduction in the growth

rate of the total factor productivity (TFP); specifically, a drop in TFP growth represents about 85% of the

fall in per capita income growth. Eichengreen et al. (2013) provide some additional evidence, showing

that the distribution of growth slowdowns is not necessarily unimodal, and in particular two modes, one

around $15,000 and another around $11,000, exist. On the theoretical side, very few works have tried to

provide some explanation of growth slowdowns in middle-income countries, and they focus on reallocation or

misallocation of workers between different economic sectors. A traditional argument suggests that while in

earlier stages of development it may be possible to raise productivity by shifting workers from agriculture to

industry, this process may come to an end whenever the share of workers employed in agriculture falls enough

(Lewis (1954)). A more recent explanation emphasizes that a low allocation of high skilled individuals in the

research sector may give rise to low productivity growth; however, this situation of potential slow growth can

be fixed by policy interventions (Agénor and Canuto (2015)). Differently from these works in which inter-

sector dynamics is the driver of eventual growth slowdowns, our paper provides an alternative explanation

based entirely on social interactions and technology diffusion.

Along the lines of Agénor and Canuto (2015), whenever the economy experiences multiple BGP equilibria

(Proposition 2, case ii.b), the intermediate BGP equilibrium γM (i.e., the low growth trap threshold) can

be clearly interpreted as a middle-income trap, separating fast and slow growing economies. Note that the

eventual existence of such a trap is determined by the outcome in the research industry, which is completely

driven by social interactions among research firms. Thus, the research intra-sector dynamics only might

explain why technological progress and thus economic growth tend to be high or low in specific economies.

In order to relate this to the pattern advanced by the middle-income trap hypothesis we need to understand

why an economy initially (during a first stage of economic development) in a BGP with high economic

growth rate, γH , may end up (in the second stage of development) in a BGP equilibrium with low growth

rate, γL, later. In our setting this is equivalent to a either a fall in the number of innovative firms xt or a

20The term “middle-income trap” has been originally introduced by Gill and Kharas (2007), and the notion has also often

been referred to as “growth slowdown” (Eichengreen et al. (2012)).
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rise in the intermediate equilibrium of the innovation share, xM ; both the cases imply that an economy with

an original high innovation share may end up with a low (compared with the critical threshold) innovation

share and thus experiencing a slowdown in its economic growth. The former case may be triggered by

a change in international policy, and specifically it may occur as a result of the introduction of tariffs or

other restrictive policies, which by providing negative incentives for foreign firms to operate on the domestic

market, leads some foreign firms engaged in research activity to exit the domestic research market. The

latter case may instead be triggered by a change in domestic economic policy, and it may occur as a result of

a reduction in the support provided to research firms which, by determining the amount of revenue received

by innovative firms, tends to increase the intermediate equilibrium value of the share of firms engaged in

research activities. While empirical evidence seems to supports our conclusions related to the negative

relation between growth slowdowns and openness (Eichengreen et al. (2012)), the available evidence does

not allow to either support or refute those related to the positive (up to a certain point) nexus between

growth slowdowns and research-enhancing policies.

Apart from the eventual existence of such a middle-income trap, our model differently from Agénor and

Canuto (2015) suggests that also growth cycles may occur. This implies that also fast growing economies

cannot claim to have definitely escaped their middle-income trap, since they may be cyclically pulled into

situations of growth slowdowns. This reinforces our previous conclusions that policymakers can play a critical

role in the development process. By actively intervening with specific policies they can completely solve

the trap problem dampening the size of the growth fluctuations, promoting a smooth process of fast growth

allowing the economy to eventually catch up with more advanced economies and become a high-income

country.

8 Conclusion

Technological progress is by far the most important determinant of economic growth over the long run.

However, whether and how the interaction among research firms in the research industry might determine

technological progress has never been analyzed thus far in the growth literature. Thus, in this paper we have

tried to fill this gap by allowing a certain degree of firms interaction. Specifically, we assume that firms decide

whether to innovate or not by taking into account also what other research firms do. Such an interaction

among research firms, by determining the rate of technological progress, plays a critical role in shaping

the whole macroeconomic outcome. Indeed, we have shown that under certain parameter conditions, by

mimicking the behavior of the share of innovative firms, the economy may be characterized by a multiplicity

of BGP equilibria and eventually may face a situation of low growth trap. We have also shown that the

economy may eventually (endogenously) fluctuate between the low and high BGP generating thus a growth

cycle in which periods of low and high economic growth rates follow one another. The potential existence of

low growth traps and endogenous growth cycles suggest that the government might play an essential role in

order to contrast such negative effects. In particular, by rising enough the tax rate applied to households’

income it could completely solve the low growth trap problem, avoiding thus further fluctuations in economic

activity. All these results are robust in the sense that they hold true both in our baseline model in which

the innovation incentive is constant and in its generalized version in which this is potentially time-varying

and dependent upon other macroeconomic variables.

This paper represents a first attempt to enrich the macroeconomic dynamics in traditional models of

endogenous growth by allowing a certain extent of externality in research decisions. The approach followed

is thus quite simplistic on purpose in order to show in the simplest possible way (which is already all but

simple from a mathematical point of view) which might be the potential implications of allowing for social

interactions in traditional macroeconomic models. Of course, our framework has several limitations which

need to be accounted for in future research. Specifically, the dichotomous choice of research firms to do or

not to do research does not allow to quantify research efforts; this assumption needs to be relaxed in order
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to fully characterize research decisions and outcomes. Also the specification of the research market is overly

simple, and adopting a more traditional setup with either horizontal or vertical product differentiation may

shed some further light on the impacts of social interactions on macroeconomic outcomes. Extending the

analysis along these lines is left for future research.

A The Rationale behind Random Utility Models

In this appendix we briefly summarize the main ideas recovered by Brock & Durlauf (2001) and leading to

the profit structure defined in (1). Suppose that a research firm faces the binary decision to innovate or not

to innovate. We define the binary random variable ω ∈ {0, 1} accordingly. The main assumption behind

random utility models is that the profit π related to the innovation has the following general structure:

π(ωi) = R(ωi, µ
e
i (ω−i), h)− ζ(ωi),

where revenues R depend on the choice made by the firm, on the price h received by the buyer of the

innovation and by an externality term. Indeed, each firm i estimates the conditional probability measure µei
on the choices of others, where ω−i denotes the vector of actions deprived of the i-th component. As seen

in Section 2, costs are random and denoted by ζ. For the moment, we set z = 0 for simplicity.

We now make some further (minimal) assumptions to came up with a tractable profit structure.

i) π(0) = 0. This is an obvious normalization. Both R and ζ are zero if no research activity is in place.

Therefore, we concentrate on π(1) (we call it simpy π). Rearranging variables and notations we have:

π = R(µei (ω−i), h)− ζi.

ii) Externalities due to the behavior of competitors, only depend on the average action of others’ choice.

This implies that µei (ω−i) is substituted by the (simpler) statistics xei = 1
N−1

∑
j 6=i x

e
ij , where xeij =

E(i)[ωj ] denotes the expectation of firm i about the choice of competitor j. Therefore,

π = R(xei , h)− ζi.

Concerning the information structure of the model, we also assume that E(i)[·] = E(j)[·] for all i, j =

1, . . . , N . This amounts in saying that all firms share the same expectations about others’ choices.

iii) We assume that ∂π
∂xei

= J . This simplifying assumption introduces a unique parameter J measuring

the degree of dependence (or the force of externality) due to the others’ actions. Note that J > 0

resembles a staying-on-the-shoulder situation, whereas J < 0 a fishing-out case. Secondly, as obvious,
∂π
∂h > 0.

iv) We assume that the pecuniary effects due to the sale of the technology and the externalities are

additive. Moreover, for sake of simplicity, we assume a linear dependence. This fact, together with

assumption iii), produces the following payoff:

π = h+ Jxei − ζi.

v) Finally, we slightly correct xei by substituting it with xei − 1
2 . The reason is that we want the decision

to be driven by what the majority of the population of firms is doing. The quantity xei − 1
2 reflects

exactly this goal: it is positive if and only if the majority of the research firms produces an innovation.

Therefore, in case of a positive J , the single firm is more prone to align with the majority. On the

contrary, if J < 0, the firm will tend to behave in the opposite direction. We obtain:

π = h− ζi + J

(
xei −

1

2

)
.
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Therefore, by reintroducing a private cost z and recalling that π(0) = 0, we obtain the general expression

for π as it appears in (1):

π(ωi) = ωi

[
h− (z + ζi) + J

(
xei −

1

2

)]
.

By applying the payoff structure defined above, we can verify that

ωi = 1 ⇐⇒ π(1) ≥ π(0) ⇐⇒ h− (z + ζi) + J

(
xei −

1

2

)
≥ 0.

The probabilistic structure of the model implies that for all i = 1, . . . , N ,

P(ωi = 1) = P
(
h− (z + ζi) + J

(
xei −

1

2

)
≥ 0

)
= P

(
ζi ≤ h− z + J

(
xei −

1

2

))
.

Since agents receive different private signals, agents may have a different feeling about the best choice.

Heterogeneity gives rise to the non-trivial equilibria and the (possible) multiplicity discussed in Proposition

2. In the case of a completely deterministic model (i.e., ζi = 0 for all i), agents would be homogeneous and

we would obtain:

P
(

0 ≤ h− z + J

(
xei −

1

2

))
∈ {0; 1},

meaning that either ωi = 0 or ωi = 1 for all i = 1, . . . , N . The same reasoning extends to the continuous-time

counterpart described by (4): assuming no randomness, there would be no space for any dynamics, and the

outcome would be to a large extent trivial with all firms deciding either to innovate or not to innovate. In

the body of the paper we thus focus on the most interesting situation in which agent heterogeneity gives rises

to nontrivial dynamics. Most of our qualitative results in Proposition 2 would still hold true in the absence

of heterogeneity case, but in this case the BGP equilibrium would be necessarily unique and characterized

by either one of the two extreme long run growth rates γ = φ
1−α if x = 1 or γ = 0 if x = 0.

B Proof of Proposition 3

The proof of Proposition 3 basically follows Theorem 4.6 in Olivieri and Vares (2005). In order to make

this reading as much self consistent as possible, we sketch the proof rearranged to match our model and our

notations. We firstly specify the functional form for ∆. To this aim, we introduce the so called “Gibbs free

energy” 21:

fβ,J,h(m) = −
(
J

4
m2 + hm

)
+

1

β
· ε(m), (35)

where

ε(m) =
1 +m

2
ln

(
1 +m

2

)
+

1−m
2

ln

(
1−m

2

)
.

Finally, define

∆ = β (f(mM )− f(mL))

where f is as defined in (35), mM = 2x̄M − 1 and mL = 2x̄L − 1 and where x̄L and x̄M are, respectively,

the smallest and the middle solutions (recall that, under our assumptions on the values of the parameters,

this equation admits three real solutions x̄L < x̄M < x̄H) to

1

2
tanh

{
β

[
h− z + J

(
xt −

1

2

)]}
− xt +

1

2
= 0.

21In statistical mechanics, the Gibbs free energy characterizes the potential associated with the states of the system. In

particular, it can be proved that the equilibria mL and mH are local minimum points for f , whereas mM is a local maximum

point.
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In what follows, we organize the proof Proposition 3 into four steps. In the first step we provide a lower

bound for TN , in the second an upper bound. Finally, we prove part (a) and part (b) of the proposition. As

said, we only sketch the main results and refer the reader to Olivieri and Vares (2005) for further details.

Our aim is mainly to let the reader appreciate the probabilistic properties, which this proposition relies on.

i) There exists a positive constant c1 such that, for N large enough, and each positive integer T ,

P(TN ≤ T ) ≤ c1Te
−N∆. (36)

This fact follows from the properties of the stationary distribution of a Markov chain. Indeed, let us

define the stationary measure of (xNt )t≥0 as νN . It can be proved that

P(TN ≤ T ) ≤ T ·
νN (xNM )

νN (xNL )
= T · e−Nβ(f(mM )−f(mL)).

On the other hand, for N large enough, β f(mM ) − f(mL) ≥ ∆ − c2
N for a suitable constant c2.

Therefore, (36) easily follows by putting c1 = ec2 .

ii) For any positive sequence (ϕN )N≥1 such that ϕN →∞,

P(TN ≥ eN∆NϕN ) = 0. (37)

This follows from the fact that, for suitable constants c3 and c4,

c3e
N∆ ≤ E(TN ) ≤ c4N

2eN∆. (38)

For details on the proof of (38), we refer to Corollary 4.9 in Olivieri and Vares (2005). From (38) and

applying the Markov inequality, we obtain (37).

iii) Point (a) of Proposition 3 follows from the fact that

1− P
(

1

ϕN
eN∆ < TN < eN∆NϕN

)
= P

(
TN ≤

1

ϕN
eN∆

)
+ P

(
TN ≥ eN∆NϕN

)
.

Both terms of the RHS go to zero for any positive sequence (ϕN )N≥1 such that ϕN → ∞ due to i)

and ii), respectively. This proves part (a) in Proposition 3.

iv) Define the sequence of random variables (T̃N )N≥2, where T̃N := TN/γN and where γN is such that

lim
N→∞

N−1 ln(γN ) = ∆.

It can be shown that this sequence is tight and its limits τ along subsequences have the property that

P(τ > t+ s) = P(τ > t)P(τ > s).

This, in turns, shows that T̃N is asymptotically exponential, thus, memoryless. Finally,

lim
N→∞

E[T̃N ] =

∫ +∞

0
lim
N→∞

P(TN > sγN ) ds =

∫ +∞

0
e−sds = 1 ,

and this concludes the proof of Proposition 3.

To be precise, what we have shown in point iv) is true for a stopped version of xN : consider x̃N where

x̃Nt has the same transition probabilities of xNt for t ≤ TN and x̃Nt ≡ x̃NTN for t ≥ TN (it is a stopped

version of the original process at time TN ). It can be proved that the two processes are coupled up to

TN , so that the their probabilistic features are the same. Since we are interested in the trajectories up

to TN , working with xN or x̃N is exactly the same to our purposes. �
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Note, finally, that the transition from x̄L to x̄H can be analyzed exactly in the same way, by simply

considering ∆ = β (f(mM )− f(mH)). We would like to stress the fact that, differently from the common

notion of cycles in macroeconomics in which their periodicity is highly irregular and stochastic, in probability

theory the notion of cycles requires the periods of the transitions to be deterministic and constant. According

to this latter view, the tunneling time TN should converge to 1, rather that to an exponential random time

with average 1 as stated in Proposition 3. Therefore, even if this is not totally correct from a probabilistic

point of view, in our discussion we adopt the macroeconomic view and terminology by referring to the

metastability property as a cycling behavior.
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