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Abstract

We analyze the implications of environmental policy on pollution in a stochastic framework with finite

horizon and sustainability concern. The social planner seeks to minimize the social (environmental and

economic) costs associated with pollution. We allow for the planner to attach different relative weights to

the discounted and end-of-planning-horizon costs in order to assess how sustainability concern might affect

the optimal level of policy intervention. We show that the optimal environmental policy increases with

the degree of sustainability concern, reducing thus the amount of pollution the society is forced to bear.

A calibration based on world CO2 data supports our conclusions, further highlighting the importance of

higher degrees of sustainability concern to achieve greener long run outcomes. It also allows us to show

that under a realistic model’s parametrization the optimal environmental policy tends to rise with higher

degrees of uncertainty in a precautionary manner.
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1 Introduction

Economic activities give rise to several environmental problems and how to regulate such an economic and

environmental trade-off is still nowadays a critical open question. One of the issues which has attracted the

largest interest in literature is linked to how to optimally control pollution. After decades of researches and

debates, it is now clear to both academics and policymakers that regulating polluting activities is all but

trivial. This is due to the fact that pollution contributes to several environmental problems, like those related

to its transnational diffusion (Ansuategi and Perrings, 2000; Ansuategi, 2003) and climate change (Nordhaus,

1982; Bollen et al., 2009), but it might also generate economic benefits, like increasing competition and

promoting technological progress (Porter and van der Linde, 1995; Buonanno et al., 2003). Despite the very

large body of studies that can be found in literature, two aspects of the pollution control problem have

been only marginally analyzed thus far: the implications of uncertainty on pollution and environmental

policy1, and its relation with sustainability and intertemporal equity. This paper tries exactly to fill these

gaps by developing a pollution control model which might help policymakers to make better decisions in

the determination of the optimal environmental policy in a stochastic framework with rising sustainability

concern.
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The pollution control problem is quite dated and it consists of determining the optimal policy intervention

in order to minimize the social costs (Bawa, 1975) or alternatively maximize the social benefits (Forster,

1975) associated with economic activities, by taking into account both economic and environmental effects.

Some earlier studies include Forster (1972), and Keeler et al. (1973), while more recent works are represented

by van der Ploeg and Withagen (1991), Athanassoglou and Xepapadeas (2012), and Saltari and Travaglini

(2014). With the exception of Athanassoglou and Xepapadeas (2012) who develop a quite sophisticated

and cumbersome robust pollution control model under Knightian uncertainty, all the aforementioned papers

consider pollution to be perfectly known and deterministic. This is obviously a very strong simplification

of reality in which, due to the uncertainty surrounding environmental and ecological dynamics, very little

is known about the evolution of pollution. Since several developing countries are nowadays experiencing

substantial increases in their income levels, accompanied by dramatic increases in emissions, energy demand

and use of natural resources (Olivier et al., 2012; U.S. EIA, 2014), the question about how to determine

environmental policy in a stochastic context is more relevant than ever. As a preliminary attempt to

analyze this issue2, we develop a simple model of finite horizon pollution control subject to random shocks.

Differently from Athanassoglou and Xepapadeas (2012), we do not focus either on the Knightian concept

of uncertainty or on society’s response to the worst-case scenario. Thus, the work most similar to ours

is Saltari and Travaglini’s (2014), which analyzes a (deterministic) pollution control problem over a finite

horizon. Differently from them, we do not focus on emission constraints and our objective function represents

the social costs of pollution. This specific setting allows us to develop a tractable framework to analyze the

impact of uncertainty on environmental policy and pollution dynamics.

Apart from its implications on economic outcomes, the (optimal) regulation of polluting activities has

also important implications on our ability to eventually achieve a sustainable development pathway. In fact

sustainable development clearly requires us to ensure a certain equity across present and future generations

(WCED, 1987), not only in terms of economic opportunities but also in terms of environmental quality.

In the sustainability literature, the traditional economic discounted utilitarian approach has often been

criticized for its inability to take into account the welfare consequences of our today’s actions on (very) future

generations3 (Chichilnisky et al., 1995). Some alternatives have been proposed in order to formally allow also

future generations to be considered in the planning problem (Marsiglio, 2011). Chichilnisky (1997) proposes

to modify the objective function in order to accompany the discounted sum of utilities with a long run

utility level. In order to formally include in our analysis a certain degree of concern for sustainability issues

and future generations we follow Chichilnisky’s (1997) approach4 and accompany discounted instantaneous

costs with an end-of-planning-horizon cost. We wish to understand how environmental policy and pollution

are related to the increases in the degree of sustainability concern (representing the weight attached to the

end-of-planning-horizon cost) that we are currently witnessing in industrialized economies.

This brief paper proceeds as follows. Section 2 presents our model, which consists of a finite horizon

pollution control problem in which the stock of pollution is subject to random shocks, and the planner cares

for future generations and the level of pollution they will have to bear. In Section 3 we explicitly solve

the stochastic optimization problem and we characterize the optimal policy and the optimal dynamics of

pollution, showing how they are affected by different degrees of sustainability concern and different degrees

2Very few papers analyze economic dynamic in a framework of stochastic pollution (Kijima et al., 2011; Saltari and Travaglini,

2011; and Privileggi and Marsiglio, 2013). However, differently from our goals, these works either do not focus on environmental

policy (Privileggi and Marsiglio; 2013), or take it exogenously given (Kijima et al., 2011) or assume the evolution of pollution

to be completely exogenous (Saltari and Travaglini, 2011).
3Specifically, the presence of a positive discount factor (a necessarily requirement of any infinite horizon optimal control

problem) is the source of the problem. Indeed, a positive discount factor means that less and less weight is attached to

generations further away in the future, thus the notion of intertemporal equity is automatically ruled out.
4Strictly related to our approach, even if with different objectives and methodologies, see recently Colapinto et al. (2015).

They propose a multicriteria model in order to assess the implications of different degrees of sustainability concern on the

optimal dynamics of economic policy and natural resources.
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of uncertainty (in a specific limiting case of our model). Specifically, we show that the optimal environmental

policy increases with the degree of sustainability concern, reducing thus the amount of pollution the society

is forced to bear, and it rises with higher degrees of uncertainty in a precautionary manner. In Section

4 we present a calibration of our model based on CO2 data at world level to support our analysis. We

thus illustrate the predictions of our model under a realistic parametrization and we are able to assess how

different degrees of uncertainty may affect environmental policy and pollution even in our more general

setup. In Section 5 we present an extension of our baseline model in which we formally take into account,

even if in a stylized fashion, capital dynamics; we show that our results hold true even by allowing for a

time-varying capital growth rate. Section 6 contains concluding remarks and highlights directions for future

research. All mathematical technicalities are included in the Appendices A, B, C and D.

2 The Model

We consider a model of pollution control over a finite horizon in which the stock of pollution is subject to

random shocks. The economic framework is very simple: economic agents at each instant of time consume

completely their disposable income: ct = (1− τt)yt, where ct denotes consumption, yt income and τt ∈ (0, 1)

the tax rate. The unique final consumption good, yt, is produced competitively by firms employing capital,

kt, according to a linear production function, yt = akt, where a > 0 is a scale parameter. For the sake of

simplicity, for the time being, we assume that capital grows exogenously5 at a constant rate (normalized

to unity without loss of generality); we will relax this assumption later on by considering a time-varying

capital growth function to take into account more specifically the implications of a richer capital dynamics

for our model. Since economic activity generates pollution as a side product, the tax revenue is used

to limit pollution accumulation. Thus, an increase in τ reduces pollution but at the same time lowers

current consumption possibilities, identifying thus a clear (at least current) trade-off between economic and

environmental performance.

The social planner wishes to minimize the social cost of pollution pt, by choosing the optimal level of the

policy instrument, τt. The social cost function, C, is the weighted sum of two different terms: the expected

discounted (ρ > 0 is the rate of time preference) sum of instantaneous losses generated by economic activi-

ties, and the discounted environmental damage associated with the remaining level of pollution at the end of

the planning horizon, T . The instantaneous loss function, c(pt, τt), taking into account both environmental

(pt) and economic (τt) costs, is assumed to be increasing and convex in both of its arguments, penalizing

deviations from the no-pollution scenario (i.e., pt = 0) and the strength of the policy instrument; for ana-

lytical tractability, such a function is assumed to take the following form: c(pt, τt) =
p2t (1+τt)2

2 . The damage

function, d(pT ), is assumed to be increasing and convex as follows: d(pT ) =
p2T
2 . Pollution is a stock variable

which increases with flow emissions generated by economic activity and decreases according to the rate of

natural pollution absorption; economic output generates emissions which increase the stock of pollution at

a rate η > 0, while the natural rate of pollution decay is denoted by δ > 0. The amount of pollution

associated with economic activity can be reduced by economic regulation, and one unit of output invested

in environmental preservation reduces one unit of pollution; it then follows that the dynamics of pollution

under economic regulation is given by the following linear differential equation6: ṗt = [η(1− τt)− δ] pt. The

5Such an assumption that capital accumulation is completely exogenous is clearly a simplification of reality, but it is instru-

mental to the need of developing a tractable model. Allowing for a more sophisticated and endogenously determined capital

accumulation as in van der Ploeg and Withagen (1991) will substantially complicate the analysis. Note that even in its current

form the problem is all but trivial (see Proposition 1), thus extending the analysis to consider a richer dynamic evolution of

capital will make the search for an explicit solution of the Hamilton-Jacobi-Bellman equation even harder. It seems convenient

to start the analysis of uncertainty related issues in the simplest possible pollution control problem.
6Note that our pollution specification suggests that the growth rate of pollution and the growth rate of output are related one-

for-one by a factor η. This is in line with a common approach in literature where pollution is often assumed to be proportional

to output or capital (see Dinda, 2005; Economides and Philippopoulos, 2008), meaning that the growth rate of pollution is
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policy instrument τt thus represents an environmental tax used to decrease the environmental inefficiencies

of economic activities (i.e., the human-induced growth rate of pollution η). The previous differential equa-

tion describes the evolution of pollution in absence of uncertainty (as traditionally assumed in the pollution

control literature); however, we allow for pollution to be subject to random shocks, assumed to be driven

by a geometric Brownian motion.

The social planner needs to choose τt in order to minimize the expected social cost function, given the

evolution of pollution and its initial (deterministic) condition. The planner’s problem can be summarized

as follows:

min
τt

C = E
[
θ

∫ T

0

p2
t (1 + τt)

2

2
e−ρtdt+ (1− θ)

p2
T

2
e−ρT

]
(1)

s.t. dpt = [η(1− τt)− δ] ptdt+ σptdWt (2)

p0 > 0 given, (3)

where σ ≥ 0 is the standard deviation of pollution and dWt the increment of a Wiener process. The

parameter θ ∈ [0, 1] in equation (1) measures the relative importance assigned by the social planner to the

sum of instantaneous losses rather than the final environmental damage. Note that such a specification is

consistent with the notion of sustainability, requiring to ensure a certain degree of intergenerational equity.

Specifically, equation (1) reflects the so-called Chichilnisky’s criterion which proposes to consider a weighted

average between the discounted sum of instantaneous costs and the long run cost associated with pollution

(Chichilnisky, 1997). For smaller values of θ, more emphasis is placed on future generations thus the social

planner is more inclined to reduce current pollution (at the expense of reductions in current consumption)

in order to leave the posterity with a cleaner environment. Since ct = (1 − τt)yt, any attempt to lower

emissions in order to reduce the stock of pollution (rising τt) requires to sacrifice some consumption, clearly

reflecting the (current) economic and environmental trade-off associated with economic development.

3 The Optimal Policy

For the sake of analytical tractability, we consider an equivalent but slightly different formulation of the

above stochastic problem7, namely:

min
τt

C = E
[∫ T

0

p2
t (1 + τt)

2

2
e−ρtdt+

(1− θ)
θ

p2
T

2
e−ρT

]
(4)

s.t. dpt = [η(1− τt)− δ] ptdt+ σptdWt (5)

p0 > 0 given, (6)

Solving this stochastic problem requires to find an explicit expression for the value function solving the

Hamilton-Jacobi-Belllman (HJB) equation associated with the problem (4), (5) and (6). After some algebra

it is possible to claim the following.

Proposition 1. The value function associated with the problem (4), (5) and (6) is given by:

J (t, pt) =
1

2
p2
tVte

−ρt, (7)

proportional to the growth rate of output, which is equal to the growth rate of capital in our setup. This assumption implies

that economic activities through the production process are the primary source of pollution.
7Note that this new formulation precludes us to analyze the case in which θ = 0, which as we will discuss more in depth

later, represents a framework consistent with Chichilnisky et al.’s (1995) green golden rule. However, from a calculus of

variations exercise it is straightforward to show that in the θ = 0 case, the problem (1), (2) and (3) admits the trivial solution

τ∗t = τ∗ = 1,∀t. Intuitively, if the long run cost of pollution is the unique concern it is optimal to reduce pollution as much as

possible; since the short term economic costs are not considered, this can be done by relying on a maximal value of the policy

instrument at any point in time.
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where Vt is the solution of the following differential equation:

V̇t = V 2
t η

2 + Vt[ρ− 2(η − δ)− σ2]− 1, (8)

with the boundary condition VT = 1−θ
θ ≥ 0. Assume that:

θ ∈ (θ; θ) (9)

where θ ≡ 2η2

2η2+2(η−δ)−ρ+σ2+
√

[2(η−δ)+σ2−ρ]2+4η2
and θ ≡ 2η2

2η2+2(η−δ)−ρ+σ2−
√

[2(η−δ)+σ2−ρ]2+4η2
; then the opti-

mal rule for the taxation rate, τ∗t and the optimal dynamic path of pollution are respectively given by:

τ∗t =
1

2η

{
2(η − δ)− ρ+ σ2 +

√
[2(η − δ) + σ2 − ρ]2 + 4η2 tanh

[√
[2(η − δ) + σ2 − ρ]2 + 4η2(T − t)

2
+

+ arctanh

(
2(1− θ)η2 − 2(η − δ)θ + ρθ − σ2θ

θ
√

[2(η − δ) + σ2 − ρ]2 + 4η2

)]}
(10)

p∗t = p0 exp

{∫ t

0

[
η(1− τ∗s )− δ − 1

2
σ2

]
ds+ σWt

}
(11)

where tanh(z) = ez−e−z

ez+e−z and arctanh(z) = log(1+z)−log(1−z)
2 , with −1 < z < 1, are the hyperbolic tangent

function and its inverse, respectively.

Proof. See Appendix A. �

Note that in order for the optimal level of taxation τ∗t to be well defined, the inverse hyperbolic tangent

function needs to be well defined too, and this happens whenever the value of the parameter θ falls in

the interval θ ∈ (θ; θ) as specified in equation (9). Such a condition is a merely technical condition which

however does not affect in any substantial way our analysis, since for a realistic model’s parametrization (see

the calibration in the next section) it is always automatically satisfied. From now onwards we proceed by

assuming that such a condition holds. Proposition 1 clearly shows that the optimal level of taxation is not

constant, and as a result the trend of the pollution stock (even in a purely deterministic framework) is time-

varying too. The same comment applies to the trend of pollution stock, which (even in absence of shocks)

tends to change as a result of the time evolution of the optimal taxation level. From equation (10) we can

note that the optimal policy, determining the amount of resources diverted from economic to environmental

activities, strictly depends upon the planner’s degree of sustainability concern (i.e., 1 − θ). The degree

of sustainability concerns indirectly (through the optimal taxation channel) affects also the dynamics of

pollution (see equation (11)), and thus it is natural to wonder whether the increasing sustainability concern

that we are currently experiencing (at least within industrialized countries) is going to generate positive or

negative consequences on the amount of pollution our society will have to bear in the long run. Despite the

quite complex expression for τ∗, it is possible to show that the following result holds.

Proposition 2. Provided that θ ∈ (θ; θ) holds, the optimal taxation level (i.e., τ∗t ) increases with the degree

of sustainability concern (i.e., 1− θ).

Proof. See Appendix B. �

Proposition 2 shows the existence of a positive relationship between the optimal level of (environmental)

policy intervention and the degree of sustainability concern. Intuitively, this result suggests that the more

the planner cares for sustainability issues, the more convenient it will be to actively intervene in order to limit

the amount of pollution the society will have to bear in the long run. As a result, the level of taxation will

be larger dampening economic activities and simultaneously reducing the stock of pollution. This suggests

that the current trend of a growing environmental and sustainability concern might be effective in achieving
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a more sustainable development path in the long run, but such an increased sustainability will occur at

the cost of reductions in consumption opportunities. However, promoting further increases in the degree of

sustainability concern, through environmental education, sensibilization and green campaigns, might be a

valuable tool for supporting a greener and more sustainable future.

The above results are all related to the relationship between the degree of sustainability concern and

economic policy, and we have not analyzed what role uncertainty plays in this context. However, because

of the complex expression for τ∗t , it is possible to derive only a sufficient condition ensuring that τ∗t is

monotonically related to σ2, and specifically it monotonically increases with σ2. This allows us to state the

following result.

Proposition 3. Provided that θ ∈ (θ; θ) holds, the optimal taxation level (i.e., τ∗t ) increases with the degree

of uncertainty (i.e., σ2) whenever σ2 ≤ ρ− 2(η − δ)− 2θ
1−θ .

Proof. See Appendix C. �

Proposition 3 shows that
∂τ∗t
∂σ2 turns out to be undoubtedly positive if a certain condition holds, while

nothing can be explicitly said whenever such a condition is not met. Note that for θ ∈ [0, 1] the condition

above can hold only for very small values of θ. In fact, whenever θ → 0, the condition reads as σ2 ≤
ρ − 2(η − δ), which (provided that ρ is sufficiently large) identifies a threshold value for the uncertainty

parameter below which increases in uncertainty undoubtedly lead to increases in the optimal level of taxation.

The case θ = 0 is a very extreme case representing a situation in which the degree of sustainability concern

is maximal and thus social costs are defined according to the green golden rule criterion (Chichilnisky et

al., 1995). In our setup such a criterion states that only the long run costs should be considered in order

to determine the level of policy intervention. Intuitively, in such a framework higher levels of pollution

stock are definitely undesirable and since the economic costs associated with pollution reduction are not

considered (see how the social cost function (1) would read whenever θ → 0), with rising uncertainty it is

clearly convenient to firmly intervene in order to limit as much as possible the pollution stock8. However,

apart from this very special limiting case, the condition in Proposition 3 cannot be realistically met thus

nothing can be said from an analytical point of view on the role of uncertainty in our general setting.

4 A Calibration Based on Global CO2 Data

In order to shed some more light on this relationship between uncertainty and policy intervention and to

illustrate the implications of different degrees of sustainability concern on environmental policy, we rely on

a calibration based on global CO2 data. In order to obtain an estimate of our parameter values, we need

first of all to consider that the dynamic stochastic equation describing the evolution of pollution over time,

namely equation (2), suggests an exponential growth for pollution. In order to quantify pollution variations

we focus on atmospheric CO2 concentrations, expressed in parts per million (ppm). We rely on two sets of

data about CO2 levels: the long (2,000-year) record from the Law Dome ice core in Antarctica, provided

by the Carbon Dioxide Information Analysis Center of the U.S. department of energy (Etheridge et al.,

1998), and the more recent years time series made available by the Earth System Research Laboratory of

the National Oceanographic and Atmospheric Administration (Dlugokencky and Tans, 2015). We rely on

the former to obtain concentrations data from the 1750 to 1979, and on the latter for data from 1980 to

2015. By joining these two data sets, we can see that nowadays the global level of CO2 is about 400 ppm,

and the CO2 concentration at world level has followed an exponential growth pattern since the industrial

revolution (see Figure 1). This provides some clear support for our formulation of pollution dynamics, as

expressed in equation (2).

8Note that, because of what intuitively just discussed and what mentioned earlier, the θ = 0 case represents a degenerate

case giving rise to a trivial solution in which the optimal level of policy intervention is always maximal, that is τ∗ = 1, ∀t, even

in absence of shocks.
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Figure 1: Evolution of CO2 concentrations from the industrial revolution. [Sources: Etheridge et al. (1998)

and Dlugokencky and Tans (2015)]

We extrapolate the exponential growth rate from the 1750–2015 time series, obtaining a net (of natural

absorption) rate of pollution growth, η − δ equal to 0.001. By following Saltari and Travaglini (2014), we

set the natural pollution decay rate, δ, equal to 0.05, implying that the rate pollution growth, η. is equal

to 0.051. The value of the standard deviation, σ, has been calculated simply averaging the annual level of

standard deviations of the recent data from Dlugokencky and Tans (2015), obtaining 0.164. As traditionally

assumed in literature we set the rate of time preference, ρ, equal to 0.04 (Saltari and Travaglini, 2014). The

time horizon has been arbitrarily set at 30 years, but it is possible to show that even extending the time

frame does not qualitatively modify our results. The initial value of the pollution stock, p0, is set equal to

the current (2015) level of CO2 concentration, that is 400.23 ppm. We thus consider the following parameter

values: η = 0.051, δ = 0.05, σ = 0.164, ρ = 0.04, p0 = 400.23 and T = 30. We allow for different values

of θ in order to show how economic policy and pollution stock vary with different degrees of sustainability

concern (represented by 1 − θ). Specifically, we consider three different values of θ, representing a low

(θ = 0.9), medium (θ = 0.5) and high (θ = 0.1) degree of sustainability concern.
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Figure 2: Deterministic case: dynamic evolution of the optimal level of taxation τ∗t (left panel) and pollution

p∗t (right panel) as a function of the degree of sustainability concern, 1− θ.
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The outcome of our calibration is illustrated in Figure 2, in which we first consider a purely deterministic

framework (i.e., σ = 0) and we represent the dynamic evolution of the optimal taxation rate (on the left

panel) and the pollution stock (on the right panel). It is clear that τ∗ monotonically falls with θ while

p∗ monotonically rises with θ (these monotonicity results are robust even considering a wider range for θ).

These diametrically different effects of the degree of sustainability concern on the taxation rate and pollution

stock are due to the negative relationship between p∗ and τ∗ (see equation (11)). What these results show is

that the larger the weight attached to the long run level of pollution (the lower θ), the stricter the optimal

environmental policy (the higher τ∗t ) and thus the healthier the environment (the smaller p∗t ).
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θ

Figure 3: Optimal level of taxation τ∗ (left) and consequent level of pollution p∗ (right) as functions of the

degree of sustainability concern θ, at a given point in time (specifically, t = 15).

In order to better understand the impact of different degrees of sustainability concern on economic policy

and environmental outcomes, it might be convenient to fix one point in time, t = t̃ (e.g., t̃ = T
2 ) for a while.

This allows us to assess to what extent in a purely static framework a different θ is going to affect the

taxation and pollution levels. As clearly shown by Figure 3, the optimal level of taxation decreases at its

fastest pace with low values of θ, while the change in τ is barely evident for larger values. This suggests that

increases in the degree of sustainability concern (decreases in θ) may have relevant effects only whenever the

society (i.e., the social planner) does not care enough about sustainable outcomes, since whenever the care

for the long run outcome is already high further decreases in θ may have only negligible effects. This suggest

the existence of a threshold value determining the effectiveness of policies aiming to eventually promote

increases in the degree of sustainability concern. Indeed, the degree of sustainability concern has to be

above a certain threshold to actually translate into a leap of policy intervention. Accordingly, by looking

at the right panel of Figure 3, we can see that the pollution stock decreases substantially only when the

degree of sustainability concern is above a certain threshold (that is θ is substantially small), boosting policy

intervention and consequently curbing the accumulation of pollution.

The conclusions that we have discussed thus far are all derived from a deterministic framework, thus

we might be wondering whether such results still hold also when uncertainty is taken into account. In

Figure 4 we compare the evolution of the taxation rate in a stochastic (left panel) and deterministic (right

panel) contexts. Despite the fact that for all the θ values considered the sufficient condition in Proposition

3 does not hold, the optimal taxation in the stochastic case is always greater than the deterministic one,

consistently with a precautionary motive (Athanassoglou and Xepapadeas, 2012). This states that under

a realistic model’s parametrization, environmental costs outweigh economic costs such that with a higher

uncertainty in pollution dynamics it is convenient to adopt stricter policy measures in order to minimize the

social costs.
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Figure 4: Comparison between the deterministic (left, σ = 0) and the stochastic (right, σ = 0.164) scenarios.

Even if it is true that τ in the stochastic case is always greater than the deterministic one, by considering

the same level of θ, it is also possible to note that the difference in the optimal taxation between the two

scenarios decreases as time goes by, meaning that the effect of uncertainty on the optimal policy path

decreases over time. This can be explained by the fact that an optimal policy intervention reduces the

impacts of uncertainty on the pollution stock, such that in the very long run its level is determined for

the largest extent by the degree of sustainability concern. This can be seen in the left panel of Figure 5

which shows the time evolution of the difference in the optimal taxation between the stochastic and the

deterministic case for a certain value of the degree of sustainability concern, that is θ = 0.5. Moreover, as

it is possible to note from the right panel of Figure 5, which focuses on the same difference at t = 0, at the

beginning of the time interval the difference in taxation between the stochastic and deterministic case are

larger the smaller the value of θ, implying that the uncertainty induced (economic) cost associated to the

optimal policy is higher the smaller θ, that is the higher the degree of sustainability concern.
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θ

Figure 5: Time evolution (left) and initial period (right) differences in the optimal taxation levels between

the stochastic and deterministic scenarios.
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5 An Extension: Time-Varying Capital Accumulation

The model that we have discussed thus far describes how pollution evolves because of productive activities, in

a situation in which capital grows at an exogenously given constant rate. Such an assumption as traditionally

discussed in the growth literature can mainly be interpreted as a description of the long run macroeconomic

behavior only. Thus, whenever we adopt a shorter time horizon perspective as we are doing in our model’s

setup, and this might be needed in order to account for the different time scale between economic and

environmental processes (Xepapadeas, 2010), such an assumption may be very restrictive and thus a more

sensible approach would rather be considering a time-varying capital growth.

This is exactly what we do in this section where we relax our baseline assumption that capital growth

is constant and by considering a time-varying capital growth we more realistically take into account capital

dynamics. We do not restrict the law of motion of capital to take any specific functional form, but we simply

assume that the growth rate of capital is time-varying. Specifically, we keep assuming that output linearly

depends on capital as follows yt = akt, but now we assume that capital evolves according to the following

dynamics: dkt = (1 + γt)ktdt, where γt is a general time-varying function measuring the excess of capital

growth from its long run trend rate9. Thus, our extended optimization problem consists of minimizing the

social costs of pollution by taking into account the dynamic evolution of pollution and capital as follows:

min
τt

C = E
[
θ

∫ T

0

p2
t (1 + τt)

2

2
e−ρtdt+ (1− θ)

p2
T

2
e−ρT

]
(12)

s.t. dpt = [η(1 + γt)(1− τt)− δp] ptdt+ σptdWt (13)

dkt = (1 + γt)ktdt (14)

p0 > 0, k0 > 0 given (15)

Note that the specification above suggests that the trend growth of pollution is time-varying even in absence

of environmental policy and uncertainty. This is due to the role played by the capital excess rate of growth

in the short run which, by being the source of economic activities and thus pollution, tends to accelerate

pollution accumulation. This effect tends to fade away in the long run, when capital grows at its trend rate

(which remember we have normalized to unity); in such a framework the capital excess rate of growth is

null (that is γt = 0) and the model turns out to be equivalent to what discussed earlier.

It is possible to prove that, provided that the excess of capital growth is bounded from both above and

below, then also the dynamics of the optimal policy is bounded, and in particular τ∗t will lie within a specific

range [τ t, τ t], whose size depends upon the model’s parameters. This clearly implies that something very

similar holds true also for what concerns the dynamics of pollution, and specifically p∗t will lie between an

upper and lower bound, p
t

and pt, respectively. The results are summarized in the next proposition.

Proposition 4. Suppose that 1+γt ∈ [γ, γ]; then the optimal rule for the taxation rate falls in the following

range, τ∗t ∈ [τ t, τ t], where:

9The standard benchmark for thinking about what the excess of capital growth function might look like is to imagine γt
to be decreasing over time. This is due to the fact that in a typical macroeconomic setup the evolution of capital may be

described by a Bernoulli differential equation. This is clearly what we may expect in a Solow-type (1956) framework in which

capital dynamics is driven by the economy’s saving behavior, but also in a Ramsey-type (1928) setting in which consumption

is endogenously determined the (optimal) capital dynamics would be very similar. In our model, we cannot formally take into

account either saving or other determinants of capital accumulation, thus we simply focus on a time-varying capital dynamics

to summarize the implications of the relevant macroeconomic factors.
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τ t =
1

2ηγ

2(ηγ − δ)− ρ+ σ2 +
√

[2(ηγ − δ) + σ2 − ρ]2 + 4(ηγ)2 tanh


√

[2(ηγ − δ) + σ2 − ρ]2 + 4(ηγ)2(T − t)

2
+

+ arctanh

2(1− θ)(ηγ)2 − 2(ηγ − δ)θ + ρθ − σ2θ

θ
√

[2(ηγ − δ) + σ2 − ρ]2 + 4(ηγ)2

 (16)

τ t =
1

2ηγ

2(ηγ − δ)− ρ+ σ2 +
√

[2(ηγ − δ) + σ2 − ρ]2 + 4(ηγ)2 tanh


√

[2(ηγ − δ) + σ2 − ρ]2 + 4(ηγ)2(T − t)

2
+

+ arctanh

2(1− θ)(ηγ)2 − 2(ηγ − δ)θ + ρθ − σ2θ

θ
√

[2(ηγ − δ) + σ2 − ρ]2 + 4(ηγ)2

 , (17)

while the optimal dynamic path of pollution falls in the range, p∗t ∈ [p
t
, pt], where:

p
t

= p0 exp

{∫ t

0

[
ηγ(1− τ t)− δ −

1

2
σ2

]
ds+ σWt

}
(18)

pt = p0 exp

{∫ t

0

[
ηγ(1− τ t)− δ −

1

2
σ2

]
ds+ σWt

}
(19)

Proof. See Appendix D. �

Differently from what discussed in section 3 where we could obtain an explicit expression for the HJB,

the optimal tax rate and the optimal pollution dynamics, the results are now clearly more complicated and

less neat in order to account for a time-varying capital growth. Indeed, a closed form solution for the HJB

equation in this case cannot be found, thus also an explicit expression for the optimal control and state

variables cannot be derived; however, Proposition 4 shows that even in absence of analytical solutions we

can identify some lower and upper bounds for both the policy instrument and the optimal pollution path,

and these bounds are strictly dependent upon the model’s parameters, and in particular upon the degree

of sustainability concern and the degree of uncertainty. In order to understand to what extent the results

that we discussed in the previous sections hold true also in our extended framework in which the growth

rate of capital is not constant, we need to rely on numerical methods to derive the optimal tax rate. The

results are shown in the figure below, which is based on the same parameter values employed in the previous

section and a decreasing capital growth rate function (which for a matter of graphical clarity is assumed to

be γt = (γ − γ)t+ γ, with γ = −0.1 and γ = 0.1).

Figure 6 shows the optimal tax rate for different values of the degree of sustainability concern, both in

the σ = 0 and σ > 0 cases, and the lower and upper bounds10 (18) and (19). As Proposition 4 suggests the

optimal tax rate also lies between the two bounds, both in the deterministic and stochastic case. We can

also see that the behavior of the optimal tax rate is consistent with what discussed in the previous sections,

that is it increases with both the degree of sustainability concern (i.e, 1− θ) and the degree of uncertainty

(i.e., σ2). These results show thus that the conclusions that we derived in our baseline model are robust,

since holding true even in a more complicated framework with time-varying capital dynamics. Thus, even

in a more realistic framework in which the capital growth rate is not always constant we can conclude the

following: the current trend of a growing environmental and sustainability concern might be effective in

achieving a more sustainable development path in the long run, and the optimal taxation in the stochastic

case is always greater than in the deterministic one consistently with a precautionary motive.

10Note that the bounds are dependent upon θ, thus in order to plot in the same figure the optimal tax rate associated with

different values of the degree of sustainability concern, we show only the minimum and the maximum of the lower and upper

bounds, respectively.
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Figure 6: Dynamic evolution of the optimal level of taxation τ∗t in a framework with a time-varying capital

growth in the σ = 0 (left panel) and σ > 0 (right panel) cases.

6 Conclusions

The rising interest that we are witnessing among policymakers and academics towards sustainable develop-

ment and the high uncertainty associated with future environmental outcomes naturally raise the question

about how environmental policy should be determined in order to take into account such factors. In order

to give a preliminary answer to this question we analyze a finite horizon problem of pollution control un-

der uncertainty in which the planner is (partially) moved by sustainability concern. Despite the model’s

simplicity, the problem turns out to be all but trivial. We show that the optimal level of environmental

policy is non-constant and it is clearly affected by both the degree of uncertainty and sustainability concern.

Specifically and intuitively, both larger degrees of sustainability concern and larger degrees of uncertainty

lead to a stricter environmental policy, reducing thus the environmental burden imposed on the society both

in the short and long run. Clearly the degree of sustainability concern may be effectively affected through

specific (education or advertising) policies, thus it represents an important tool to achieve a more sustainable

and greener future. However, the reduction in the environmental burden associated with pollution control

comes at the cost of a reduction in consumption possibilities, thus assessing the net impact on social costs

of further increases in the suststainability concern is not straightforward. These results hold true both in

our baseline model in which capital and output grow at a constant rate and in our extended framework

in which their growth rate is time-varying; the only noticeable difference between these two frameworks is

that in the baseline model we can explicitly derive the optimal dynamics of the policy instrument, while in

the extended model only some upper and lower bounds for the optimal policy can be explicitly obtained

(however, the behavior of the numerically-derived policy instrument is qualitatively identical to what derived

in the baseline setup).

This work represents a first attempt to analyze the impact of uncertainty and sustainability issues in a

pollution control model, thus the analysis cannot be considered exhaustive. Indeed, for the sake of simplicity

we have to introduce some simplifying assumptions which might have limited our model’s ability to describe

in full the nature of the problem. In particular, since we have assumed capital growth to be exogenously given

(constant first and time-varying in the extended model) we cannot comment on the endogenous effects of

uncertainty and the degree of sustainability concern on both economic performance and pollution in growing

economies. Moreover, the model’s setup does not allow to distinguish between the notion of uncertainty and

that of risk, thus it is not possible to disentangle their relationships with the degree of sustainability concern.

Extending the analysis to allow for endogenous economic growth (as in van der Ploeg and Withagen, 1991)

and for a Knightian concept of uncertainty (as in Athanassoglou and Xepapadeas, 2012) is left for future

12



research.

A Optimal Solution and Sufficiency

By denoting with J (t, pt) the value function associated to our stochastic problem (4), (5) and (6) and by

omitting the time subscript for sake of clarity, the HJB equation reads as:

−∂J
∂t

= min
τ

{
1

2
p2(1 + τ2)e−ρt + [(1− τ)α− δ]p∂J

∂p
+

1

2
σ2p2∂

2J
∂p2

}
(20)

while the corresponding terminal condition as:

J (T, pT ) =

(
1− θ
θ

)
1

2
p2
T e
−ρT (21)

The first order necessary (and sufficient; see below) condition for τ yields:

τ =
ηe−ρt

p

∂J
∂p

(22)

We proceed by guessing the form of the value function and verifying that our guess is correct. Our

sophisticated guess is:

J (t, p) =
1

2
p2V e−ρt (23)

where V is a variable to be determined. By computing its derivatives:

∂J
∂t

=
1

2
p2

[
∂V

∂t
− ρV

]
e−ρt, (24)

∂J
∂p

= pV e−ρt (25)

∂2J
∂p2

= V e−ρt, (26)

and substituting (25) into (22), we obtain:

τ = ηV (27)

By plugging (24), (25) and (26) into (20) and simplifying the expression, we obtain the following ordinary

differential equation in V :

∂V

∂t
= V 2η2 + V [ρ− 2(η − δ)− σ2]− 1, (28)

with the boundary condition VT = 1−θ
θ ≥ 0, from evaluating (21) and (23) at T . The solution of the above

differential equation can be used to derive the path of the optimal tax rate (from (27)) and finally the

expected path of pollution (from (5)). Indeed, by solving (28) along with its boundary condition for Vt and

substituting into (27) we get the optimal dynamics of the tax rate:

τ∗ =
1

2η

{
2(η − δ)− ρ+ σ2 + tanh

[√
M(T − t)

2
+ arctanh

(
2(1− θ)η2 − 2(η − δ)θ + ρθ − σ2θ

θ
√
M

)]√
M

}
,

(29)

where M = [2(η− δ)+σ2−ρ]2 +4η2, tanh(z) = (ez−e−z)/(ez +e−z) is the hyperbolic tangent function and

arctanh(z) = 1
2 [log(1+z)− log(1−z)], with −1 < z < 1, its inverse. By plugging the above expression in (5),
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which describes a geometric Brownian motion with time-dependent coefficients, it is possible to determine

the time evolution of pollution, whose closed form expression is given in equation (11).

In order to verify the correctness of our guess, we use the stochastic maximum principle proposed by

Framstad et al. (2004) to show that the policy rule identified in (29) is optimal. By defining mt ≡ ∂J /∂p
and nt ≡ ∂2J /∂p2, it is possible to rewrite (20) as:

−∂J
∂t

= min
τ

{
1

2
p2(1 + τ2)e−ρt + [(1− τ)η − δ]pm+

1

2
σ2p2n

}
= min

τ
H,

where:

H =
1

2
p2(1 + τ2)e−ρt + [(1− τ)η − δ]pm+

1

2
σ2p2n (30)

where denotes the the stochastic Hamiltonian. Theorem 2.1 of Framstad et al. (2004) states that, for an

admissible set of state and controls, if the minimized Hamiltonian Ĥ (that is the Hamiltonian H evaluated

at the value of the optimal control τ∗) is convex in p for all t in [0, t], then the pair (τ∗, p) represents an

optimal pair for the problem. Note that H is strictly convex in τ since ∂2H/∂τ2 = p2e−ρt > 0. The control

which minimizes H is given by equation (22) and so the minimized Hamiltonian is:

Ĥ =
1

2
p2

(
1 +

m2η2

p2(e−ρt)2

)
e−ρt + pm

[(
1− mη

pe−ρt

)
η − δ

]
+

1

2
σ2p2n

which is strictly convex in p, since ∂2Ĥ/∂p2 = e−ρt + nσ2 > 0.

B Proof of Proposition 2

The derivative of the optimal policy τ∗ with respect to θ reads as:

∂τ∗t
∂θ

=

√
M

2

1− tanh

[√
M

2
(T − t) + arctanh

(
B√
M

)]2

{(
−2η2 − σ2 + 2δ − 2η + ρ

θ
√
M

− B

θ2
√
M

)
∗

∗
[(

1− B

θ2(
√
M)2

)
η

]−1
}

(31)

where M = [2(η − δ) + σ2 − ρ]2 + 4η2 and B = 2(1 − θ)η2 − 2(η − δ)θ + ρθ − σ2θ. The sign of the

above derivative is determined by the product of three terms,
√
M
2 and the two terms in the curly brack-

ets. Provided that the hyperbolic tangent function is well defined, as per condition (9), the first term,
√
M
2 , is clearly non-negative. The second term, namely

{
1− tanh

[√
M
2 (T − t) + arctanh

(
B√
M

)]2
}

, is non-

negative too since the hyperbolic tangent takes values in [−1, 1]. After some algebra, the third term,{(
−2η2−σ2+2δ−2η+ρ

θ
√
M

− B
θ2
√
M

) [
(1− B

θ2(
√
M)2

)η
]−1
}

, can be rearranged to obtain:

−
√
σ4 − 4δσ2 + 4ησ2 − 2ρσ2 + 4δ2 − 8δη + 4δρ+ 8η2 − 4ηρ+ ρ2

2[ηθ2(−η2 − σ2 + 2δ − 2η + ρ+ 1) + ηθ(2η2 + σ2 − 2δ + 2η − ρ)− η3]
(32)

Since the numerator in (32) is clearly non-negative, the sign of its denominator determines the sign of (31):

if this is positive then the whole derivative will be negative, while it will be positive otherwise. It turns out

that the conditions for the hyperbolic tangent function to be well defined, as in equation (9), ensure that

the denominator of the above expression is positive, such that the sign of (31) is overall negative.
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C Proof of Proposition 3

From equation (10) it is clear that what complicates the determination of the sign of ∂τ∗

∂σ2 is the argument

of the inverse hyperbolic tangent. Indeed, apart from this term whose derivative has an uncertain sign, all

other terms suggest the existence of a monotonically increasing relationship between the optimal taxation

and the degree of uncertainty. Thus, we can undoubtedly assess the sign of ∂τ∗

∂σ2 only whenever also the

argument of the inverse hyperbolic tangent rises with σ2. In the following we denote the argument of the

inverse hyperbolic tangent with Ω, which from equation (10) reads as:

Ω =
2(1− θ)η2 − 2(η − δ)θ + ρθ − σ2θ

θ
√

[2(η − δ) + σ2 − ρ]2 + 4η2

After some algebra the derivative of the above term with respect to σ2 yields:

∂Ω

∂σ2
=

−2η2
(
2δθ − 2ηθ + ρθ − θσ2 − 2δ + 2η − ρ+ 2θ + σ2

)
θ (4δ2 − 8δη + 4δρ− 4δσ2 + 8η2 − 4ηρ+ 4ησ2 + ρ2 − 2ρσ2 + σ2)

3
2

Since the denominator in above expression is clearly non-negative, the sign of its numerator determines the

sign of ∂Ω
∂σ2 : whenever this is negative then the whole derivative will be positive. This happens whenever

the condition stated in Proposition 3, σ2 ≤ ρ− 2(η − δ)− 2θ
1−θ , holds.

D Proof of Proposition 4

Let us first notice that the following equation:

Ȧt = A2
t η

2γ2
1 +At[2(ηγ2 − δ) + σ2 − ρ]− 1 (33)

admits a closed-form solution given by:

At =
1

2(ηγ1)2

{
2(ηγ2 − δ)− ρ+ σ2 +

√
[2(ηγ2 − δ) + σ2 − ρ]2 + 4(ηγ1)2 tanh

[√
[2(ηγ2 − δ) + σ2 − ρ]2 + 4(ηγ1)2(T − t)

2
+

+ arctanh

(
2(1− θ)(ηγ1)2 − 2(ηγ2 − δ)θ + ρθ − σ2θ

θ
√

[2(ηγ2 − δ) + σ2 − ρ]2 + 4(ηγ1)2

)]}

By repeating the same calculations as in Section 3, one can reduce the problem of solving the HJB equation

to the following ordinary differential equation:

V̇t = V 2
t (1 + γt)

2η2 + Vt[ρ− 2(η(1 + γt)− δ)− σ2]− 1,

where γt measures the excess of capital growth. Some algebra yields to the following inequalities:

V̇t = V 2
t (1 + γt)

2η2 + Vt[ρ− 2(η(1 + γt)− δ)− σ2]− 1

≤ V 2
t γ

2η2 + Vt[ρ− 2(ηγ − δ)− σ2]− 1

and, in an analogous way:

V̇t ≥ V 2
t γ

2η2 + Vt[ρ− 2(ηγ − δ)− σ2]− 1

By using the above equation (33) and the classical comparison theorem for differential equations, we obtain

the lower and upper bounds as in (18) and (19).
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