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Abstract

This paper introduces population growth in the Uzawa-Lucas model, analyzing the implications of the

choice of the welfare criterion on the model’s outcome. Traditional growth theory assumes population

growth to be exponential, but this is not a realistic assumption (see Brida and Accinelli, 2007). We

model exogenous population change by a generic function of population size. We show that a unique

non-trivial equilibrium exists and the economy converges towards it along a saddle path, independently

of population dynamics. What is affected by the type of population dynamics is the dimension of the

stable manifold, which can be one or two, and when the equilibrium is reached, which can happen in finite

time or asymptotically. Moreover, we show that the choice of the utilitarian criterion will be irrelevant

on the equilibrium of the model, if the steady state growth rate of population is null, as in the case of

logistic population growth. Then, we show that a closed-form solution for the transitional dynamics of

the economy (both in the case population dynamics is deterministic and stochastic) can be found for a

certain parameter restriction.
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1 Introduction

In standard economic growth theory, population is assumed to grow at an exogenous and exponential rate.

This assumption has been firstly introduced by the Solow-Swan model (1956) and it has been applied also to

following models with optimizing behavior, as the single-sector Ramsey-Cass-Koopmans (1965) model and

the two-sector Lucas-Uzawa (1988) model. Such an assumption however is not without consequences for the

analysis of growing economies. In fact, exponential population growth models imply unconstrained growth of

population size. However, most populations are constrained by limitations on resources, at least in the short

run, and none is unconstrained forever. For this reason, firstly Malthus (1798) discusses about the inevitable

dire consequences of exponential growth of the human population of the earth. Recently, Brida and Accinelli

clearly state: “The simple exponential growth model can provide an adequate approximation to such growth

only for the initial period because, growing exponentially, as t→∞, labor force will approach infinity, which

is clearly unrealistic. As labor force becomes large enough, crowding, food shortage and environmental effects

come into play, so that population growth is naturally bounded. This limit for the population size is usually

called the carrying capacity of the environment”.
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g0 g1 g2 g3

Africa -0.00763537 0.00000018 -0.00000000 0.00000000

Asia -0.02926752 0.00000005 -0.00000000 0.00000000

Australia 0.03003342 -0.00000383 0.00000000 -0.00000000

Europe 0.12968633 -0.00000070 0.00000000 -0.00000000

South America 0.00203530 0.00000025 -0.00000000 0.00000000

North America 0.03432962 -0.00000030 0.00000000 -0.00000000

Table 1: Parameters’ estimations of population growth over the period 1870-2008.

Some decades ago, Maynard Smith (1974) concluded that the growth of natural populations is more

accurately depicted by a logistic law. This result has been recently used to claim that such a dynamics can

probably better describe also human population growth. In fact, several studies support the idea that human

population growth is decreasing and tending towards zero1 (as Day, 1996). Even the Belgian mathematician

Verhulst in the XIX century studies this idea; using data from the first five U.S. censuses, he makes a

prediction in 1840 of the U.S. population in 1940 and was off by less than 1%. Moreover, based on the

same idea, he predicts the upper limit of Belgian population; more than a century later, but for the effect

of immigration, his prediction looks good (Verhulst, 1838). More recently, several studies try to understand

which function fits better human population dynamics, showing that the exponential growth is reductive.

For example, population dynamics can be described through a non-autonomous differential equation as

Ṅt = Ntg((Nt), where g(N) =
∑m

i=0 giN
i. The estimation of the parameters gi can be done by using, for

instance, fractal-based methods and penalization methods2 as proposed and well-illustrated in Kunze et al.

(2007a, 2007b, 2009a, 2009b, 2010) and Iacus and La Torre (2005a, 2005b). Table 1 provides the results to

eight decimal digits by using data in six continents (Africa, Asia, Australia, Europe, South America, and

North America) over the period 1870-2008. A good fitting curve for Australia, Europe, and North America

for this data is the logistic one while South America shows an exponential behavior (g0, g1 > 0). Africa and

Asia show a negative coefficient g0 which can be justified in terms of migration effects.

Accinelli and Brida (2005) firstly introduce non-exponential population growth in a growth model, as-

suming that population dynamics is described by a logistic function. After this work a growing literature

studying how different demographic change functions modify standard growth models arises. For example,

the Solow model has been extensively analyzed assuming different demographic dynamics. Guerrini (2006)

and Brida and Pereyra (2008) introduce respectively bounded population growth (which represents a gen-

eralization of the logistic case) and a decreasing population growth in the Solow-Swan model; Bucci and

Guerrini (2009) instead study its transitional dynamics in the case of AK technology and logistic popula-

tion. Also the Ramsey model has been recently extended to encompass several types of population change

functions. Brida and Accinelli (2007) study the case of logistic population growth while Guerrini (2009 and

references therein) analyzes the case where population growth is given by a bounded function, both in the

neoclassical and endogenous framework.

However, all these papers also relax an important standard assumption of optimal growth theory, namely

the social welfare function is founded on the Benthamite criterion (total utilitarianism). This criterion says

that total welfare is the sum of per-capita welfare across population (the product between population size and

average welfare if no heterogeneity among agents is present). These papers3 instead assume the social welfare

1According to up-to-date demographic forecasts of the United Nations, the world population annual growth rate is expected

to fall gradually from 1.8% (1950-2000) to 0.9% (2000-2050), before reaching a value of 0.2% between the years 2050 and 2100
2See also La Torre (2003), La Torre and Rocca (2003,2005); La Torre and Vrscay (2009) for further details on the fractal-based

methods.
3An exception is represented by La Torre and Marsiglio (2010). They introduce logistic population growth in a three sectors

Uzawa-Lucas (1988) type growth model, in which the welfare function is defined according to the Benthamite criterion. However,
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function is based on the Millian criterion (average utilitarianism): total welfare equals average welfare or

per-capita utility (see Marsiglio, 2010, for a discussion of the implications of both criteria). Such a criterion

has been used in order to limit population size and in an optimal theory of growth seems to be somehow

reductive. In fact, the main difference in the model’s outcome is the effect of population growth on the per-

capita consumption dynamics: the Benthamite criterion implies that consumption growth is independent of

population dynamics, while the opposite is true for the Millian criterion.

Some papers in the literature discuss how the choice of total rather than average utilitarianism affects

the outcome of the model. Such an issue has always been studied in a context of exponential population

change, where the general conclusion is that the Benthamite and Millian criteria lead to different effects of

population growth on economic performance. This issue is quite popular in the framework of endogenous

fertility, in which the steady state outcome is represented by exponential population growth. For example,

Nerlove et al. (1982, 1985) and Barro and Becker (1989) analyze a neoclassical setup while Palivos and

Yip (1993) an endogenous growth context. Barro and Becker (1989) show that according to the degree

of altruism towards future generations, the social welfare function results to be a mix of the Benthamite

and Millian criteria. Palivos and Yip (1993) show instead that the Benthamite principle leads to an higher

economic growth and a smaller population size. Few papers tackle the issue when population change is

exogenous, namely Strulik (2005) and Bucci (2008). They both study the effect of exogenous population

growth on the economic growth rate in an endogenous growth model driven by R&D activity, as the degree

of agents’ altruism towards future generations changes. They both show that the impact of demographic

change on the economy varies as the magnitude of the altruism parameter does so. All these works assume

population growth is exponential (at least in steady state) and suggest that different utilitarian criteria

affect the economic growth rate.

The aim of this paper is studying the introduction of not exponential population change in endogenous

growth models, and analyzing the effect of different utilitarian criteria on the model’s outcome. We formalize

demographic growth as a generic function of population size, discussing how different shapes affect the model.

We focus our analysis on a two-sector model of endogenous-growth, á-la Uzawa (1965) - Lucas (1988), since, it

has never been analyzed in a framework of non-exponential population growth and, as claimed in Boucekkine

and Ruiz-Tamarit (2008), it is one of the most studied and interesting endogenous growth models. In section

2 we introduce the model in its general form, namely we assume population change depends on a generic

function of population size and the social welfare function results to be of the Benthamite or Millian type

according to the value of a parameter (representing the degree of altruism). Section 3 performs steady state

analysis, which is characterized by a balanced growth path or an asymptotic balanced growth path, according

to the features of the population growth function. However, we show that independently on the shape of

such a function, the economy converges towards its equilibrium along a saddle path. What is affected by its

shape is the dimension of the stable manifold, which can be one or two. We also show the utilitarian criterion

adopted is irrelevant for the economic growth rate if in steady state population growth is null, as in the

case in which population growth is logistic. In section 4, instead, we show different examples of population

growth function which represent particular cases of our general model. In Section 5 we characterize the global

dynamics of the model under a particular parametric restriction concerning the altruism parameter, namely

in the case it equals both the capital share and the inverse of the intertemporal elasticity of substitution;

in section 6 we show that under the same condition it is possible to find a closed-form solution for the case

in which population dynamics is subject to random shocks and show that uncertainty increases on average

the stock of (per-capita) physical and human capital. Section 6 as usual concludes.

since their goal is to focus on endogenous technical progress, they do not study population dynamics (because population size

in steady state is constant, under the logistic assumption)
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2 The Model

The model is a Uzawa-Lucas model of optimal growth where the representative agent seeks to maximize

his welfare subject to the capital and demographic constraints, choosing consumption, ct, and the rate

of investment in physical capital, ut. The welfare is the infinite discounted sum of the product of the

instantaneous utility function (assumed to be iso-elastic, u(ct) =
c1−σt
1−σ , where σ > 0) and the population size

weighted by the agent’s degree of altruism, N1−ε
t , where ε ∈ [0, 1]. The final good is produced combining

physical capital, Kt, and the share of human capital allocated to final production, utHt, according to a

Cobb-Douglas technology: Yt = Kα
t (utHt)

1−α, where 0 < α < 1 and ut ∈ (0, 1). Physical capital, Kt,

accumulation is given by the difference between production of the final good and consumption activity:

K̇t = AKα
t (utHt)

1−α − ctNt. The law of motion of human capital, Ht, is instead given by production

of new human capital: Ḣt = B(1 − ut)Ht. We assume for simplicity that physical and human capital

do not depreciate over time. Demographic growth instead is given by a generic function of population

size: Ṅt = Ntg(Nt). The shape of such a function, as we shall later show, results to be irrelevant for the

equilibrium of the model; the transitional dynamics instead is differently affected by the fact that g(·) shows

or not one or more zeros.

The social planner maximizes the social welfare function, that is it has to choose ct and ut, in order to

maximize agents lifetime utility function subject to physical and human capital accumulation constraints,

the demographic dynamics and the initial conditions:

max
ct,ut

∫ ∞
0

c1−σt

1− σ
N1−ε
t e−ρtdt (1)

s.t. K̇t = AKα
t (utHt)

1−α −Ntct (2)

Ḣt = B(1− ut)Ht (3)

Ṅt = Ntg(Nt) (4)

K0, H0, N0 given. (5)

The term 1− ε, ε ∈ [0, 1] represents the degree of intertemporal altruism. Notice that the degree of altruism

towards future generations, given by the term 1 − ε, determines the type of social welfare function we are

adopting. In fact, if ε = 0 (ε = 1), the social welfare is defined according to the Benthamite (Millian)

criterion. In the former (latter) case, we are adopting total (average) utilitarianism.

2.1 Optimal Paths

Notice that the dynamic equation for population change is an auxiliary equation (not a state or a control

variable), since it is completely exogenous. Therefore, from the maximization problem we can set the

Hamiltonian function (considering population dynamics as auxiliary):

Ht(·) =
c1−σt

1− σ
N1−ε
t e−ρt + λt[AK

α
t (utHt)

1−α −Ntct] + νtB(1− ut)Ht, (6)

and derive the FOCs:

c−σt N1−ε
t e−ρt = λtNt (7)

(1− α)AKα
t (utHt)

−αHtλt = BHtνt (8)

λtAαK
α−1
t (utHt)

1−α = −λ̇t (9)

(1− α)AKα
t (utHt)

−αutλt + νtB(1− ut) = −ν̇t. (10)

together with the initial conditions K0 and H0, the dynamic constraints:

K̇t = AKα
t (utHt)

1−α −Ntct (11)

Ḣt = B(1− ut)Ht (12)
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and the transversality conditions:

lim
t→∞

λtKt = 0 (13)

lim
t→∞

νtHt = 0. (14)

Solving the resulting system we obtain the Euler equations for per-capita consumption and share of

human capital to be allocated to physical production:

ċt
ct

=
1

σ

[
AαKα−1

t (utHt)
1−α − ρ− εg(Nt)

]
(15)

u̇t
ut

=
B(1− α)

α
+But −

Ntct
Kt

. (16)

Equations (15) and (16) are standard, unless for the presence of the term −εg(Nt) in the Euler equation

of per-capita consumption. Population growth does not affect the path of the share of human capital

allocated in the production sector while whether it does or not per-capita consumption growth depending

on the adopted utilitarian criterion. If ε = 0, we are adopting a classical or total utilitarianism approach

and population change is completely irrelevant for the dynamics of consumption, as in the standard Ramsey

model. If instead ε = 1, welfare is based on average utilitarianism and population change has a negative

impact on the dynamics of consumption, as for example in Brida and Accinelli (2007); the same is true for

impure altruism values, that is ε ∈ (0, 1).

3 Steady State Analysis

The dynamic behavior of the economy is summarized by equations (2), (3), (4), (15) and (16). We now

analyze the steady state of such an economy. We can study the dynamics of a simplified system, by

introducing the intensive variables χt = Ntct
Kt

and ψt = (ut
Ht
Kt

)1−α, representing respectively the consumption-

capital ratio and the average product of capital:

ψ̇t
ψt

=
B(1− α)

α
− (1− α)Aψt (17)

χ̇t
χt

=
α− σ
σ

Aψt −
ρ

σ
+ χt +

σ − ε
σ

g(Nt) (18)

u̇t
ut

=
B(1− α)

α
+But − χt (19)

Ṅt

Nt
= g(Nt). (20)

Depending on the type of demographic dynamics, the equilibrium of the economy derives from a three-

dimensional or a four-dimensional system. In fact, if the g(·) function does not show any zeros, we have a

three-dimensional system, since a stationary population size does not exist and equation (20) does not imply

any equilibrium value. A benchmark for such a case is represented by constant and exponential population

growth. In the following discussion and analysis we focus on constant population growth, for a matter of

tractability and since it is probably the most relevant case of growth function not showing any zeros. In

such a case, the system of differential equations reduces to:

ψ̇t
ψt

=
B(1− α)

α
− (1− α)Aψt (21)

χ̇t
χt

=
α− σ
σ

Aψt −
ρ

σ
+ χt +

σ − ε
σ

gN (22)

u̇t
ut

=
B(1− α)

α
+But − χt. (23)
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The equilibrium point of such a system is characterized by strictly positive values for all the variables if

ρ > B(1 − σ) + (σ − ε)gN , where gN represents the constant and non-negative growth rate of population;

in order to ensure that the share of human capital allocated to physical production is less than one we also

need that ρ < B + (σ − ε)gN . Notice that such a kind of conditions is almost standard in the literature

and it is always satisfies for realistic parameter values if the the growth rate of population is not too large.

Such a system converges to its steady state equilibrium through a saddle path, along which the stable arm

has dimension one. Moreover, we can study the implications of the utilitarian criteria on economic growth,

simply analyzing the steady state values of the variables: the steady state of the consumption-capital ratio

and the share of human capital allocated to physical production are affected by ε, while the average product

of capital is not. Therefore, we can conclude that total utilitarianism leads to higher economic growth than

average utilitarianism. We can summarize the main results in the following proposition:

Proposition 1: Assume B(1− σ) + (σ − ε)gN < ρ < B + (σ − ε)gN ; if the population growth function

is constant, then the following results hold:

(i) the economy converges to its steady state equilibrium, along a saddle path, and the stable arm is a one-

dimensional locus;

(ii) total utilitarianism (ε = 0) implies an higher economic growth rate than average utilitarianism (ε = 1)

if gN > 0.

Proof: From the system (21) - (23), the steady state levels of ψt, χt ut are respectively ψ∗ = B
αA , χ∗ =

ρα−B(α−σ)−α(σ−ε)gN
ασ and u∗ = ρ−B(1−σ)−(σ−ε)gN

Bσ . Appendix A.1 proves part (i). To prove part (ii) notice that

the growth rate of per-capita consumption, from equation (15), in steady state is γ = 1
σ [Aαψ∗ − ρ− εgN ];

it is straightforward to see that its derivative respect to ε is negative: ∂γ
∂ε = −gN

σ . Therefore, the Benthamite

criterion implies an higher economic growth than the Millian one. �

If instead the g(·) function shows any zeros, we have a four dimensional system since a stationary

population size exists and therefore equation (20) implies an equilibrium value. The system of differential

equations is the following:

ψ̇t
ψt

=
B(1− α)

α
− (1− α)Aψt (24)

χ̇t
χt

=
α− σ
σ

Aψt −
ρ

σ
+ χt +

σ − ε
σ

g(Nt) (25)

u̇t
ut

=
B(1− α)

α
+But − χt (26)

Ṅt

Nt
= g(Nt). (27)

The equilibrium point of such a system is characterized by strictly positive values for all the variables if

ρ > B(1− σ), while u is less than 1 if ρ < B. As before such conditions are satisfied for realistic parameter

values. By equation (27), the existence of a stationary population size is ensured if g(Nt) = 0. Moreover,

the equilibrium is saddle point stable in a generalized form, since the stable manifold has dimension one

(two) and the unstable one has dimension three (two) if ∂g(·)
∂Nt
|Nt=N∗ > 0 (< 0). As before, we can study the

implications of average and total utilitarianism on the outcome of the model, simply analyzing the steady

state values of the variables: the steady state values of all the economic variables are independent of ε.

Therefore, the adopted utilitarian criterion affects only the transitional dynamics of the economy, but in

steady state all the differences vanish. We can summarize this result in the following proposition:

Proposition 2: Assume B(1− σ) < ρ < B; if the population growth function shows some zeros, then:
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(i) the economy converges to its steady state equilibrium, along a saddle path. The stable arm is a two-

dimensional locus if ∂g(·)
∂Nt
|Nt=N∗ < 0, while it has dimension one if ∂g(·)

∂Nt
|Nt=N∗ > 0

(ii) Whether the social welfare function is built on the Benthamite (ε = 0) or the Millian (ε = 1) criterion,

the steady state growth rate of the economy does not change.

Proof: From the system (24) - (27), the steady state levels of Nt, ψt, χt ut are respectively N∗ such

that g(N∗) = 0, ψ∗ = B
αA , χ∗ = ρα−B(α−σ)

ασ and u∗ = ρ−B(1−σ)
Bσ . Appendix A.2 proves part (i). To prove

part (ii) notice that in such a framework, since population growth is null in equilibrium, the growth rate of

per-capita consumption, from equation (15), in steady state is γ = 1
σ [Aαψ∗ − ρ]. It is straightforward to

see that its derivative respect to ε is null and therefore the Benthamite and the Millian criteria do not imply

any difference for the economic growth rate. �

We can notice that the equilibrium of such a model is only marginally affected by the shape of the popu-

lation growth function. In fact, the economic variables (χ, ψ, u) converge to their equilibrium independently

of the behavior of the demographic variable (N). The features of population dynamics affect mainly the

timing of convergence, which can happen in finite time or asymptotically, characterizing the equilibrium re-

spectively as a balanced growth path (BGP), as in the growth models with constant exponential population

growth, or as an asymptotically balanced growth path (ABGP), as in the case of logistic population growth.

If the population growth function shows any zeros, then its shape determines the dimension of the stable

arm. In fact, if ∂g(·)
∂Nt
|Nt=N∗ < 0 the stable arm has dimension two while if ∂g(·)

∂Nt
|Nt=N∗ > 0 it has dimension

one (implying uniqueness of the convergence path). We have just proved:

Proposition 3: The economy described by (1) - (5) converges towards its unique (non-trivial) equilibrium

independently of population dynamics. Demographic dynamics just determines the timing of convergence and

the dimension of the stable arm.

This results derive from the assumption that population growth is exogenous, and therefore it just

represents an auxiliary variable in the optimal control problem (1) - (5). Under such an assumption, how

we model this dynamics does not affect the main outcome of the model (clearly the equilibrium values of χ

and u can change as we introduce a different law of motion for demography). What can change according

to such a choice is the timing when the equilibrium is reached (finite or infinite) and the dimension of the

stable arm (one or two) according to the features of the g(·) function.

4 Some Examples of Demographic Change

In this section we discuss some examples of population dynamics introduced in the previous literature,

showing how they are just particular cases of our general formulation. We consider the cases in which

population is exponential, logistic and follows a von Bertalanffy law.

4.1 Exponential Population

The standard assumption of growth theory on demography is that population growth is exponential and

constant over time (see Solow, 1956). This in our general formulation represents the case in which g(·) is

simply a constant:

g(Nt) = n, (28)

where n can be positive, negative or null. If it is negative, population size constantly decreases and asymp-

totically will completely disappear; if it is null, population size is constant and it does not show any dynamics
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over time; if it is positive instead population constantly increases and it will asymptotically approach infinity.

This last case gives birth to the critique to exponential demographic change, since it implies the absence

of any natural and environmental limits to population growth. This specification implies that demographic

dynamics is monotonic and Proposition 1 holds: in such a case the stable arm is a one-dimensional locus

and the Benthamite criterion leads to an higher economic growth rate than the Millian one.

4.2 Logistic Population

A first attempt to avoid the implications of exponential population growth has been the introduction of

logistic demography (see Brida and Accinelli, 2007). This represents the case in which g(·) is:

g(Nt) = n− dNt, (29)

where n and d are both positive (if d = 0, we are driven back to exponential growth), and n represents

the trend of population growth. Notice that population dynamics is given by a Bernoulli-type differential

equation which can be explicitly solved obtaining:

Nt =
n

d+ ( n
N0
− d)e−nt

. (30)

Population size therefore is increasing over time and it reaches a stationary level only when t → ∞; in

fact, limt→∞Nt = n
d . This formulation implies that population growth is null in steady state and therefore

Proposition 2 holds: the stable arm is two-dimensional locus since g′(·) < 0 and the economic growth rate

is independent of the adopted utilitarian criterion. If population growth is logistic, the equilibrium is only

asymptotically approached since population size converges to its steady state value in the very long-run.

4.3 von Bertalanffy Population

The von Bertalanffy population growth has been introduced by Accinelli and Brida (2007) to describe a

population strictly increasing and bounded whose growth rate is strictly decreasing to zero. This function

corresponds to:

g(Nt) =
n(N∞ −Nt)

Nt
, (31)

where N∞ is the theoretical maximum population size and n determines the speed at which demography

reaches its maximal level. The equation of population dynamics can be explicitly solved obtaining:

Nt = N∞ − (N∞ −N0)e
−nt. (32)

Population size therefore is increasing over time and it reaches a stationary level only when t→∞; in fact,

limt→∞Nt = N∞. Also in this case Proposition 2 holds: the stable arm has dimension two since g′(·) < 0,

and the utilitarian criteria do not imply any difference for the economic growth rate since the growth rate

of population is null in steady state.

5 A Closed-Form Solution

We now study the transitional dynamics of the economy. Since population growth is exogenous its entire

dynamics is driven by the differential equation:

Ṅt = g(Nt)Nt.
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Notice that all the cases discussed in the previous section show a closed-form solution for their dynamic

path, given by Nt = N0e
nt for the constant growth case, equations (30) for the logistic case and (32) for the

von-Bertalanffy one.

The dynamics of χ, ψ and u are instead given by:

ψt =
e
B(1−α)

α
t

ψ−10 + αA
B

(
e
B(1−α)

α
t − 1

)
χt =

e
∫ t
0 [
α−σ
σ
Aψs− ρσ+

σ−ε
σ
g(Ns)]ds

χ−10 −
∫ t
0 e

∫ s
0 [
α−σ
σ
Aψv− ρσ+

σ−ε
σ
g(Nv)]dvds

ut =
e
∫ t
0 [
B(1−α)

α
−χs]ds

u−10 −B
∫ t
0 e

∫ s
0 [
B(1−α)

α
−χv ]dvds

.

We now look for a parameter restrictions allowing us to uncouple the equations of the system (17) - (20),

as in Smith (2006), or equivalently to solve the integrals in the previous equations. This can be easily done

when σ = ε = α. In fact, in such a case, the evolution of ut and χt can be rewritten as:

ut =
e
B(1−α)

α
t
(

1− αχ0

ρ

)
+ αχ0

ρ e
B(1−α)−ρ

α
t

u−10 − α
1−α

(
1− αχ0

ρ

)(
e
B(1−α)

α
t − 1

)
− α2Bχ0

ρ[B(1−α)−ρ]

(
e
B(1−α)−ρ

α
t − 1

)
χt =

e−
ρ
σ
t

χ−10 + σ
ρ (e−

ρ
σ
t − 1)

.

Notice that in order have convergence to the nontrivial equilibrium, the initial conditions for the consumption-

capital ratio and the rate of investment in physical capital need to be determined as follows: χ0 = ρ
α and

u0 = ρ−B(1−α)
Bα . This allows us to find a full closed-form solution for the transitional dynamics of the control,

ct, ut, and state variables kt ≡ Kt
Nt
, ht ≡ Ht

Nt
. The result is summarized in the following Proposition:

Proposition 4: Assume σ = ε = α. Then, the optimal paths of the control, ct and ut, and state, kt and

ht, variables in the problem (1) - (5) are given by the following expressions:

ut = u =
ρ−B(1− α)

Bα
(33)

ct =
ρ

α
kt (34)

kt = e−
ρ
α
t−

∫ t
0 g(Ns)ds

[
k1−α0 +

Au1−αh1−α0
ρ
α +B(1− u)

(
e(1−α)[

ρ
α
+B(1−u)]t − 1

)] 1
1−α

(35)

ht = h0e
B(1−u)t−

∫ t
0 g(Ns)ds. (36)

Proposition 4 tells us that the share of human capital employed in physical production and the consump-

tion to capital ratio are constant and equal to their equilibrium level since time 0 (notice that they coincide

with χ∗ and u∗, under the condition σ = ε = α). If the inverse of the intertemporal elasticity of substitution

is impure and equals both the capital share and the altruism parameter, we can evaluate the dynamics of

the control and state variables for all t. Notice that this kind of restriction is consistent with other previ-

ous works. For example, Smith (2006) studies the transitional dynamics of the Ramsey model under the

assumption σ = α; the same assumption has also been used by Chilarescu (2008) in the Uzawa-Lucas model

with no population growth. In order to obtain the same result in a context of population growth, we need

a further restriction: σ = ε.
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6 The Case of Stochastic Population

Demographic shocks consist of changes in population growth rates or immigration policies, and can have

important macroeconomic effects. Therefore, in this section we consider the case in which population

dynamics is stochastic, namely we assume population is subject to random shocks and suppose that it

follows an exogenous stochastic differential equation driven by a Brownian motion.

We therefore replace equation (4) in our model by a Brownian motion, as in Smith (2007), as follows:

dNt = µNtdt+NtθdWt; (37)

where µ is the drift of the process driving population dynamics, while θ ≥ 0 is the constant variance

parameter and dWt is the increment of a Wiener process such that E[dWt] = 0 and var[dWt] = dt. Since

the presence of this random term, the objective function (1) has to rewritten as an expected term:

U = E

[∫ ∞
0

c1−σt

1− σ
N1−ε
t e−ρtdt

]
. (38)

Notice first of all that the maximization problem is totally equivalent to the following:

max
Ct,ut

U = E

[∫ ∞
0

C1−σ
t

1− σ
Nσ−ε
t e−ρtdt

]
(39)

s.t. K̇t = AKα
t (utHt)

1−α − Ct (40)

Ḣt = B(1− ut)Ht (41)

dNt = g(Nt)Ntdt+NtθdWt (42)

K0, H0, N0 given, (43)

where Ct = ctNt represents aggregate consumption.

Define J(Ht,Kt, Nt) as the maximum expected value associated with the stochastic optimization problem

described above. The Hamilton-Jacobi-Bellman (HJB) equation is:

ρJ = max
Ct,ut

{
C1−σ
t

1− σ
Nσ−ε
t + JKK̇t + JHḢt + JNµNt +

JNNθ
2N2

t

2

}
, (44)

where the differential equations for Kt and Ht are defined in (40) and (41) and subscripts denote partial

derivatives of J with respect to the relevant variables of interest. Notice that if σ = ε, the first term on

the RHS of equation (44) becomes
C1−σ
t
1−σ since the population term vanishes (from now onwards we continue

as such an assumption holds). Dropping the ts for clarity, differentiating (44) with respect to the control

variables gives:

C = JK
− 1
σ , (45)

u =
K

H

[
(1− α)AJK

BJH

] 1
α

, (46)

which substituted back into (44) yield:

0 =

(
σ

1− σ

)
JK

σ−1
σ − ρJ + JK

[
AK

[
(1− α)AJK

BJH

] 1
α
[

BJH
(1− α)AJK

]]
+

+JH

[
BH −BK

[
(1− α)AJK

BJH

] 1
α

]
+ JNµN +

JNNθ
2N2

2
. (47)
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Using the guess and verify method, it is possible to show that a closed-form solution to the problem

exists under a particular combination of parameter values4.

Proposition 5: Assume that σ = ε = α; then the HJB equation, as in (44), has a solution given by:

J(H,K) = THH
1−α + TKK

1−α, (48)

where:

TK =
αα

(1− α)ρα
and TH =

Aα2α

B1−αρα[ρ− (1− α)B]α
. (49)

The optimal rules for consumption and share of human capital allocated to physical production are respectively

given by:

Ct =
ρ

α
Kt, ut = u =

ρ−B(1− α)

Bα
. (50)

while the optimal paths of human and physical capital are the following:

Ht = H0e
B(1−u)t, Kt = e−

ρ
α
t

[
K1−α

0 +
Au1−αH1−α

0
ρ
α +B(1− u)

(
e(1−α)[

ρ
α
+B(1−u)]t − 1

)] 1
1−α

. (51)

Proof: See Appendix B. �

Equation (50) says that, along the optimal paths, the consumption-capital ratio and the share of human

capital employed in final production are constant. Notice that such result coincides with what we showed for

the deterministic case. In order to understand the role of population shocks, we need to take expectations

of per-capital physical and human capital. Using the fact that E[X(t)] = X(0)e(θ
2−µ)t, where X(t) = 1

N(t) ,

and since E[k(t)] = E[K(t)
N(t) ] = E[K(t)X(t)] it is straightforward finding the expected value of k(t):

E[kt] = e(θ
2−µ− ρ

α
)t

k(0)1−α +
Au1−αh1−α0

(
e(1−α)[

ρ
α
+B(1−u)]t − 1

)
ρ
α +B(1− u)


1

1−α

; (52)

the same reasoning applies fot h(t):

E[h(t)] = h(0)e[B(1−u)+θ2−µ]t. (53)

By setting θ = 0 in (52) and (53) yields the levels of the state per-capita variable in the deterministic

version of the model. By comparing the level of physical and human capital in the deterministic and

stochastic version, it straightforward to see that uncertainty increases on average the levels of both per-

capita physical and human capital.

4Bucci et al. (2011) is the unique work to our knowledge to deal with a stochastic version of the Lucas-Uzawa model.

They study the case in which technological progress follows a geometric Brownian motion, and they show that a closed-form

solution can be found under two conditions, namely that the capital share is equal to the inverse of the intertemporal elasticity

of substitution and that the rate of time preference is equal to the human capital net (of depreciation) productivity (in our

notation σ = α and B = ρ, since we abstract from depreciation). This former condition is standard in this literature (see Smith

(2007)) while the latter is new. Even if empirically supported, as the authors show, it implies that one of the coefficients of

the value function depends on the initial value of a state variable, and this is probably a limitation of their result. Notice that,

with respect to theirs, our solution is based on a single condition σ = α = ε (the same used to determine the whole transitional

dynamics in the deterministic version of the model) and the coefficients of the value function are independent of the initial level

of the state variables
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7 Conclusion

A standard assumption in growth theory is that population change is constant and exponential. Recently,

the idea that such a specification is unrealistic has been arisen. This is due to an implication of such a

hypothesis: population size goes to infinity as time goes to infinity. This is clearly unrealistic, since it would

deny the presence of an environmental and economic carrying capacity (Brida and Accinelli, 2007). As a

result, several papers study the introduction of different population growth functions in canonical growth

models.

In this paper we introduce a generic population change function in a two-sector endogenous model of

growth, á-la Lucas-Uzawa and we show that the outcome of the model does not dependent on the choice

of such a function. In fact, a unique non-trivial equilibrium exists and the economy converges towards it

along a saddle path, independently of the shape of the population change function. What can be affected

by its shape is the dimension of the stable transitional path, which can be one (if ∂g(·)
∂Nt
|Nt=N∗ > 0) or

two (if ∂g(·)
∂Nt
|Nt=N∗ < 0), and the timing of convergence, which can happen in finite (the steady state is

characterized by a BGP) or infinite (by an ABGP) time. Moreover, with respect to other works dealing

with non exponential population change we do not relax one of the standard assumptions in economic growth

theory, that is the social welfare function is founded on the Benthamite criterion. In fact, we consider a

generic welfare function which results to be based on the Benthamite or the Millian principle according to

the value of the altruism parameter. We show that if population growth is null in steady state (as in the

case of logistic population growth), choosing one or the other criterion is irrelevant for the outcome of the

model. Instead, if population growth is constant in equilibrium, the Benthamite criterion leads to higher

economic growth than the Millian criterion.

Then, we formalize the population growth function by different functions which represent alternative

demographic dynamics studied in the previous literature and show how our model is able to encompass

all of them as particular cases. We look for a closed-form solution of the model, showing that this can be

fully characterized under a certain condition on the altruism parameter, namely when it coincides with the

inverse of the intertemporal elasticity of substitution and the capital share. We also look for a closed-form

solution of the model when population dynamics is subject to random shocks driven by a Brownian motion;

we show that under the same condition on the altruism parameter such a closed-form solution can be found

and uncertainty increases the levels of (per-capita) physical and human capital.

For further research, we suggest to study the dynamics of a two-sector economic growth model when

population change is endogenous. Really few papers introduce endogenous population change in optimal

models of growth and moreover they just analyze the case of a single sector economy. It can be interesting to

see whether endogenizing fertility can play a crucial role in determining the transitional dynamics of multi-

sector growth models and whether the degree of intertemporal altruism affects the economic equilibrium. In

such a framework it can also be interesting to study the implications of endogenous population growth on

sustainable development in a setting with renewable and non-renewable resources (a first attempt to tackle

the issue is Marsiglio (2011) who analyzes a single-sector model showing that the development path followed

by the economy can be sustainable or not according to steady state population growth rate).

A Transitional Dynamics

A.1 Exponential Population Growth

The steady state of the quasi-linear three dimensional system (21) - (23) is given by ψ∗ = B
αA , χ∗ =

ρα−B(α−σ)−α(σ−ε)gN
ασ and u∗ = ρ−B(1−σ)−(σ−ε)gN

Bσ . The steady state value of all variables is strictly positive if

ρ > B(1− σ) + (σ − ε)gN . In order to ensure u∗ < 1, we also need that ρ < B + (σ − ε)gN . Notice that, if

gN is not too large nor too small, such conditions generally hold for reasonable values of σ; in fact several

12



studies find that the inverse of the intertemporal elasticity of substitution is higher than one(see Mehra

and Prescott, 1985; and more recently Obstfeld, 1994) and in this case both conditions are automatically

satisfied.

We can study the stability of the system by linearizing around the steady state. The Jacobian matrix

evaluated at steady state, J(χ∗, ψ∗, u∗), is: χ∗ α−σ
σ Aχ∗ 0

0 −(1− α)ψ∗ 0

−u∗ 0 Bu∗

 .
The eigenvalues results to be the elements on the main diagonal: therefore, we have two positive and one

negative eigenvalues: the equilibrium is saddle-point stable. The system therefore converges to its steady

state equilibrium through a saddle path, along which the stable arm is a one-dimensional locus while the

unstable manifold has dimension two.

A.2 Non-Exponential Population Growth

The steady state of the quasi-linear four dimensional system (24) - (27) is given by N∗ such that g(N∗) = 0,

ψ∗ = B
αA , χ∗ = ρα−B(α−σ)

ασ , u∗ = ρ−B(1−σ)
Bσ . The steady state value of all variables is strictly positive if

ρ > B(1− σ), while u∗ < 1 if ρ < B.

The Jacobian matrix evaluated at steady state, J(χ∗, ψ∗, u∗, N∗), is:
χ∗ α−σ

σ Aχ∗ 0 σ−ε
σ

∂g(·)
∂Nt
|Nt=N∗χ

∗

0 −(1− α)ψ∗ 0 0

−u∗ 0 Bu∗ 0

0 0 0 ∂g(·)
∂Nt
|Nt=N∗N

∗

 .
Also in this case, the eigenvalues results to be the elements on the main diagonal: therefore, we have two

positive and one negative eigenvalues, independent of the g(·) function, while the last one crucially depends

on it. However, the equilibrium is saddle-point stable and the system therefore converges to its steady

state equilibrium through a saddle path. The shape of the g(·) function affects only the dimension of the

stable and unstable transitional paths. In fact, if ∂g(·)
∂Nt
|Nt=N∗ > 0 the stable arm has dimension one, while

if ∂g(·)
∂Nt
|Nt=N∗ < 0 it has dimension two.

B Stochastic Population

As in Bucci et al. (2011), we postulate a value function separable in the state variables of the problem:

J(H,K) = THH
λ1 + TKK

λ2 ,

where TH and TK are constant parameters. From this, we have:

JH = λ1THH
λ1−1, JK = λ2TKK

λ2−1, JN = JNN = 0,

which substituted into equation (44), yield:

0 =

(
σ

1− σ

)
[λ2TK ]

σ−1
σ K

(λ2−1)(σ−1)
σ − ρ

(
THH

λ1 + TKK
λ2
)

+ λ1THBH
λ1 +

+

(
α

1− α

)
Bλ1TH

[
(1− α)Aλ2TK

λ1BTH

] 1
α

K
λ2+α−1

α H
(1−α)(1−λ1)

α
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Let λ1 = 1− α and λ2 = 1− α. Then we get:

0 =

(
σ

1− σ

)
[(1− α)TK ]

σ−1
σ K

−α(σ−1)
σ − ρ

(
THH

1−α + TKK
1−α)+

+

(
α

1− α

)
B(1− α)TH

[
(1− α)ATK

BTH

] 1
α

H1−α + (1− α)THBH
1−α.

If σ = α, then

0 =

[(
α

1− α

)
(1− α)

−(1−α)
α T

− 1
α

K − ρ
]
TKK

1−α +

[
(1− α)B + αB

[
(1− α)ATK

BTH

] 1
α

− ρ

]
THH

1−α.

Since this equation has to be satisfied for all values of K and H, the square brackets have to be zero. This

implies the values of TK and TH given by (49). Given the expression for J , as defined in equation (48), from

equations (45) and (46) we obtain the optimal policy rules for C and u, as given in (504); by plugging these

into the state equations, we get the optimal dynamics of Kt and Ht, as shown in (51).

The verification theorem requires that the transversality condition is satisfied in order to have an optimal

solution. The TVC implies that limt→∞E[e−ρtJ(H,K)] = limt→∞E[e−ρt(THH
1−α + TKK

1−α] = 0. Both

the first and the second term automatically converge to zero, under the assumption ensuring that 0 < u∗ < 1,

namely that B(1− α) < ρ < B.
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