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Abstract

A new semiparametric approach to model-based small area prediction for counts is pro-

posed and used for estimating the average number of visits to physicians for Health

Districts in Central Italy. The proposed small area predictor is based on defining an M-

quantile model for count data by extending the ideas in ? and ?. This predictor can be

viewed as an outlier robust alternative to the more commonly used Empirical Plug-in

Predictor that is based on a Poisson generalised linear mixed model with Gaussian ran-

dom effects. Results from the real data application and from a simulation experiment

confirm that the proposed small area predictor has good robustness properties and in

some cases can be more efficient than alternative small area approaches.

Keywords: bootstrap; generalized linear models; health survey; M-quantile regression; non-

normal outcomes; robust inference.

1 Introduction

The Health Conditions and Appeal to Medicare Survey (HCAMS) is a national, multistage

sample survey conducted periodically in Italy by the National Institute of Statistics. The

2012-13 survey is currently running with previous surveys having been conducted in 1999-
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care use of the non-institutionalized population of Italy. The questionnaire comprises of items

on basic health condition of individuals such as perceived health status and dietary habits

that are also surveyed annually by the Multipurpose Everyday Life Survey. In addition, the

survey covers specialized health topics on chronic and acute diseases and number of visits to

physicians and general practitioners.

The HCAMS is a multistage survey in which municipalities are the primary sampling

units (PSUs) and households are the secondary sampling units (SSUs). The 1999-2000 sur-

vey has about 1,449 PSUs (out of 8,102) and 52,332 households with approximately 120,000

individuals. Although the HCAMS is designed to provide reliable direct estimates at the level

of Administrative Region (NUTS2), there is also a need for estimates at further levels of geo-

graphic disaggregation. This is true in general for National Surveys, but particularly relevant

for surveys that collect health related information since in Italy health is managed mainly

locally at the level of NUTS2. In particular, policies are endorsed by Administrative Regions

by allocating resources and funds to Health Districts (HDs) that are in charge for local im-

plementation. HDs are defined by groups of contiguous municipalities and are not planned

domains in the HCAMS. A fairly large number of HDs have very small sample sizes and, as a

result, direct estimation using only the survey data is inappropriate as it yields estimates with

unacceptable levels of precision. The HDs represent, therefore, the small areas of interest in

this paper.

In particular, in this paper we are interested in producing estimates of the mean number of

visits to physicians within the past four weeks among people aged 65 or more for 60 HDs in

three Administrative Regions in Italy: Liguria, Toscana and Umbria. These are neighbouring

Regions located in the central part of Italy that have policies in place for assuring the quality

of health services for the elderly. Ageing of the population is a great concern in Italy given

that this country has the largest proportion of people aged 65 or more in Europe (20.3%

in 2011 according to the latest available figure). Liguria, Toscana and Umbria are three of

the regions with the highest proportion of elderly people in Italy with proportions of 26.7%,

23.3% and 23.1%, respectively.

The increasing demand for reliable estimates of various parameters at small area level

has led to the development of a number of efficient model-based small area estimation (SAE)
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methods (see ?, for a review of such methods). For example, the empirical best linear unbi-

ased predictor (EBLUP) based on a linear mixed model (LMM) is often recommended when

the target of inference is the small area average of a continuous response variable (?). Ro-

bust SAE inference under the LMM has recently attracted some interest (??). An alternative

approach to SAE that automatically allows for robust inference is to use M-quantile models

(?) to characterise between area heterogeneity (?).

Most of the variables in the HCAMS are binary or take the form of a count and are

therefore not suited to standard SAE methods based on LMMs. Working within a frequentist

paradigm, one can follow ? who propose an empirical best predictor (EBP) for a binary

response, or ? who extends these results to generalized linear mixed models (GLMMs).

Nevertheless, use of EBP can be computationally challenging (?). Despite their attractive

properties as far as modelling non-normal outcomes is concerned, fitting GLMMs requires

numerical approximations. In particular, the likelihood function defined by a GLMM can

involve high-dimensional integrals which cannot be evaluated analytically (see ???). In such

cases numerical approximations can be used, as for example in the R function glmer in the

package lme4. Alternatively, estimation of the model parameters can be obtained by using

an iterative procedure that combines Maximum Penalized Quasi-Likelihood (MPQL) and

REML estimation (?). Furthermore, estimates of GLMM parameters can be very sensitive

to outliers or departures from underlying distributional assumptions. Large deviations from

the expected response as well as outlying points in the space of the explanatory variables

are known to have a large influence on classical maximum likelihood inference based on

generalized linear models (GLMs).

Following a Bayesian paradigm, ? also consider the estimation of parameters related to

the number of visits to physicians using the American National Health Interview Survey.

They focus on the proportion of the population with at least one visit in the past twelve

months and use a Hierarchical Bayesian model in which a logistic model relates the individ-

ual’s probability of a doctor visit to his/her characteristics and, then, small area parameters

are modelled with respect to area specific covariates. ? describes a Hierarchical Bayes ap-

proach to fitting a GLMM based on an outlier-robust normal mixture prior for the random

effects and uses this model for SAE. ? proposes robust estimation of the fixed effects and the
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variance components of a GLMM, using a Metropolis algorithm to approximate the posterior

distribution of the random effects.

In this paper we present a new approach to SAE for counts based on M-quantile mod-

elling. The proposed approach does not depend on strong distributional assumptions nor on

a predefined hierarchical structure, and outlier robust inference is automatically allowed for.

Following ? and ? we extend the existing M-quantile approach for continuous data to the

case where the response is a count. As with M-quantile modelling of a continuous response

(?) random effects are avoided and between area variation in the response is characterised by

variation in area-specific values of quantile-like coefficients. In Section 2, we define the nota-

tion and briefly review SAE using GLMMs. In Section 3 we motivate the use of M-quantile

regression for estimating the mean number of visits to physicians with some exploratory

analysis of the HCMAS data. In particular, model diagnostics indicate departures from the

model assumptions and the use of robust estimation methods in this case may prove benefi-

cial for small area prediction. In Section 4, after reviewing M-quantile SAE for a continuous

response, we show how the approach for robust inference for GLMs proposed by ? can be ex-

tended for fitting an M-quantile GLM. Approaches for defining the M-quantile coefficients,

which play the role of pseudo-random effects in this framework, are discussed in Section

5 alongside the definition of small area predictors and corresponding Mean Squared Error

(MSE) estimators. In Section 6 we report the results from the application of the proposed

methodology for deriving estimates of the number of visits in primary health care outlets for

HDs in Italy. Results from a model-based simulation study aimed at empirically assessing

the performance of the proposed small area predictors are presented in Section 7. Section 8

concludes the paper with some final remarks and proposals for further work.

2 Small area prediction using GLMMs

Let us now briefly review small area prediction using a GLMM. Let U denote a finite pop-

ulation of size N which can be partitioned into D domains or small areas, with Ud denoting

population on small area d, d = 1, ..., D. The small area population sizesNd, for d = 1, ..., D

are assumed known. Let ydj be the value of the outcome of interest, for the purposes of this

paper a discrete or a categorical variable, for unit j in area d, and let xdj denote a p × 1
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vector of unit level covariates (including an intercept). It is assumed that the values of xdj are

known for all units in the population, as are the values zd of a q×1 vector of area level covari-

ates. We will see that the first requirement can be relaxed to some extent when there are no

continuous variables among the x’s. In the presence of categorical covariates, an equivalent

alternative representation of the assumed data structure is in the form of a cross-tabulation.

The aim is to use the sample values of ydj and the population values of xdj and zd to estimate

a proportion or a count of a characteristic in the small area d = 1, ..., D.

For discrete outcomes, model-based SAE conventionally employs a GLMM for µdj =

E[ydj|ud] of the form

g(µdj) = ηdj = xTdjβ + zTd ud, (1)

where g is a link function. When ydj is a count outcome the logarithmic link function is

commonly used and the individual ydj values in area d are assumed to be independent Poisson

random variables with

µdj = E[ydj|ud] = exp{ηdj} (2)

and Var[ydj|ud] = µdj . The q-dimensional vector ud is generally assumed to be independently

distributed between areas according to a normal distribution with mean 0 and covariance

matrix Σu. Σu depends on parameters δ = (δ1, . . . , δK), which are referred to as the variance

components and β in (1) is the vector of fixed effects. If the target of inference is the small

area dmean, ȳd = N−1d
∑

j∈Ud
ydj and the Poisson-GLMM (1) is assumed, the approximation

to the minimum mean squared error predictor of ȳd is N−1d [
∑

j∈sd ydj +
∑

j∈rd µdj]. Since

µdj depends on β and ud, a further stage of approximation is required, where unknown

parameters are replaced by suitable estimates. This leads to the Empirical Plug-in Predictor

(EPP) for the area d proportion ȳd under (2),

ˆ̄yEPP
d = N−1d

{∑
j∈sd

ydj +
∑
j∈rd

µ̂dj

}
, (3)

where µ̂dj = exp{η̂dj}, η̂dj = xTdjβ̂ + zTd ûd, β̂ is the vector of the estimated fixed effects and

ûd denotes the vector of the predicted area-specific random effects (see ????). In (3) sd and

rd denote the set of sampled (of size nd) and non-sampled (of size Nd − nd) units in small

area d, respectively.
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3 The HCAMS data and challenges

In this section we describe the data available for performing SAE and also present diagnostics

for the Poisson GLMM. These diagnostics allow us to motivate the use of the alternative

semiparametric approach we propose in this paper.

The data we consider in this paper are coming from the 1999-2000 HCAMS. We are

interested in producing estimates of the average number of visits to physicians within the

past four weeks for the elderly (aged 65 and above) in the 60 HDs of Toscana, Liguria and

Umbria. The total sample size for the three Regions is n = 4,021. Figure 1 presents a map

of the three regions of interest; HDs are color coded according to the sample size. Note that

5 HDs in Toscana and 1 in Umbria are out of sample areas, i.e. they have zero sample size.

The application of small area methodologies requires the estimation of a working model

using the survey data. At the second stage the estimated model parameters are combined with

census/administrative data. For this reason among the variables available from the survey, we

focus on those that are also available at the population level. One possible source of these

data is the Population Census run in Italy in 2001. The alternative is given by administrative

registers held at a municipality level and updated annually. Then, from all potential covariates

available in the survey data we select the following: 5-year age groups (65-69, 70-74, 75-79,

80-84, 85 and above), gender, marital status and region. An important property of the Poisson

model is that it allows for the analysis of individual or grouped data (using an offset term)

with equivalent results due to the fact that the sum of independent Poisson random variables

is also Poisson. This is useful when we have groups of individuals with identical covariate

values as it is the case with the present data.

Table 1 presents the results of the analysis of deviance from fitting a Poisson GLMM

with Normal random effects to the sample data with random intercepts specified at the level

of HD i.e. the target small areas. We note that age class and gender are significant. Region

appears to be non-significant, however, since here we are interested in prediction and regions

are closely related to HDs, we decided to leave the regional effect in the model. On the

other hand, marital status and the 2-way interaction terms are not significant. A Likelihood

Ratio Test (LRT) for the significance of the variance component has been also conducted.

The value of the test statistic is 33.695, with a p-value 3.22e−09, which provides evidence
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of significant between HD variability. Given that here we are testing whether the variance

component is zero, i.e. a value on the boundary of its parameter space, the p-value has been

determined using a 50:50 mixture between a χ2
0 and a χ2

1 distribution.

Figure 2 presents two plots of Pearson residuals from the Poisson GLMM (age class,

gender and region). The histogram clearly shows that the distribution of the residuals is

positively skewed and has some fairly large values. This is confirmed by the second plot,

representing the distribution of the residuals by HD: some HDs contain a number positive

residuals.

The skewed distribution of the residuals (Figure 2) indicates that the problem of overdis-

persion may arise here. Overdispersion is a common phenomenon in Poisson modelling, and

the Negative Binomial model is frequently used to account for overdispersion; see ?, ? and

?. We have tested for overdispersion comparing Poisson versus Negative Binomial GLM

(age class, gender and region) using the LRT and using the PB test by ? on Poisson model.

The results indicate significant overdispersion: the LRT is 834.07 (p-value < 2.2e-16) and

the Dean’s test PB is 43.42 (p-value < 2.2e-16). According to the literature, overdispersion

could arise from misspecification of the model, i.e. unobserved covariates. When we intro-

duce in the model (age class, gender and region as fixed effects) and a set of area random

effects for the Health Districts (HDs), some overdispersion persists. In fact, the ratio be-

tween the sum of squared Pearson residuals (7700.401) and the residual degrees of freedom

(4021-7= 4014) is greater than one, which suggests the presence of overdispersion (see ?).

Finally, Figure 3 plots the raw residuals against the fitted values for the number of visits

to physicians. The x-axis ranges between 0 and 20 in order to show clearly over 98% of the

observations. In the x-range between 8 and 20, there is no obvious pattern. However, for

x between 0 and 8 we see a pattern, which suggests higher variability and the presence of

a larger number of negative residuals when the predicted number of visits is small. These

diagnostics, showing the presence of potential model misspecification, suggest that the use

of an alternative to the Poisson GLMM may be justified in this case.

Before concluding this section we refer to the availability of population auxiliary infor-

mation from a Census or an administrative source, which is crucial for SAE. The information

needed for performing SAE in this case is given by the population sizes for groups defined
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by the age, gender, region, HD cross-classification. The population sizes can be combined

with the estimated model parameters to produce estimates of the target parameter for each

small area (HD). As mentioned above, one possible source of this data is the Population Cen-

sus in Italy in 2001, which is the one closest to the time of the survey we use in this paper.

An alternative source of population level auxiliary information is offered by administrative

registers in municipalities, which can be used for updating the small area estimates in the

intercensal period. In Section 6 the survey and the 2001 Census information are used for

producing small area estimates of the average number of visits to physicians in HDs.

4 M-quantile regression

In this Section we present an extension of linear M-quantile regression to count data follow-

ing ? and ?. We start by providing a fairly detailed presentation of M-quantile regression for

continuous outcomes before focusing on the case of count outcomes. In this Section we drop

subscript d for ease of notation.

4.1 M-quantile regression for a continuous response

The classic regression model summarises the behaviour of the mean of a random variable

y at each point in a set of covariates x. This provides a rather incomplete picture, in much

the same way as the mean gives an incomplete picture of a distribution. Quantile regression

summarises the behaviour of different parts (e.g. quantiles) of the conditional distribution

of y at each point in the set of the x’s. In the linear case, quantile regression leads to a

family of hyper-planes indexed by a real number q ∈ (0, 1). For a given value of q, the

corresponding model shows how the q-th quantile of the conditional distribution of y varies

with x. For example, if q = 0.5 the quantile regression hyperplane shows how the median

of the conditional distribution changes with x. Similarly, for q = 0.1 the quantile regression

hyperplane separates the lower 10% of the conditional distribution from the remaining 90%.

Suppose (xTj , yj), j = 1, . . . , n denotes the values observed for a random sample con-

sisting of n independent observations from a population, where xTj are row p-vectors of a

known design matrix X and yj is a scalar response variable corresponding to a realisation of
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a continuous random variable with unknown continuous cumulative distribution function F .

A linear regression model for the q-th conditional quantile of yj given xj is

Qy(q|xj) = xTj βq. (4)

An estimate of the q-th regression parameter βq is obtained by minimizing

n∑
j=1

|yj − xTj βq|{(1− q)I(yj − xTj βq ≤ 0) + qI(yj − xTj βq > 0)}.

Solutions to this problem are usually obtained by linear programming methods (?) and al-

gorithms for fitting quantile regression are now available in standard statistical software, for

example the library quantreg in R (?), the command qreg in Stata, and the procedure

quantreg in SAS.

Quantile regression can be viewed as a generalization of median regression. In the same

way, expectile regression (?) is a ‘quantile-like’ generalization of mean (i.e. standard) regres-

sion. M-quantile regression (?) integrates these concepts within a framework defined by a

‘quantile-like’ generalization of regression based on influence functions (M-regression). The

M-quantile of order q for the conditional density of y given the set of covariates x, f(y|x), is

defined as the solutionMQy(q|x;ψ) of the estimating equation
∫
ψq{y−MQy(q|x;ψ)}f(y|x)dy =

0, where ψq denotes an asymmetric influence function, which is the derivative of an asym-

metric loss function ρq. A linear M-quantile regression model yj given xj is one where we

assume that

MQy(q|xj;ψ) = xj
Tβq. (5)

That is, we allow a different set of p regression parameters for each value of q ∈ (0, 1).

Estimates of βq are obtained by minimizing

n∑
j=1

ρq(yj − xj
Tβq). (6)

Different regression models can be defined as special cases of (6). In particular, by varying

the specifications of the asymmetric loss function ρq we obtain the expectile, M-quantile

and quantile regression models as special cases. When ρq is the squared loss function we
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obtain the linear expectile regression model if q 6= 0.5 (?) and the standard linear regression

model if q = 0.5. When ρq is the loss function described by (?) we obtain the linear quantile

regression.

Setting the first derivative of (6) equal to zero leads to the following estimating equations

n∑
j=1

ψq(rjq)xj = 0, (7)

where rjq = yj − xTj βq, ψq(rjq) = 2ψ(s−1rjq){qI(rjq > 0) + (1 − q)I(rjq ≤ 0)} and

s > 0 is a suitable estimate of scale. For example, in the case of robust regression, s =

median|rjq|/0.6745, and we use the Huber Proposal 2 influence function, ψ(u) = uI(−c ≤

u ≤ c)+ c · sgn(u)I(|u| > c). Provided that the tuning constant c is strictly greater than zero,

estimates of βq are obtained using iterative weighted least squares (IWLS).

4.2 M-quantile regression for count data: A Quasi-likelihood approach

The use of M-quantile regression with discrete outcomes is challenging as in this case there

is no agreed definition of an M-quantile regression function (??). A popular approach for

modelling the mean of a discrete outcome as a function of predictors is via the use of GLMs

by assuming that the response variable follows a distribution that is a member of the expo-

nential family of distributions using an appropriate link function.

In the same way that we impose in the linear specification (4) the continuous case, we

impose an appropriate continuous (in q) specification on MQy(q|X;ψ) for count data (??).

The most obvious specification for count data is the log-linear specification. That is, we

replace (5) by

MQy(q|xj;ψ) = tj exp(xTj βq), (8)

where tj is an offset term. Alternative parametric specifications such as the use of a Negative

Binomial model to capture excess dispersion in the data or a Zero Inflated Poisson model

is work in progress. For estimating βq, following ??, we consider extensions of the robust

version of the estimating equations for GLMs by ? to the M-quantile case. In particular, ?

propose a robust version of the estimating equations for GLMs and consider two popular
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GLMs namely, the binomial and the Poisson models. Estimating equations are defined by

Ψ(β) := n−1
n∑
j=1

{
ψ(rj)w(xj)

1

σ(µj)
µ′j − a(β)

}
= 0, (9)

where rj = σ(µj)
−1(yj − µj) are Pearson residuals, E[Yj] = µj , µ′i is its derivative with

respect to β, Var[Yj] = σ2(µj), and a(β) = n−1
∑n

j=1E[ψ(rj)]w(xj)µ
′
j/σ(µj) ensures

the Fisher consistency of the estimator. The bounded ψ function is introduced to control

deviation in y-space, whereas weights w(·) are used to down-weight the leverage points.

When w(xj) = 1, j = 1, . . . , n ? call the estimator the Huber quasi-likelihood estimator.

Notice that when ψ is the identity function we obtain the classic quasi-likelihood estimator

for GLMs.

For M-quantile regression the estimating equations (9) can be re-written as

Ψ(βq) :=
1

n

n∑
j=1

{
ψq(rjq)w(xj)

1

σ(MQy(q|xj;ψ))
MQ′y(q|xj;ψ)− a(βq)

}
= 0, (10)

where rjq = σ(MQy(q|xj;ψ))−1(yj − MQy(q|xj;ψ)), σ(MQy(q|xj;ψ)) =

= MQy(q|xj;ψ)1/2, MQ′y(q|xj;ψ) = MQy(q|xj;ψ)xTj and a(βq) is a correction term to

obtain unbiased estimators, which is defined following the arguments in ?,

a(βq) = n−1
n∑
j=1

2wq(rjq)w(xj)
{
cP (Yj > i2 + 1)− cP (Yj 6 i1)+

MQy(q|xj;ψ)

σ(MQy(q|xj;ψ))
[P (Yj = i1)− P (Yj = i2)]

}
MQy(q|xj;ψ)1/2xTj ,

with

• i1 = bMQy(q|xj;ψ)− cσ(MQy(q|xj;ψ))c,

• i2 = bMQy(q|xj;ψ) + cσ(MQy(q|xj;ψ))c and

• wq(rjq) = [qI(rjq > 0) + (1− q)I(rjq 6 0)].

When w(xj) = 1, j = 1, . . . , n a Huber quasi-likelihood estimator is again obtained. An al-

ternative simple choice forw(xj) suggested by robust estimation in linear models isw(xj) =√
1− hj where hj = xTj (

∑n
j=1 xjx

T
j )−1xj , i.e. the jth diagonal element of the hat matrix.

The solution to the estimating equations (10) can be obtained numerically by using a
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Fisher scoring procedure. Note that (9) can be obtained as special case of (10) for specific

choices of q. In particular, when q = 0.5 we obtain (9). Moreover, linear M-quantile regres-

sion is a special case of (10) if the the linear link function MQy(q|xj;ψ) = xTj βq is used

and c tends to infinity. R routines for fitting M-quantile regression for count data are available

from the authors.

4.3 Quantiles, M-quantiles and Expectiles: Linking the alternative es-

timation approaches

The problem with estimating conditional quantiles of counts is caused by the combination

of a non-differentiable sample objective function with a discrete outcome. In this section we

theoretically link the proposed approach to modelling M-quantiles of counts to alternative

estimation approaches that they have been proposed in the literature.

An alternative approach to modelling conditional location parameters for counts was

proposed by ?. In particular, ? proposed using asymmetric maximum likelihood (AML) es-

timation. Starting with the Poisson deviance, the AML estimate β̂w for β is defined as

β̂w = arg max
b

n−1
n∑
j=1

[yj log(yi/µj(b))− (yj − µj(b))]wI{yj>µj(b)}, (11)

where µj(b) = tj exp(xTj b). From (11), by vector differentiation with respect to b, the

following estimating equation is obtained:

n−1
n∑
j=1

[
(yj − µj(b))xTj

]
wI{yj>µj(b)} = 0. (12)

Efron’s approach results in estimates of conditional location parameters for counts that

are similar to the conditional expectiles proposed by ?. As ? pointed out, asymmetric maxi-

mum likelihood estimation can be seen as the result of smoothing the objective function used

to define the quantile regression estimator.

The approach we propose in this paper for estimating M-quantile regression also uses

an objective function that has a degree of smoothness. In particular, the smoothness can

be increased by setting the tuning constant in the influence function equal to a large value
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in which case estimates of the model parameters from our approach are those obtained by

Efron’s asymmetric maximum likelihood estimation for a specific choice of w. In particular,

setting the tuning constant equal to a large value, (10) can be written as:

Ψ(βq) := n−1
n∑
j=1

{
(yj −MQy(q|xj;ψ))wq(rjq)x

T
j

}
= 0, (13)

where wq(rjq) can be also written as wq(rjq) =
[(

q
1−q

)
I{yj > MQy(q|xj;ψ)} + I{yj 6

MQy(q|xj;ψ)}
]
. Setting w = q

(1−q) in Efron’s estimating equation (11) results in estimates

that are equivalent to those obtained from our proposed estimating equation (13). At this

point, a comment about the use of the Poisson deviance is needed. As Efron (1992) pointed

out, the Poisson assumption enters the calculations only in that the fitting algorithm uses

the Poisson deviance function. Efron’s asymmetric maximum likelihood approach does not

assume a specific form for overdispersion. Nevertheless, it gives reliable estimates of the

conditional percentiles even in presence of overdispersion, when the Poisson assumption is

incorrect.

A further alternative approach for estimating conditional quantiles for counts has been

proposed in the literature by ? and ?. For overcoming the lack of smoothness, the authors

propose the use of jittering. In particular, smoothness is achieved by adding to the count

outcome noise generated, for example, from a Uniform(0, 1). The quantiles of the resulting

continuous outcome are then directly modelled by using the Asymmetric Laplace distribu-

tion. Modelling the conditional quantiles of counts in this way is possible because there is

a one-to-one relation between the conditional quantiles of the count outcome and those of

the jittered outcome. Quantiles have a more natural interpretation compared to M-quantiles

and expectiles. However, since different types of location parameters are used here only for

characterizing the variability in the data and subsequently for prediction, all three approaches

can be used for developing the methodology presented in the next section. Nevertheless, the

focus of this paper will be on M-quantiles.
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5 Robust prediction for small area counts

5.1 The M-quantile small area population model and point estimation

Linear mixed effects models and GLMMs include random area effects to account for between-

area variation. The M-quantile approach avoids parametric specification of the random ef-

fects, allowing between area differences to be characterised by the variation of area-specific

M-quantile coefficients. To start with, the population model is specified at the unit level. De-

fine qdj such that ydj = MQy(qdj|xdj;ψ). Under the log-linear specification, the population

model is defined by

MQy(qdj|xdj;ψ) = exp(xTdjβqdj).

? used the term M-quantile coefficients for qdj . The variability in qdj reflects variability at

the unit level. If a hierarchical structure does explain part of the variability in the population

data, units within areas are expected to have similar M-quantile coefficients. An area-specific

M-quantile coefficient is then defined as θd = E[qdj|d].

Estimation of the parameters in linear mixed models and in GLMMs is implemented by

means of parametric assumptions such as that the random effects are normally distributed.

Efficient prediction of random effects is crucial due to their central role in SAE. Although

for linear models closed form solutions exist, for GLMMs this is not the case. For GLMMs

and from a frequentist perspective predicted random effects are obtained by using approxi-

mations to the likelihood, for example via first or second order penalised quasi-likelihood, or

numerical methods such as Gaussian quadrature. Hence, for GLMMs outlier robust predic-

tion of random effects becomes more challenging and the use of semi-parametric methods

may offer a simpler solution to outlier robust estimation.

As discussed at the start of this section, a key concept in the application of M-quantile

methods to data with group structure is the identification of a unique ‘M-quantile coefficient’

associated with each observed datum. These coefficients are then averaged, in some suitable

way, over observations making up the group to define a group level M-quantile coefficient,

which can be used to characterise the distribution of y|x within the group in very much the

same way as a random group effect. In the continuous y case, the M-quantile coefficient for

observation j is simply defined as the unique solution qj to the equation yj = M̂Qy(qj|xj;ψ).
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However, for count data the equation yj = M̂Qy(qj|xj;ψ) does not have a solution when

yj = 0. To overcome this problem we use the definition by ?:

M̂Qy(qj|xj;ψ) =

 k(xj) yj = 0

yj yj = 1, 2, . . .

A possibility is k(xj) = M̂Qy(qmin|xj;ψ) where qmin denotes the smallest q-value in the

grid of q-values used to determine the qj values of the observed units. However, this im-

plies that qj = qmin whenever yj = 0, irrespective of the value of xj , which does not ap-

pear to be appropriate. One way to tackle this is by following the same line of argument

that ? used in motivating the definition of qj for the Bernoulli case. This implies that an

observation with value y1 = 0 corresponds to a smaller q-value than another with value

y2 = 0 when M̂Qy1(0.5|x1;ψ) > M̂Qy2(0.5|x2;ψ). A way to define this is by setting

k(xj) = min{1 − ε, [M̂Qy(0.5|xj;ψ)]−1}, where ε > 0 is a small positive constant. Then

the M-quantile coefficient for unit j is qj , where

M̂Qy(qj|xj;ψ) =


min

{
1− ε, 1

exp(xTj β̂0.5)

}
yj = 0

yj yj = 1, 2, . . .

(14)

For a detailed discussion see ??.

Provided there are sample observations in area d, an area d specific M-quantile coeffi-

cient, θ̂d can be defined as the average value of the sample M-quantile coefficients in area d,

otherwise we set θ̂d = 0.5. Following ?, the M-quantile predictor of the average count ȳd in

small area d is then

ˆ̄yMQ
d = N−1d

{∑
j∈sd

ydj +
∑
j∈rd

M̂Qy(θ̂d|xdj;ψ)
}
, (15)

where M̂Qy(θ̂d|xdj;ψ) = exp{xTdjβ̂θ̂d}.
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5.2 Mean squared error estimation

The Mean Squared Error of the predictor ˆ̄yMQ
d is defined as

MSE(ˆ̄yMQ
d ) = E[(ˆ̄yMQ

d − ȳd)2]. (16)

Following ? we propose bootstrap-based estimator of the MSE of the ˆ̄yMQ
d . For developing

the bootstrap procedure we express the linear predictor of the M-quantile regression model

in a form that mimics the mixed effects model form,

ydj = xTdjβ0.5 + xTdj(βθd − β0.5). (17)

Averaging the last term on the right-hand side of (17) for each small area results in a term

uMQ
d which can be interpreted as a pseudo-random effect for area d in that it quantifies an

average difference of the area-specific M-quantile fit from the median fit.

The steps of the bootstrap procedure are summarized below:

• (Step 1) Using sample s, fit (8) and obtain predictors ˆ̄yMQ
d . For each small area compute

the pseudo-random effect ûMQ
d by computing the E(xTdj(βθd − β0.5)) for each area. It

is convenient to re-scale the elements ûMQ so that they have mean exactly equal to

zero.

• (Step 2) Construct the vector ûMQ∗ = {ûMQ∗
1 , . . . , ûMQ∗

D }T , whose elements are ob-

tained by extracting a simple random sample with replacement of size D from the set

{ûMQ
1 , . . . , ûMQ

D }T .

• (Step 3) Generate a bootstrap population U∗ of size N =
∑D

d=1Nd, by generating

values from a Poisson distribution with

µ∗dj = exp{xTdjβ̂0.5 + ûMQ∗
d }, j = 1, . . . , Nd

and calculate the bootstrap population parameters ȳ∗d, d = 1, . . . , D.

• (Step 4) Extract a sample s∗ of size n from the bootstrap population U∗ using the

assumed sampling design and compute small area estimates with the bootstrap sample

ˆ̄yMQ∗
d , d = 1, . . . , D.
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• (Step 5) Repeat steps 2-4 B times.

• (Step 6) Denoting by ˆ̄y
MQ∗(b)
d the M-quantile predictor in the b-th bootstrap replication

and by ȳ
∗(b)
d the corresponding population value in the b-th bootstrap population, a

bootstrap estimator of MSE is

MSE(ˆ̄yMQ
d ) = B−1

B∑
b=1

(
ˆ̄y
MQ∗(b)
d − ȳ∗(b)d

)2
. (18)

The proposed bootstrap is not the only approach to MSE estimation. An alternative approach

would have been to use the random effects block bootstrap (?), which is free both of the

distribution and the dependence assumptions of the usual parametric bootstrap. ? adapted

the block bootstrap for estimating the MSE of the M-quantile small area predictor in the

case of a Bernoulli outcome. A similar approach can be used in the case of a count outcome.

A comparison between the alternative approaches to MSE estimation will be discussed in

future work.

6 Application

In this section we present the results from the application of the SAE methods to the HCAMS

data for estimating the average number of visits to physicians among the elderly (aged 65

and above) and corresponding MSE estimates for HDs in three Italian regions. The follow-

ing small area predictors are being considered: (i) the direct estimator, which is defined as a

ratio estimator using the calibration weights available in the survey; (ii) the EPP in (3) based

on the Poisson GLMM with random intercepts specified at the level of HD and fixed effects

including age class, gender and region (see the results in Table 1); (iii) the M-quantile pre-

dictor (15) based on the M-quantile model (see Section 4.2) with the same fixed effects as

in the case of the Poisson GLMM. The Poisson GLMM and the M-quantile model are fitted

using the aggregate data with appropriate offset terms.

For the GLMM using the aggregate data does not impact upon the results due to the

equivalence between the the individual and the aggregate level analysis (with appropriate off-

set terms). In fact, an aggregate level analysis is useful when we have groups of individuals

with identical covariate values as it is the case with the HCAMS data. For M-quantile regres-

17



sion and for the AML estimator by Efron (1992), the model cannot be estimated for values

of q below the proportion of 0’s in the sample. It is easy to see this since I{yj 6 exp(xTj β̂q)}

is necessarily equal to 1 when yj = 0 (see ?, for details). In the HCAMS data there are 2298

units with the value of visits equal to 0 (57%), so the M-quantile regression model cannot

be fitted for values of q 6 0.57. This can in turn create problems in the application of the

small area M-quantile methodology and in particular in the estimation of the M-quantile

coefficient associated with each datum and hence in the computation of the area-specific

M-quantile coefficients, θd. In order to enable a comparison between the M-quantile and

GLMM methodologies, we have decided to use aggregate data in particular, the data de-

fined by the cross-classification of the sample according to 5-year age groups (65-69, 70-74,

75-79, 80-84, 85 and above), gender and HD.

For the M-quantile model the ψ function is set to be the Huber Proposal 2 with the tuning

constant c = 1.6 (?). The estimates of the model parameters from Efron’s (1992) method

(using the vgam function with family equal to amlpoisson in R) and those obtained by M-

quantile model, when setting Huber’s tuning constant equal to a large value, are equivalent,

which is a confirmation of the theoretical link described in Section 4.3.

Model selection is carried out via a robust stepwise procedure based on the Huber quasi-

deviance at q = 0.5 (?). The analysis of deviance reported in Table 2 shows that the auxiliary

variables age, gender and region, added sequentially, are highly significant on the basis of

their deviance value. Interactions between pairs of these variables are again nonsignificant.

Table 3 reports the estimated βq coefficients at q = 0.5, alongside corresponding standard

errors obtained by using the results in ? and p-values. Moreover Table 3 reports the estimated

β coefficients, their standard errors and p-values for the Poisson GLMM. The results confirm

what we expected: Controlling for the effects of gender and region, the rate of visiting physi-

cians increases as people grow older, particularly for those over 75 years old. Controlling for

the effects of age and region, women visit physicians more often than men. This result can

be explained by the the fact that women are more prone to some types of chronic diseases

such as osteoporosis and varicose veins that can potentially require more intensive health

care. Other things being equal, Umbria and Toscana show an overall higher rate of visits to

physicians than Liguria.

18



Efficient estimates of area effects are necessary for SAE via GLMMs. Similarly, estima-

tion of M-quantile coefficients is necessary for SAE using the M-quantile model proposed in

this paper. Figure 4 shows how the standardized M-quantile coefficients estimated with (14)

are related to the standardized area effects estimated using the glmer function in R. Figure 4

shows that the relationship between the estimated area effects and the estimated M-quantile

coefficients is strong. The correlation between the estimated area effects and the estimated

M-quantile coefficients is 0.91. This result suggests that M-quantile coefficients are compa-

rable to estimated area effects obtained by using standard GLMM fitting procedures as far as

capturing intra-area (domain) variability is concerned.

For comparing the performance of the different small area estimators we must use a set of

diagnostics. Such diagnostics are suggested in ?. Model-based estimates should be (i) ‘close’

to the direct estimates and (ii) more precise than direct estimates. The first diagnostic is

based on the idea that if model-based estimates are ‘close’ to the small area value of interest,

then unbiased direct estimates are considered like random variables whose expected value

corresponds to the value of the model-based estimates. In other words, the model-based

estimates should be unbiased predictors of direct estimates. To validate the reliability of the

model-based small-area estimates, therefore, we use the goodness of fit (GoF) diagnostic

and the values of the coefficient of variation (CV). The former inversely weights the squared

difference between model-based and direct estimates by their variance and sums over all

areas. This sum gives more weight to differences from more reliable direct estimates than

from less reliable ones. The sum is tested against a χ2 distribution to provide a significance

test of bias of the model-based estimates relative to their precision (?).

Overall, the correlation between the model-based estimates and the direct estimates is

high and positive, which indicates that the model-based estimates are close to the direct

estimates (Direct/M-quantile correlation is 0.87 and Direct/EPP correlation is 0.95). This

result for the M-quantile estimates is confirmed by Figure 5 where the direct estimates are

plotted against the M-quantile estimates: we note that M-quantile estimates appear to be

close to the direct estimates of the total number of visits to physicians.

The GoF diagnostic is based on the null hypothesis that the model-based estimates are

equal to the expected values of the direct estimates; the statistic has a χ2 distribution with
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degrees of freedom equal to the number of small areas. The GoF diagnostic is computed

using the following Wald statistic for every model based estimator

W =
∑
d

{ (ˆ̄ydirect
d − ˆ̄ymodel

d )2

[v̂ar(ˆ̄ydirect
d ) + m̂se(ˆ̄ymodel

d )]

}
.

The value from the test statistic W is compared against the value from a χ2 distribution with

D = 54 degrees of freedom. In our case, this value is 72.15 at 5% level of significance. For

estimating the MSE of the M-quantile estimates, we use the bootstrap procedure outlined

earlier in this paper and for the EPP estimates we use the bootstrap mean squared error

estimator proposed by ?. Variance estimates for the direct estimator have been computed

by taking into account the complex two stage design employed for HCAMS. In particular,

variance estimates for the estimate of the average number of visits to physicians has been

computed separately for each of the three regions to provide a first estimate of the design

effect. Then, following ?, Section 2.6, the design effects have been recomputed to account

for the fact that the elderly constitute a sub-domain that cuts across PSUs (the final deff

values for each small area range between 0.9 and 1.5). Using the derived MSE estimates,

the values of the GoF are 27.3 for the M-quantile predictor and 15.9 for EPP. These results

indicate that all model-based estimates are not statistically different from the direct estimates

but are potentially more efficient.

Figure 6 shows the distribution, across HDs, of the estimated CVs (expressed in per-

centage terms) of the direct (solid black line) and model-based estimates (blue denotes M-

quantile estimates and red denotes EPP estimates). The estimated gains of the model-based

predictors over the direct estimator are large, particularly for HDs with small sample sizes.

Generally, the M-quantile estimates have a smaller estimated CV than the corresponding

EPP estimates.

Moreover, in order to evaluate the precision of the M-quantile predictor, in Table 4 we

report the number of HDs with values of CV less than 16.6%, between 16.6% and 33.3% and

over 33.3% for direct, EPP and MQ estimators for three groups of areas formed according

to area-specific sample sizes. These values of CV are suggested by ? to provide quality level

guidelines for publishing tables: estimates with a coefficient of variation less than 16.6% are

considered reliable for general use. Estimates with coefficient of variation between 16.6%
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and 33.3% should be accompanied by a warning to users. Estimates with coefficients of

variation larger than 33.3% are deemed to be unreliable. Table 4 shows that the M-quantile

estimator provides reliable estimates. Only for two areas with sample size less than 24 the

values of CV are between 16.6% and 33.3%. The MQ estimates are more reliable than those

of the direct and the EPP when the sample sizes are small. For large sample sizes (nd > 100)

the M-quantile and EPP predictors appear to be equivalent.

In Figure 7 we compare the maps obtained for the average number of visits to physicians

in HDs of Liguria, Toscana and Umbria in 2000 as estimated by the direct, the M-quantile

and the EPP based estimators. Note that we have used the same cut-points to depict the three

maps. Most HDs have similar levels of average number of visits to physicians, but there are

some areas deviating from the bulk of the distribution in both directions.

As anticipated by the aforementioned analyses, the estimates in different maps are all

comparable. However, those maps based on the two model-based predictors are more alike

and show a smoother pattern as opposed to the map of direct estimates. In addition, model-

based methods allow for estimates for those areas with zero sample sizes for which the direct

estimator cannot be computed.

7 Simulation study

The purpose of this simulation experiment is to compare the performance of the M-quantile

predictor against that of the EPP predictor and the direct estimator and to evaluate the perfor-

mance of the bootstrap mean squared estimator (18) proposed in Subsection 5.2. The simu-

lated data are generated by using the xTdj values, the estimated β̂ = (−0.44, 0.05, 0.28, 0.27, 0.29,−0.13, 0.16, 0.14)

and the estimated variance component ϕ̂ = 0.192 obtained by fitting the GLMM to the real

data of Section 6. In each run of the simulation aggregated y values are generated for the

groups given by the cross-classification of gender by age group for each of D = 54 small

areas for which we have sample values. In total, we have ten groups for each small area.

The value of the y variable for each cell ydk (d = 1, . . . , D, k = 1, . . . , 10) is calculated as

Poisson(µdk) with µdk = Ndk exp{ηdk} and ηdk = xTdkβ̂ + ud, where ud are independently

drawn from a normal distribution with mean 0 and variance ϕ̂. Here, T = 1, 000 populations

are generated and the true values of the average number of visits for each of the 54 sampled
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HDs of Liguria, Toscana and Umbria, ȳd = N−1d
∑10

k=1 ydk, d = 1, . . . , D, of the synthetic

populations are then computed.

For each population, sample values ydk for each cell are generated from a Poisson(µ∗dk)

with µ∗dk = ndk exp{xTdkβ̂+ud}, where ud is the value of random effect drawn previously to

create the population, and according to two scenarios:

• (0) - No outliers.

• (M) - Measurement-type error: 2%, 5%, 10% of randomly chosen response values has

been changed from ydk to ydk = ydk + 10.

For each sample, the M-quantile, the EPP and the direct estimator are used to estimate

the small area average ȳd, d = 1, . . . , D. The performance of different small area estimators

are evaluated with respect to two criteria: the bias and the root mean squared error (RMSE).

Empirical values of the bias and of the mean squared error for a small area estimator are

obtained as T−1
∑T

t=1(ˆ̄ydt − ȳdt) and T−1
∑T

t=1(ˆ̄ydt − ȳdt)2, respectively. Here ȳdt denotes

the actual area d value at simulation t and the predicted value is denoted by ˆ̄ydt. The median

and maximum value of the absolute Bias and the median value of RMSE over small areas

are presented in Table 5. The results confirm our expectations regarding the behaviour of the

estimators: under the (0) scenario the EPP performs better than the M-quantile in terms of

RMSE, whereas there is no noticeable difference between the three estimators in terms of

bias. The bias of the direct estimator can be explained by the approach we used to simulate

the data. In particular, in this case not only the population is simulated at each Monte-Carlo

run, but in addition the sample is generated under the Poisson assumption. This process may

introduce some technical bias that affects the performance of the direct estimator. Further-

more, relatively larger values for the bias are displayed for those areas with a smaller sample

size. This is expected because we are using a ratio type estimator whose bias can be non-

negligible when the sample size is very small. The M-quantile predictor is the best in terms

of bias and RMSE under the (M) scenarios and it is clearly superior to alternative estimators

as contamination increases.

Regarding the second purpose of the simulation study, i.e. the evaluation of the perfor-

mance of the bootstrap MSE estimator (18) proposed in Section 5.2, we use the data gen-

erated for scenarios (0) and (M)-10% and a subset of small areas: D = 14, the HDs of the
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Region Liguria. The results of the MSE estimator, based on 500 bootstrap iterations, for each

scenario are shown in Table 6 where we report the median values (over areas and simula-

tions) of the bias and the root mean squared error, expressed in relative terms (%). The MSE

estimator shows small bias and a good stability under both scenarios. In particular, under

scenario (M)-10% MSE estimates tend to be biased up and the Relative RMSE increases

but not considerably compared to the no-contamination scenario. Table 6 also shows that

the proposed MSE estimator generates nominal 95 per cent confidence intervals with some

under coverage.

8 Final remarks

An M-quantile model for count data is proposed and used for small area prediction. This

presents a semiparametric approach to small area prediction that reduces the need for para-

metric assumptions and allows for outlier robust estimation. The results from the model-

based simulation and the real data application indicate that the proposed method provides a

reasonable and useful alternative to existing methods specifically when the assumptions of

parametric models are not valid.

Despite the fact that the proposed methodology provides encouraging results, further

research is necessary. To start with, the estimation of the area quantile coefficients is chal-

lenging and alternative approaches should be investigated. Developing analytic estimators of

the MSE, although challenging, is something that can be potentially very useful as it will

reduce the computational burden. Taking into account the presence of overdispersion in data

by using alternative approaches for example, a Negative Binomial M-quantile model (see ?)

might offer some efficiency gains in SAE. Finally, developing design-consistent small area

estimators under the M-quantile model is a topic of interest especially for those working in

survey sampling from a design-based or a model-assisted perspective.
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Table 1: Analysis of deviance table from fitting Poisson GLMMs to the HCAMS dataset.
Covariates Resid. df df χ2 value p-value
Null 4019
age 4015 4 59.590 1.5e-11
age, gender 4014 1 12.816 0.0003
age, gender, marital status 4011 3 2.277 0.5170
age, gender, region 4012 2 4.196 0.1227
age, gender, region, age × gender 4008 4 1.165 0.8838
age, gender, region, region × gender 4010 2 0.746 0.6888
age, gender, region, region × age 4004 8 8.962 0.3455

Table 2: Analysis of quasi-deviance table for the M-quantile model at q = 0.5.
Covariates Resid. df df χ2 value p-value
Null 506
age 502 4 52.473 1.0e-10
age, gender 501 1 10.375 0.0013
age, gender, region 499 2 10.991 0.0041

Table 3: Estimated M-quantile coefficients (βq) at q = 0.5 and Poisson GLMM coefficients
and corresponding standard errors at . The baseline for age is group 65-69, for variable
gender is female and for region is Liguria.

Covariates βq β
Estimate Std. Error p-value Estimate Std. Error p-value

Intercept -0.411 0.047 1.2e-09 -0.444 0.073 1.2e-09
age 70-74 0.029 0.052 0.2854 0.055 0.050 0.2731
age 75-79 0.245 0.051 1.1e-06 0.274 0.049 2.4e-08
age 80-84 0.211 0.069 0.0011 0.267 0.064 3.1e-05
age >84 0.256 0.064 3.1e-05 0.293 0.060 1.4e-06
gender -0.125 0.038 0.0005 -0.130 0.080 0.0003
region Toscana 0.110 0.044 0.0067 0.164 0.080 0.0407
region Umbria 0.149 0.046 0.0007 0.142 0.094 0.1327

Table 4: Number of HDs with values of CV less than 16.6%, between 16.6% and 33.3% and
over 33.3% for direct estimator, EPP and MQ predictor grouped by area sample sizes.

Estimator CV ni Total
<24 24-100 101-556

Direct
< 16.6% 0 10 9 19

16.6%− 33.3% 2 26 2 30
> 33.3% 3 2 0 5

EPP
< 16.6% 2 34 11 47

16.6%− 33.3% 3 4 0 7
> 33.3% 0 0 0 0

MQ
< 16.6% 3 38 11 52

16.6%− 33.3% 2 0 0 2
> 33.3% 0 0 0 0
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Table 5: Model-based simulation results: performances of predictors of small area counts.
Scenarios (0) and (M), Contamination: 2%, 5%, 10%, D = 54.

Predictor/Scenario (0) (M) 2% (M) 5% (M) 10%
Median values of Absolute Bias

EPP 0.0024 0.0360 0.0863 0.1814
M-quantile 0.0085 0.0095 0.0299 0.0699
Direct 0.0147 0.0318 0.0828 0.1785

Maximum value of Absolute Bias
EPP 0.0809 0.1050 0.1826 0.3837
M-quantile 0.0112 0.0775 0.1356 0.1974
Direct 0.0970 0.1431 0.2891 0.5553

Median values of RMSE
EPP 0.0973 0.1217 0.1624 0.2548
M-quantile 0.1072 0.1088 0.1163 0.1410
Direct 0.1272 0.1562 0.1966 0.2790

Table 6: Performance of the bootstrap MSE estimator (18). Scenarios (0) and (M)-10%,
D = 14.

Indicator/Scenario (0) (M) 10%
Relative bias -3.05 1.61
Relative RMSE 27.44 31.09
Coverage rate (95% nominal) 90% 86%

Figure 1: Sample sizes in Health Districts of Liguria, Toscana and Umbria in 2000.
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Figure 2: Model fit diagnostics for the Poisson GLMM: histogram of Pearson residuals (left)
and box-plots of Pearson residuals by Health District (right).
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Figure 3: Model fit diagnostics for the Poisson GLMM: raw residuals Vs. predicted values.
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Figure 4: Estimated M-quantile coefficients vs. predicted random area effects (standardized
values).
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Figure 5: Total number of visits to physicians in Health Districts of Liguria, Toscana and
Umbria in 2000: Model-based M-quantile estimates versus corresponding direct estimates.
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Figure 6: Estimated CVs for direct estimates (solid line) and model-based estimates. Esti-
mated CVs for the M-quantile predictor are represented by the dashed blue line and estimated
CVs for the EPP are represented by the dashed red line. HDs are ordered by increasing sam-
ple size. The last six areas are out of sample areas.
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Figure 7: Maps of the direct, M-quantile and EPP based estimates of the average number of
visits to physicians in Health Districts of Liguria, Toscana and Umbria in 2000.
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