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Abstract In this paper a particular class of bicriteria maximization problems
over a compact polyhedron is considered. The first component of the objective
function is the ratio of powers of affine functions and the second one is linear.
Several theoretical properties are provided, such as the pseudoconcavity of the
first criterium of the objective function, the connectedness and compactness of
both the efficient frontier and the set of efficient points The obtained results
allows us to propose a new simplex-like solution method for generating the
whole efficient frontier; to better clarify the use of the suggested algorithm
several examples are described and the results of a computational test are
presented.
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1 Introduction

Over the last decades, great attention has been devoted to bicriteria frac-
tional programming from both a theoretical and an algorithmic point of view.
The great interest for this class of problems is justified also by the numerous
applications in different areas such as management science, finance and trans-
portation theory (see for all the surveys [3,14] and see [13] for an applicative
view).

In this paper a particular class of bicriteria maximization problems is stud-
ied; more precisely the first component of the objective function is the ratio
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of powers of affine functions, the second component is a linear function, while
the feasible region is a compact polyhedron.

Looking for the efficient points of this class of fractional problems deserves
a great attention because of the particular feature of the first objective; in fact
as this class of functions may admit maximum points which are not vertices
(see [4]), efficient points can be either a vertex, or be part of an edge or even
lie in the interior of the feasible polyhedron. The algorithm proposed in this
paper looks for the efficient points in a simplex-like way. The feasible region
defined by nonnegative variables and equality constraints allows to implement
the simplex-like method by using a tabular approach; the simplex-like table
allows to move from vertex to vertex by means of pivot operations and to
recognize the optimality of the points by means of “reduced costs”. This kind of
approach has been introduced in [1] and then profitably used in other bicriteria
fractional programming literature (see for example [11]).To better grasp how
the algorithm works, some detailed examples are given and the procedure
is described step by step. Furthermore a computational test shows how the
performance of the algorithm changes as the dimension of the treated problems
varies.

The paper is organized as follows: in Section 2 and 3 some theoretical
results are stated with the aim of obtaining suitable conditions for algorithmi-
cally determine the efficient points. In particular, the set of efficient points is
characterized by means of suitable parametric subproblems. The stated the-
oretical properties are related both to a general bicriteria problem (Section
2) and to the analyzed class of bicriteria fractional programs (Section 3). In
Section 4 the simplex-like algorithm is proposed, while the numerical examples
and the computational test results are described in Section 5.

2 Preliminary results for a general bicriteria problem

The aim of this section is to provide some new general results which will be
useful in the rest of the paper in order to propose an algorithm which generates
the efficient frontier of a particular class of bicriteria problems. In this light,
let us consider the following general bicriteria problem:{

max f(x) = (f1(x), f2(x))
x ∈ X (1)

where f1 : Rn → R and f2 : Rn → R are continuous functions and X ⊂ Rn
is a compact polyhedron. For the sake of completeness, let us first recall the
definitions of efficient point and of efficient frontier.

Definition 1 Let us consider Problem (1).

– a point x0 ∈ X is said to be an efficient solution for problem P if there
exists no x̄ ∈ X such that f(x̄) ∈ f(x0) + R2

+ \ {0}, that is to say that
f(X) ∩ {f(x0) + R2

+} = {f(x0)};
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– let us denote by XE the set of all efficient points for problem P . The
efficient frontier is the set of the values of all efficient solutions, that is
f(XE) ⊂ f(X).

As it is well known, the efficient points of a bicriteria problem are strictly re-
lated to the maximum points of a suitable family of parametric scalar problems
(see for all [7]). With this aim, the following notations are introduced:

ξmax = max
x∈X
{f1(x)} ξmin = max

x∈X,f2(x)=θmax
{f1(x)}

θmax = max
x∈X
{f2(x)} θmin = max

x∈X,f1(x)=ξmax

{f2(x)}

It can be easily proved that f1(XE) ⊆ [ξmin, ξmax] and f2(XE) ⊆ [θmin, θmax].
Some further notations, where θ ∈ [θmin, θmax], are needed:

Sθ = {x ∈ X, f2(x) ≥ θ} S̄θ = {x ∈ X, f2(x) = θ}
Rθ = arg max

x∈Sθ
{f1(x)} = arg max

x∈X,f2(x)≥θ
{f1(x)}

R̄θ = arg max
x∈S̄θ

{f1(x)} = arg max
x∈X,f2(x)=θ

{f1(x)}

ξ(θ) = max
x∈S̄θ

{f1(x)} = max
x∈X,f2(x)=θ

{f1(x)} = f1(R̄θ)

Notice that the continuity of f1 and f2, together with the compactness of X,
imply that for all θ ∈ [θmin, θmax], the sets Sθ, S̄θ, Rθ and R̄θ are nonempty and
compact. Moreover ξ : θ 7→ max

x∈S̄θ
{f1(x)} is a function such that ξ(θmin) = ξmax

and ξ(θmax) = ξmin.
In the literature efficient points are usually studied in relationship with the

elements in R(θ) (see for all [3]). Actually, the elements in R̄(θ) are to be used
for the algorithmic purposes of this paper. For this very reason the following
results are stated.

Theorem 1 Let us consider Problem (1). It is

XE ⊆
⋃

θ∈[θmin,θmax]

Rθ and XE ⊆
⋃

θ∈[θmin,θmax]

R̄θ

Proof We are going to prove that for any efficient point x∗, it is x∗ ∈ Rθ∗ and
x∗ ∈ R̄θ∗ where θ∗ = f2(x∗) ∈ [θmin, θmax].

First notice that by definition x∗ ∈ S̄θ∗ ⊆ Sθ∗ . Assume by contradiction
that x∗ /∈ Rθ∗ [x∗ /∈ R̄θ∗ ]. This yields that ∃x̄ ∈ X such that f2(x̄) ≥ θ∗ =
f2(x∗) [f2(x̄) = θ∗ = f2(x∗)] and f1(x̄) > f1(x∗). As a consequence f(x̄) ∈
f(x∗) + R2

+ \ {0} so that x∗ /∈ XE which is a contradiction.

The reverse inclusion relations between the family of the sets {R(θ)}θ∈[θmin,θmax]

({R̄(θ)}θ∈[θmin,θmax]) and XE does not in general hold. The following theorem
provides a sufficient condition for a complete characterization of the efficient
set in terms of both {R(θ)}θ∈[θmin,θmax] and {R̄(θ)}θ∈[θmin,θmax]
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Theorem 2 . Let us consider Problem (1) and let θ ∈ [θmin, θmax].
If Rθ ⊆ R̄θ then Rθ = R̄θ ⊆ XE.

Proof Let us first prove that Rθ ⊆ R̄θ implies Rθ = R̄θ. Assume by contradic-
tion that ∃x0 ∈ R̄θ such that x0 /∈ Rθ. Condition x0 ∈ R̄θ ⊆ S̄θ ⊆ Sθ means
that:

f1(x0) ≥ f1(x) ∀x ∈ X such that f2(x) = θ = f2(x0) (2)

while x0 /∈ Rθ with x0 ∈ S̄θ ⊆ Sθ implies:

∃x∗ ∈ X such that f2(x∗) ≥ θ = f2(x0) and f1(x∗) > f1(x0) (3)

These two last equations yield f2(x∗) > θ = f2(x0) so that:

∃x̄ ∈ Rθ such that f2(x̄) > θ = f2(x0) and f1(x̄) > f1(x0) (4)

This implies that x̄ /∈ R̄θ which contradicts the hypothesis Rθ ⊆ R̄θ.
Finally, let us prove that Rθ ⊆ XE . Assume by contradiction that ∃x0 ∈ Rθ

such that x0 /∈ XE . Condition x0 ∈ Rθ ⊆ R̄θ ⊆ S̄θ ⊆ Sθ means that:

f1(x0) ≥ f1(x) ∀x ∈ X such that f2(x) ≥ θ = f2(x0) (5)

while x0 /∈ XE implies:

∃x∗ ∈ X such that f(x∗) ∈ f(x0) + R2
+ \ {0} (6)

These two last equations yield x∗ ∈ Sθ and f1(x∗) = f1(x0). As a consequence,
f2(x∗) > f2(x0) and hence x∗ ∈ Rθ but x∗ /∈ R̄θ, which contradicts the
hypothesis Rθ ⊆ R̄θ.

The following result presents a class of functions for which condition Rθ ⊆
R̄θ ∀θ ∈ [θmin, θmax] is verified and hence provides a general assumption al-
lowing to study efficient points by means of the elements in R̄(θ).

Theorem 3 Let us consider Problem (1) and assume that function f1 verifies
the following property:

– each local maximum point of f1 is also a global maximum.

Then, Rθ = R̄θ ∀θ ∈ [θmin, θmax] so that

XE =
⋃

θ∈[θmin,θmax]

Rθ =
⋃

θ∈[θmin,θmax]

R̄θ (7)

and

f(XE) =
{

(ξ(θ), θ) ∈ R2 such that θ ∈ [θmin, θmax]
}

(8)
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Proof We are going to prove that Rθ ⊆ R̄θ ∀θ ∈ [θmin, θmax], so that the
whole result will follow from Theorems 1 and 2. In the case θ = θmax just
notice that by means of the definitions it is Rθmax

= R̄θmax
. Consider now the

case θmin ≤ θ < θmax and assume by contradiction that ∃x0 ∈ Rθ such that
x0 /∈ R̄θ, so that:

f2(x0) > θ and f1(x0) ≥ f1(x) ∀x ∈ X such that f2(x) ≥ θ (9)

By means of the continuity of f2 there exists a neighbourhood of x0, namely
Ix0 , such that f2(x) > θ ∀x ∈ X ∩ Ix0 . Due to (9) it is f1(x0) ≥ f1(x) ∀x ∈
X∩Ix0 , that is to say that x0 is a local maximum point of f1. By means of the
assumptions x0 is then a global maximum point of f1 and hence f1(x0) = ξmax.
It then results f2(x0) > θ ≥ θmin = max

x∈X,f1(x)=ξmax

{f2(x)} ≥ f2(x0) which is

a contradiction.

The class of functions for which the local maximum points are also global,
includes the class of semistrictly quasiconcave functions. By assuming the
semistrictly quasiconcavity of f1 and the quasiconcavity of f2 we get the fol-
lowing result.

Theorem 4 Let us consider Problem (1), and assume that function f1 is
semistrictly quasiconcave while function f2 is quasiconcave.
Then, the set Rθ = R̄θ is convex for all θ ∈ [θmin, θmax].

Proof First recall that a local maximum point of a semistrictly quasiconcave
function is also a global one, that the set of maximum points of a continuous
semistrictly quasiconcave function is convex, and that the upper level sets of
a quasiconcave function are convex ones. Hence, the sets Sθ are convex for all
θ ∈ [θmin, θmax] and the sets of maximum points Rθ ⊂ Sθ of function f1 are
convex. The result then follows from Theorem 3.

Under the assumption “f1 has no local maximum point different from the
global ones”, function ξ and the sets XE and f(XE) exhibit properties which
can be usefully exploited from an alogorithmical point of view (see Section
3 and Section 4). With this regards we present the following theorem which
extends Theorem 2.2 in [10].

Theorem 5 Let us consider Problem (1) and assume that function f1 verifies
the following property:

– each local maximum point of f1 is also a global maximum.

Then, function ξ results to be strictly decreasing and continuous.

Proof Let us first prove that ξ(θ) is strictly decreasing. With this aim, let θ1

and θ2, with θmin ≤ θ1 < θ2 ≤ θmax, be arbitrary values. For Theorems 2 and
3 it is Rθ1 = R̄θ1 ⊆ XE and Rθ2 = R̄θ2 ⊆ XE . Being Sθ1 ⊂ Sθ2 it then yields:

ξ(θ1) = f1(R̄θ1) = f1(Rθ1) ≥ f1(Rθ2) = f1(R̄θ2) = ξ(θ2)
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Let x1 ∈ R̄θ1 ⊆ XE , x2 ∈ R̄θ2 ⊆ XE and assume by contradiction that
ξ(θ1) = f1(x1) = f1(x2) = ξ(θ2); by definition of R̄θ it results f2(x1) = θ1 <
θ2 = f2(x2) so that f(x2) ∈ f(x1) +R2

+ \ {0}, and this is a contradiction since
x1 is an efficient point. As a consequence, it is ξ(θ1) > ξ(θ2) which implies the
strict decreaseness of function ξ(θ).
Let us now prove that ξ is continuous. Since ξ is monotone then the limit
lim
θ→θ̂

ξ(θ) exists for all θ̂ ∈ [θmin, θmax]. Let xθ ∈ R̄θ so that ξ(θ) = f1(xθ).

The assumptions guarantee that Rθ = R̄θ ⊆ XE , since XE is a compact set
it then yields lim

θ→θ̂
xθ = x∗ ∈ XE and for the continuity of function f2 it is

f2(x∗) = lim
θ→θ̂

f2(xθ) = lim
θ→θ̂

θ = θ̂. Consequently, it is x∗ ∈ R̄θ̂. The continuity

of f1 then yields lim
θ→θ̂

ξ(θ) = lim
θ→θ̂

f1(xθ) = f1(x∗) = f1(R̄θ̂) = ξ(θ̂) so that ξ(θ)

is continuous too.

Theorem 6 Let us consider Problem (1) and assume that function f1 verifies
the following property:

– each local maximum point of f1 is also a global maximum.

Then, the set of efficient points XE and the efficient frontier f(XE) are both
compact and connected.

Proof Let us first prove the compactness of XE . The set XE is bounded since
XE ⊆ X and X is bounded. Assume now by contradiction that XE is not
closed, that is to say that there exists a sequence {xk} ⊂ XE such that:

lim
k→+∞

xk = x̂ with x̂ ∈ X , x̂ /∈ XE . Notice also that for the continuity of

f1 and f2 it is:

lim
k→+∞

f1(xk) = f1(x̂) and lim
k→+∞

f2(xk) = f2(x̂)

Since fi(XE) ⊆ [ξmin, ξmax] with i = 1, 2, it is f2(xk) ∈ [θmin, θmax] for all
k so that, for the compactness of the interval [θmin, θmax] and by means of a
suitable subsequence if needed, it results:

lim
k→+∞

f2(xk) = f2(x̂) ∈ [θmin, θmax]

Let θ̂ = f2(x̂); since x̂ /∈ XE there exists x∗ ∈ Rθ̂ such that f(x∗) ∈
f(x̂) + R2

+ \ {0}. Due to Theorems 2 and 3 it results Rθ̂ = R̄θ̂ ⊆ XE , hence

f2(x∗) = θ̂ = f2(x̂) which implies f1(x∗) > f1(x̂).

In the case θ̂ = θmax for the continuity of f1 there exists a value k̃ great enough
such that for all k > k̃ it is: f1(x∗) > f1(xk) and f2(x∗) = θ̂ = θmax ≥ f2(xk)
and this is a contradiction since {xk} ⊂ XE .

In the case θ̂ < θmax there exists x̄ ∈ X∩Ix∗ , where Ix∗ is a suitable neighbor-
hood of x∗, such that: f1(x∗) > f1(x̄) > f1(x̂)and f2(x̄) > θ̂ = f2(x∗) = f2(x̂)
For the continuity of f1 and f2 there exists a value k̃ great enough such that for
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all k > k̃ it is: f1(x̄) > f1(xk) and f2(x̄) > f2(xk) and this is a contradiction
since {xk} ⊂ XE .
The compactness of f(XE) follows from the continuity of f being f(XE) the
image of a compact set.
Let us now prove the connectedness of f(XE). From Theorem 3, the set f(XE)
is nothing but the graph of function ξ in the domain [θmin, θmax]. The con-
nectedness of such a graph follows directly from the continuity of ξ(θ) proved
in Theorem 5 and the connectedness of the interval [θmin, θmax].
Since f(XE) is connected and f is continuous then XE is connected too.

Notice that in [12] closedness is proved for a componentwise strictly quasi-
concave function while in [6] connectedness is obtained by considering semistrictly
quasiconcave functions. The connectedness of the efficient frontier is studied
also in [9] and in [5] by using a different approach based on the image space.

3 A generalized fractional bicriteria problem: statement and
theoretical properties

In what follows we are going to consider the following problem:

P :

{
max f(x) = (f1(x), f2(x))

x ∈ X = {x ∈ Rn : Ax = b, x ≥ 0} (10)

where:

– f1(x) =

(
cTx+ c0

)α
(dTx+ d0)β

with 0 < α < β;

– f2(x) = aTx;
– f : D → R2, with D = {x ∈ Rn : dTx+ d0 > 0}, f differentiable on D;
– cTx+ c0 > 0 ∀x ∈ X and dTx+ d0 > 0 ∀x ∈ X;
– A ∈ Rm×n with rank[A] = m < n, b ∈ Rm, c, d, a ∈ Rn, c 6= 0, d 6= 0,
a 6= 0, c and d are linearly independent, c0, d0 ∈ R and X 6= ∅ is a compact
polyhedron.

We first present several theoretical properties of Problem P which play a key
role in generating the efficient frontier (see Section 4). With this aim, let us
write the gradient and the Hessian matrix of f1

∇f1(x) =
(cTx+ c0)α−1

(dTx+ d0)β+1

(
(dTx+ d0)αc− (cTx+ c0)βd

)
= f1(x)

(
αc

cTx+ c0
− βd

dTx+ d0

) (11)

H1(x) =
(cTx+ c0)α−2

(dTx+ d0)β+2

((
dTx+ d0

)2 (
α2 − α

)
ccT−

αβ
(
cTx+ c0

) (
dTx+ d0

) (
cdT + dcT

)
+
(
cTx+ c0

)2 (
β2 + β

)
ddT

)
(12)

Referring to the properties of function f1, we get the following results.
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Theorem 7 Given function f1 in Problem P, the following statements hold:
i) f1 is pseudoconcave on X;
ii) f1 has no critical points;
iii) f1 admits a maximum point which is either a vertex or a point belonging
to an edge;
iv) x0 is a maximum point of f1 on X if and only if for every feasible direction
u it is ∇f1(x)Tu ≤ 0;
v) x0 is a maximum point of f1 on X if and only it is a maximum point on X

of f∗1 (x) =

(
cTx+ c0

)
(dTx+ d0)

β
α

.

Proof i) Function f1 can be seen as a special case of function f studied in
[4]. Since α < β and cTx + c0 > 0 for every x ∈ X, the result follows from
Theorem 4 in [4].
ii) Follows from (11) and from rank[c, d] = 2.
iii) Since X is compact, the result follows directly from Theorem 1 in [4].
iv) Follows from the convexity of X and the pseudoconcavity of f1.

v) Follows directly from the monotonicity of the power function y
1
α over the

positive domain given by cTx+ c0 > 0 and dTx+ d0 > 0 for every x ∈ X.

The following theorem provides a complete characterization for the existence
of alternative optimal solutions of f1 over X.

Theorem 8 Let x0 ∈ X be an optimal solution of max
x∈X

f1(x). The following

conditions are equivalent:

i) ∃x̄ ∈ X, x̄ 6= x0, which is an optimal solution of max
x∈X

f1(x);

ii) ∃x̄ ∈ X, x̄ 6= x0, such that dTx0 = dT x̄ and cTx0 = cT x̄;
iii) there exists a feasible direction u ∈ Rn such that dTu = cTu = 0.

Proof i)⇒ ii) Let u = x̄− x0 and consider the segment connecting x0 and x̄,
s =

{
x ∈ Rn : x = x0 + tu, t ∈ [0, 1]

}
. Being f1(x) a pseudoconcave function

and being X a convex set, the segment s results to be a feasible set of maximum
points. Hence, the restriction f1(x0 + tu) is constant so that its first order
derivative is zero, that is to say that for all t ∈ [0, 1] it results:

0 = ∇f1(x0 + tu)Tu = f1(x0 + tu)

[
αcTu

cT (x0 + tu) + c0
− βdTu

dT (x0 + tu) + d0

]
Being f1(x) > 0 ∀x ∈ X it yields for all t ∈ [0, 1] that:

αcTu(dTx0 + tdTu+ d0) = βdTu(cTx0 + tcTu+ c0)

which yields:

αcTu(dTx0 + d0)− βdTu(cTx0 + c0) + tcTudTu(α− β) = 0 ∀t ∈ [0, 1]

Being 0 < α < β it then follows: αcTu(dTx0 + d0) = βdTu(cTx0 + c0) and
cTudTu = 0. Let us now prove that dTu = 0; with this aim assume by contra-
diction that dTu 6= 0 which yields cTu = 0; being β > 0 it follows cTx0+c0 = 0
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which is a contradiction since x0 ∈ X and cTx+ c0 > 0 ∀x ∈ X. By using the
same lines it can be proved that cTu = 0 too. The result then follows being
u = x̄− x0.

ii)⇒ iii) Just consider the direction u = x̄−x0 observing that its feasibility
follows from the convexity of X.

iii) ⇒ i) Consider the segment s =
{
x ∈ Rn : x = x0 + tu, t ∈ [0, ε]

}
which results to be a subset of X for a suitable ε > 0 due to the feasibility of
direction u. Assumption dTu = cTu = 0 yields f1(x) = f1(x0) for all x ∈ s
so that all the points in s are optimal solutions of max

x∈X
f1(x). The result then

follows since s 6= {x0}.

Moving from function f1 to the bicriteria function f , we first characterize
the efficient points on its open domain D and then we will focus our attention
on the efficient points belonging to the polyhedron X.

Lemma 1 Consider function f and let x̄ ∈ D = {x ∈ Rn : dTx + d0 > 0}.
The following conditions are equivalent:

i) x̄ is an efficient point for f over D;
ii) ∃ηc, ηd ∈ R, ηc < 0 and ηd > 0, such that a = ηcc + ηdd, moreover x̄ lies

on the hyperplane ηc
α (cTx+ c0) + ηd

β (dTx+ d0) = 0.

Proof Let us preliminary observe that from i) of Theorem 7, f is component-
wise pseudoconcave. Therefore, x̄ is an efficient point for f over D if and only
if ∃(µ1, µ2) ∈ R2 \ {(0)} such that µ1∇f1(x̄) + µ2∇f2(x̄) = 0 (see for example
Theorem 4.23 in [2]). From ii) of Theorem 7 and a 6= 0, we get ∇f1(x̄) 6= 0 and
∇f2(x̄) 6= 0 so that µ1 6= 0 and µ2 6= 0. Consequently, ∇f2(x̄) = −µ2

µ1
∇f1(x̄).

i)⇒ ii) Assumption ∇f2(x̄) = λ∇f1(x̄) implies:

a = λf1(x̄)

[
αc

cT x̄+ c0
− βd

dT x̄+ d0

]
=

(
λf1(x̄)α

cT x̄+ c0

)
c+

(
−λf1(x̄)β

dT x̄+ d0

)
d

that is to say that a is a linear combination of c and d, hence ∃ηc, ηd ∈ R such
that a = ηcc+ ηdd. It then follows:

ηc =
λf1(x̄)α

cT x̄+ c0
, ηd =

−λf1(x̄)β

dT x̄+ d0
(13)

that is to say
ηc
α

(cT x̄ + c0) = λf1(x̄) ,
ηd
β

(dT x̄ + d0) = −λf1(x̄) which

yields ηc
α (cT x̄ + c0) + ηd

β (dT x̄ + d0) = 0. Finally, notice that from (13) and
from the assumptions of problem P it follows ηc < 0 and ηd > 0.

ii)⇒ i) Since x̄ lies on the hyperplane ηc
α (cTx+c0)+ ηd

β (dTx+d0) = 0 and

being f1(x) > 0 ∀x ∈ X it results
ηc

αf1(x̄)
(cT x̄+ c0) +

ηd
βf1(x̄)

(dT x̄+ d0) = 0,

so that the following value λ < 0 can be defined:

λ =
ηc

αf1(x̄)
(cT x̄+ c0) = − ηd

βf1(x̄)
(dT x̄+ d0)



10 Cambini R, Carosi L. and Martein L.

It then results ηc =
λf1(x̄)α

cT x̄+ c0
and ηd = −λf1(x̄)β

dT x̄+d0
, so that from a = ηcc + ηdd

it follows a = λf1(x̄)
[

αc
cT x̄+c0

− βd
dT x̄+d0

]
and hence ∇f2(x̄) = λ∇f1(x̄).

According to the previous Lemma, establishing whether f admits interior effi-
cient point is just a matter of verifying if a is a “suitable” linear combination
of c and d. Whenever this condition is verified we can immediately identify
the whole set of efficient points on D. The following theorem holds.

Theorem 9 Consider function f of P and let D be its open domain. The
following conditions are equivalent:

i) ∃ηc, ηd ∈ R, ηc < 0 and ηd > 0, such that a = ηcc+ ηdd;
ii) all the points x ∈ D∩π, D∩π 6= ∅, are efficient points for f over D, where

π is the hyperplane defined as follows:

π =

{
x ∈ Rn :

ηc
α

(cTx+ c0) +
ηd
β

(dTx+ d0) = 0

}
(14)

with ηc, ηd ∈ R, ηc < 0 and ηd > 0, be such that a = ηcc+ ηdd.

Proof i)⇒ ii) Let ηc, ηd ∈ R, ηc < 0 and ηd > 0, be such that a = ηcc+ ηdd.
Being 0 < α < β it is possible to define the hyperplane π. Notice that π is
nonempty and that it is not parallel to the hyperplane

{
x ∈ Rn : dTx+ d0 = 0

}
,

as a consequence D∩π 6= ∅. The result then follows from Lemma 1 which guar-
antees the efficiency of all the points x̄ ∈ D ∩ π.

ii)⇒ i) Follows from Lemma 1.

Let us now consider function f on the polyhedron X. From Theorem 9, f
admits interior efficient points if and only if the intersection between the set
X and the hyperplane π defined in (14) is non-empty. Moreover, from iii) of
Theorem 7 and the linearity of a, f clearly admits efficient boundary points.
To characterize XE , let us consider the following scalar problem

Pθ : max
x∈X

cTx+ c0

(dTx+ d0)
β
α

, x ∈ {x ∈ X : aTx = θ} (15)

Using the notation introduced in Section 2, let R̄θ be the set of maximum
points for Problem Pθ.
Recalling that f1 is pseudoconcave and hence all its local maxima are global
ones, the set of efficient points and the set of efficient frontier are connected
and compact; furthermore Theorem 3 can be specified as follows.

Theorem 10 Consider Problem P ; let XE be the set of efficient points and

let M = max
x∈X

cTx+ c0

(dTx+ d0)
β
α

.

i) It is XE = ∪
θ∈[θmin,θmax]

R̄θ and

f(XE) =
{

(ξ(θ), θ) ∈ R2 such that θ ∈ [θmin, θmax]
}

where θmin = max aTx, x ∈ X ∩
{

cT x+c0

(dT x+d0)
β
α

= M

}
, θmax = max

x∈X
aTx.
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4 Sequential method

Taking into account Theorem 10, we are able to propose a simplex-like al-
gorithm for generating the set of efficient points XE and the set of efficient
frontier f(XE). The suggested procedure starts with the maximization of the
linear function f2 over the feasible region X and then it parametrically visits
the sets Sθ as θ varies from θmax down to θmin. By means of a suitable post-
optimality simplex-like analysis, the set R̄θ and ξ(θ) are determined. In each
iteration, new vertex/edge of the polyhedron X is reached and the optimal-
ity conditions for efficiency are maintained by means of suitable behavior of

“directional derivatives”. Therefore, step by step, XE =
⋃

θ∈[θmin,θmax]

R̄θ and

f(XE) = {(ξ(θ), θ), θ ∈ [θmin, θmax]} are obtained. This approach has been in-
troduced for bicriteria fractional programming in [1] and then extended for a
wider class of problems in [11]. For a critical discussion of this approach and a
comparison with other algorithms for bicriteria linear fractional programming,
the interested reader can see [3] and references therein (see also [8]). Going
into detail, let x∗ be an optimal vertex of the problem max

x∈X
f2(x) = max

x∈X
aTx.

It is obvious that x∗ is an efficient point; if x∗ is also the maximum for the
fractional function f1 on X, we have found the ideal maximum point and no
further analysis is needed. Beyond this very uncommon case, the efficient fron-
tier is constructed by separately analyzing the interior of X and its boundary.
Taking into account iii) and iv) of Theorem 9, we first establish whether a is
a linear combination of c and d. If this is the case, the interior efficient points
are those in the intersection between the hyperplane π in (14) and the set X.
Regarding the boundary efficient points which do not belong to the hyper-
plane π, they are found starting from a solution of the following parametric
maximization problem

Pθ :


max f∗1 (x) =

(
cTx+ c0

)
(dTx+ d0)

β
α

s.t. x ∈ X = {x ∈ Rn : Ax = b, x ≥ 0} ⊂ D,
aTx = aTx∗ − θ

by setting θ = 0 = θ0; if x∗ is the unique solution of max
x∈X

f2(x), by construction,

it is an optimal solution of problem Pθ0 . If this is not the case, we solve Problem
Pθ0 by using the procedure presented in [4]. With respect to the initial problem
P , Pθ has the additional constraint aTx = aTx∗ − θ = θmax − θ, and hence it
has an additional slack variable xn+1. Let x(θ0) be the optimal solution of Pθ0
and let us suppose that x(θ0) is a vertex (for the case x(θ0) is not a vertex see
Remark 1); the iterative part of the procedure begins with a basis associated
with x(θ0) such that:
1) the slack variable xn+1 of the parametric constraint is a non-basic variable;
2) the directional derivatives of f1 associated with all the non-basic variables,
but xn+1, are non-positive;
3) the directional derivatives of f1 associated with xn+1 is non-negative. The



12 Cambini R, Carosi L. and Martein L.

existence of such a basis follows from iv) of Theorem 7 and from the fact that
x(θ0) is binding to the parametric constraint. Using a very standard notation,
let us define B0 and N0 as the sets of indices associated with the basic and the
non-basic variables respectively; accordingly we can partition the vectors c =
[cB0

, cN0
]T , d = [dB0

, dN0
]T , a = [aB0

, aN0
]T and the matrix A = [AB0

, AN0
].

As θ increases, we find the basic solution x(θ) = (xB0(θ), 0) = (xB0 +θuB0 , 0);
function f∗1 (xB0(θ), 0) and ∇f∗1 ((xB0(θ), 0) can be expressed as follows

f∗1 (xB0(θ), 0) =
cTB0

xB0
+ θcTB0

uB0
+ c0(

dTB0
xB0

+ θdTB0
uB0

+ d0

) β
α

Setting p = β
α , c̄0(θ) = cTB0

xB0
+θcTB0

uB0
+c0, d̄0(θ) = dTB0

xB0
+θdTB0

uB0
+d0,

we get

∇f∗1 ((xB0
(θ), 0) =

f∗1 (xB0
(θ), 0)

d̄0(θ)

(
d̄0(θ)cT − pc̄0(θ)dT

)
(xB0(θ), 0) is optimal for Problem P (θ), if and only if the following conditions
are satisfied:

i) (xB0
(θ), 0) is feasible, that is (xB0

+ θuB0
, 0) ≥ 0; therefore a feasibility

interval [0, θfeas] is obtained.
ii) the directional derivatives with respect to every non-basic variable j 6= n+1

is non-positive (optimality with respect to f1), that is

γj(θ) = ∇f1(xB0
(θ), 0)T ej = d̄0(θ)c̄Nj − pc̄0(θ)d̄Nj ≤ 0

where ej =
(
eji

)n
i=1

with eji = 0 if i 6= j and eji = 1 if i = j, c̄ and d̄

are the updated values of c and d with respect to the basis (B0, N0). This
condition defines the so called stability interval [0, θopt].

iii) the directional derivative with respect to the last non-basic variable n+ 1
is non-negative, that is

γn+1(θ) = ∇f1(xB0
(θ), 0)T en+1 = d̄0(θ)c̄Nj − pc̄0(θ)d̄Nj ≥ 0.

Actually, as θ increases, a lower value of f2 has to be compensated by an
higher value of f1. According to this third condition, θ must belong to the
following interval [0, θf2 ]

Setting θk = θ0 and by using the usual notation Bk, Nk as the sets of indices
associated with the basic and the non-basic variables, we are able to present
the iterative part of the procedure.
- Iterative part of the procedure
Taking into account conditions i), ii) and iii), we determine

θk+1 = min{θfeas, θopt, θf2}.

The following exhaustive cases may occur:
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Case a) θk+1 = θfeas: correspondingly to θfeas we get a new efficient vertex of the
feasible region and therefore, all the points between x(θk) and x(θk+1) are
efficient points for problem P . The efficient frontier contains the values
of f along the line segment [x(θk), x(θk+1)]. The procedure goes on by
setting θ = θ + θk+1; as for θ > 0 the feasibility is lost, we restore it by
applying (if possible) an iteration of the dual simplex algorithm and the
new basis solution x(θk+1) is determined. New values for θfeas, θopt and θf2
are computed. Then, we set k = k + 1 and we go back at the beginning
of the iterative part. If no dual iteration is available, the procedure stops
θk+1 = θmin and x(θk+1) is the last efficient point for P .

Case b) θk+1 = θopt: in this case all the points between the vertex x(θk) and
x(θk+1) are efficient and x(θk+1) lies on an edge of X. We update the
value θ = θ + θk+1 and we compute the direction derivatives γj(θ) for
every non-basic variable j. Corresponding to the new x(θk), we compute

again θ̂ = min[θfeas, θopt, θf2]. Therefore, one of the following three exhaus-
tive subcases may occur:

b.1) θ̂ = θopt: it means that γ∗j (0) = 0 for at least one j∗ ∈ Nk and there
exists a path of efficient points starting from x(θk+1), along the rela-
tive interior of a face (in R2, in the interior of X). The value of non-
basic variable j∗ can be increased as follows xN∗

j
(θ) =

γj∗(θ)

(p−1)c̄Nj d̄Nj
.

Consequently the values of the basic variables are updated, that is
xBk(θ) = xBk(θ) − A−1

Bk
ANkxN∗

j
. Recalling that xBk(θ) ≥ 0, θ is in-

creased up to the greatest value θ̃ which guarantees the non-negativity
of the basic variables. From a geometrical point of view, we move from
x(θk+1) along a feasible direction belonging to the hyperplane π (or
to the relative interior of the boundary) and we get to the edge where
xBk(θ̃) lies. Moreover, all the points of the segment [x(θk+1), x(θ̃)] are
efficient. At this stage, we update the value θ = θ + θ̃. As for θ > 0
the feasibility is lost, we restore it by applying (if possible) an itera-
tion of the dual simplex algorithm and the new basic solution xBk+1

(θ)
is determined. We set k = k + 1 and we go back at the beginning of
the iterative part. If no dual iteration is available, the procedure stops
θ̃ = θmin and x(θ̃) is the last efficient point for P .

b.2) θ̂ = θfeas all the points between x(θk+1) and x(θ̂) are efficient points for
problem P . The efficient frontier contains the values of f along the line
segment [x(θk+1), x(θ̂)]. Then, the procedure follows the same steps of
Case a).

b.3) θ̂ = θf2 . In this case the algorithm stops since a lower level of θ would
correspond to a lower value for both f1 and f2. The value θmin is
reached.

Case c) θk+1 = θf2: as in case b3), the algorithm stops.

- End of the iterative part of the procedure

Remark 1 If the problem max
x∈X

f2 has alternative solutions, it may happen that

the optimal solution x(θ0) of initial maximization problem Pθ0 is not a vertex.
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In this case, if x(θ0) is also the maximum point of f1 on X, then we get the
ideal maximum point of problem P and no further analysis is needed. If on
the contrary x(θ0) is not the ideal maximum point, to start the suggested
procedure, we need to recover an efficient vertex. With this regards, let us
observe that the set of efficient points is connected and hence the directional
derivative, evaluated at x(θ0), with respect to at least one non-basic variable
is zero. Therefore, either x(θ0) belongs to the hyperplane of efficient points π
or x(θ0) is an element of a path of efficient points which is contained in the
relative interior of the boundary of S. To recover an optimal basic solution to
start with, we observe that x(θ0) is an optimal vertex of the following auxiliary
problem

P̂θ :


max f∗1 (x) =

(
cTx+ c0

)
(dTx+ d0)

β
α

s.t. x ∈ X = {x ∈ Rn : Ax = b, x ≥ 0} ⊂ D,
aTx = aTx∗ − θ
dTx = dTx(θ0)

Therefore, we have a basic solution to start, and the algorithm can continue; of
course, in each step, the feasibility interval of θ is determined without taking
into account the last constraint.

Remark 2 The correctness of the algorithm is given by the theoretical results
of the previous sections where it is proved how to determine and recognize the
efficient points. The convergence of this simplex-like algorithm follows noticing
that at the end of each iteration either a new vertex is reached or an edge is
left, taking into account that the region X is parametrically visited from θmax

down to θmin, so that an edge or a vertex cannot be visited twice, and finally
recalling that a compact polyhedron has a finite number of vertices and edges.
Clearly, since this is a simplex-like algorithm, it has the same complexity of
simplex method, that is to say that in the worst case all of the vertices have
to be visited.

5 Numerical examples and computational test

To clarify how the suggested procedure works, in this section three examples
are provided. In the first one, both interior and boundary efficient points are
determined, while in the second one, the “efficiency path” completely lies on
the boundary. The last one describes a particular case of the procedure, namely
Case b.2) which has interesting geometric meaning.

Example 1 Consider the problem P

P :


max f(x) =

(
f1(x) =

(x1 + x2 + 3x3 + 4)

(x1 + 2x2 + x3 + 1)2
, f2(x) = 3x1 + 7x2 + x3

)
x ∈ X = {x ∈ R3 : 0 ≤ xi ≤ 4, i = 1, 2, 3}

(16)
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The maximum value of f2 on X is 44 and it is attained at the vertex (4, 4, 4),
so that θmax = 44. As the maximum point of f1 is (0, 0, 0), (4, 4, 4) is not an
ideal point and we start with the procedure. Let us preliminary observe that
a = −c + 4d and π = {x ∈ R3 : 2x1 + 6x2 − 2x3 − 4 = 0} ∩ X 6= ∅, so that
there exist interior efficient points. In Figure 1 the grey area is the feasible
region and the yellow one is the intersection between the plane π and X. Let
us analyze the boundary of X; consider the parametric problem

P (θ) :

max
x1 + x2 + 3x3 + 4

(x1 + 2x2 + x3 + 1)2

x ∈ X ∩ 3x1 + 7x2 + x3 = 44− θ

whose tabular representation is the following

x1 x2 x3 x4 x5 x6 x7

c −24 + θ/7 0 0 0 −4/7 0 −20/7 −1/7
d −17 + 2θ/7 0 0 0 −1/7 0 −5/7 −2/7

4 1 0 0 1 0 0 0
x ∈ S 4− θ/7 0 1 0 −3/7 0 −1/7 1/7

4 0 0 1 0 0 1 0
f2(x) = θ θ/7 0 0 0 3/7 1 1/7 −1/7

where x4, x5 and x6 are the slack variables associated with the constraints
defining the feasible region and x7 is the slack variable associated with the
parametric constraint.
We set θ0 = 0; looking at the feasibility we get θ ∈ [0, 28] so that θfeas = 28.
The directional derivatives associated with the non-basic variables are γ4(θ) =
− 20

7 + 6
49θ, γ6(θ) = − 100

7 + 30
49θ and γ7(θ) = 79

7 −
2
49θ. Therefore θopt =

70/3 and θf2 = 553/2, so that θ1 = min{θfeas, θopt, θf2} = 70/3. (We are
in case b)). By substituting θ = 70/3 we obtain (4, 2/3, 4); all the points
belonging to the segment [(4, 4, 4) (4, 2/3, 4)] are efficient and the value of f is(
f1

(
4, 4− 1

7θ, 4
)
, f2

(
4, 4− 1

7θ, 4
))

with θ ∈ [0, 70/3]. In Figure 1 the segment
is colored in blue and in Figure 2 the corresponding values of (f1, f2) are
represented in blue too. By updating θ as θ = θ + 70

3 we get the following
tabular form

x1 x2 x3 x4 x5 x6 x7

c −62/3 + 1/7θ 0 0 0 −4/7 0 -20/7 −1/7
d −31/3 + 2/7 θ 0 0 0 −1/7 0 −5/7 −2/7

4 1 0 0 1 0 0 0
x ∈ S 2/3− 1/7θ 0 1 0 -3/7 0 −1/7 1/7

4 0 0 1 0 0 1 0
f2(x) = θ 1/7θ + 10/3 0 0 0 3/7 1 1/7 −1/7

The new directional derivatives are γ4(θ) = 6
49θ, γ6(θ) = 30

49θ and γ7(θ) = 31
3 −

2
49θ. As both γ4 and γ6 are zero for θ = 0, we can either increase the value of
x4 or the value of x6. By choosing x4 = 3

2θ we move along the feasible direction[
4− 3

2θ,
2
3 + θ

2 , 4,−
θ
2 + 10

3

]T
; the feasibility condition imposes θ ∈ [0, 8/3] and

hence we set θ2 = 8/3. For θ = 8/3 we get the efficient point (0, 2, 4); the points
belonging to the segment [(4, 2/3, 4) , (0, 2, 4)] are in the relative interior of the
boundary of X and they are efficient. In Figure 1 the segment is colored in
green and in Figure 2 the corresponding values of (f1, f2) are represented in
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green too. We update the value of θ, θ = θ + 8
3 ; as θ > 0 the feasibility of

x1 is lost and hence we perform an iteration of the dual simplex algorithm to
restore it. The new tabular form associated with (0, 2, 4) is the following:

x1 x2 x3 x4 x5 x6 x7

c −18 + θ/7 4/7 0 0 0 0 −20/7 −1/7
d −9 + 2/7 θ 1/7 0 0 0 0 −5/7 −2/7

4 1 0 0 1 0 0 0
x ∈ S 2− 1/7θ 3/7 1 0 0 0 −1/7 1/7

4 0 0 1 0 0 1 0
f2(x) = θ θ/7 + 2 −3/7 0 0 0 1 1/7 −1/7

The new directional derivatives are γ1(θ) = − 6
49θ; γ6(θ) = 30

49θ and γ7(θ) =
9− 2

49θ. The non-basic variable x6 is increased as follows x6 = 3
10θ and we move

along the direction
[
4, 2− 1

10θ, 4−
3
10θ, 10θ + 2

]T
. The feasibility condition

requires θ ∈ [0, 40/3], so that we move up θ = 40/3 which corresponds to
(0, 2/3, 0). In Figure 1 the segment of efficient points [(0, 2, 4), (0, 2/3, 0)] is the
red one as well as their corresponding values in Figure 2. We set θ3 = 40/3,
θ = θ+40/3 and again we perform an iteration of the dual algorithm to restore
the feasibility; the tabular form associated with (0, 2/3, 0) is the following:

x1 x2 x3 x4 x5 x6 x7

c −14/3 + θ/7 4/7 0 20/7 0 0 0 −1/7
d −7/3 + 2/7 θ 1/7 0 5/7 0 0 0 −2/7

4 1 0 0 1 0 0 0
x ∈ S 2/3− 1/7θ 3/7 1 1/7 0 0 0 1/7

4 0 0 1 0 0 1 0
f2(x) = θ 1/7θ + 10/3 −3/7 0 −1/7 0 1 0 −1/7

Regarding feasibility we get θ ∈ [0, 14/3], so that θfeas = 14/3. The direc-
tional derivatives are γ1(θ) = − 6

49θ, γ3(θ) = − 30
49θ and γ7(θ) = 7

3 −
2
49θ,

so that θopt = +∞ and θf2 = 3436. Consequently θ3 = 14/3; the value θ4

corresponds to the vertex (0, 0, 0) and the points belonging to the segment
[(0, 2/3, 0) , (0, 0, 0)] are efficient (it is brown colored in Figures 1 and 2). The
tabular form associated with (0, 0, 0) is the following

x1 x2 x3 x4 x5 x6 x7

c −4 + θ/7 4/7 0 20/7 0 0 0 −1/7
d −1 + 2/7θ 1/7 0 5/7 0 0 0 −2/7

4 1 0 0 1 0 0 0
x ∈ S −1/7θ 3/7 1 1/7 0 0 0 1/7

4 0 0 1 0 0 1 0
f2(x) = θ 4 + θ/7 −3/7 0 −1/7 0 1 0 −1/7

No dual iteration is possible, θmin has been reached and the procedure stops.

Fig. 1 Decision space Fig. 2 Image space
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Example 2 Consider the problem P

P :


max f(x) =

(
f1(x) =

(
x1 + 2x2 + 2

3
x3 + 3

)3
(x1 + 3x2 + x3 + 12)5

, f2(x) = −2x1 + x2 + x3

)

x ∈ X = {x ∈ R3 : 0 ≤ xi ≤ 5, i = 1, 2, 3}

(17)

The maximum value of the linear function is 16 and it is attained at (0, 5, 5)
which is not an ideal maximum point. It is rank[a, c, d] = 3; from Lemma 1
and Theorem 9 there exist no interior efficient point. The vertices of the gen-
erated efficient path are the following: (0, 5, 5), (0, 4/3, 5), (5/3, 0, 5), (3, 0, 5),
(39/8, 0, 0), and (5, 0, 0). Figures 3 and 4 represent the solution of the problem
in the decision and in the image space respectively.

Fig. 3 Decision space Fig. 4 Image space

Example 3 Consider the problem P

P :


max f(x) =

(
f1(x) =

(9x1 − 10x2 − 10x3 + 31)2

(9x1 + 8x2 + 8x3 + 1)5
, f2(x) = x1 + 5x2 + 5x3

)

x ∈ X = {x ∈ R3 : 0 ≤ x1 ≤ 9, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 2}
(18)

The maximum value of the linear function is 24 and it is attained at (9, 1, 2).
Since rank[a, c, d] = 3, there exist interior efficient points belonging to the
plane − 5 x

12 + 91 y
54 + 91 z

54 = 125
36 . The procedure determines the following path of

efficient points: (9, 1, 2), (19/5, 1, 2), (0, 11/182, 2), (0, 0, 2), (0, 0, 0). Moreover,
with respect to the efficient point (0, 11/182, 2), the directional derivative of a
non-basic variable is 0 and the corresponding value c̄Nj d̄Nj is zero, that is Case
b.2) occurs. From a geometrical point of view, this implies that all the points
belonging to the face x = 0 and lying under the line (0, 11/182 + t, 2− t), t ∈
[0, 1] are efficient (see Figure 5). The efficient frontier in the image space is
represented in Figure 6.

Fig. 5 Decision space Fig. 6 Image space
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The proposed algorithm has been fully implemented with the software
MATLAB 9.2 R2016b on a macOS computer having 32 Gb RAM and an Intel
Core i7 quad core processor at 4 GHz. Within the procedures, the linear prob-
lems have been solved by using the Gurobi 7.0.2 engine. Various instances have
been randomly generated and solved, with a grand total of 1060000 problems
solved. Referring to the parameter specifications, 8 different pairs of α and β
have been conceived. Matrix A ∈ Rm×n and vectors a, c, d ∈ Rn, b ∈ Rm have
been randomly generated with components in the interval [-10,10] by using the
“randi()” MATLAB function (integer numbers generated with uniform distri-
bution). In compliance with the assumptions of Problem P , the values c0, d0

have been chosen in order to guarantee the non-negativity of cTx + c0 and
the positivity of dTx+ d0, over the feasible region. The results of the compu-
tational test are described in the following two tables. Table 1 provides the
average number of vertices of the generated efficient paths and Table 2 collects
the average spent times (given by the “tic” and “toc” MATLAB commands).
In this light, notice that “m× n” represents the dimension of matrix A in the
considered problems, “num” is the number of randomly generated problems
solved for the corresponding dimension m × n. Moreover, the pairs of α and
β provide the parameters chosen for the objectives.

Table 1 Computational results - Average number of vertices of the generated efficient paths

m× n num α = 1 α = 1 α = 3 α = 5 α = 1/3 α = 1/3 α = 1/4 α = 1/4
β = 2 β = 3 β = 5 β = 6 β = 1/2 β = 3/4 β = 3/2 β = 1/3

30× 40 50000 8.11 7.65 8.35 8.94 8.53 7.95 7.13 8.73
60× 80 30000 12.23 11.40 12.66 13.62 12.93 11.97 10.56 13.31
90× 120 20000 15.87 14.86 16.51 17.84 16.91 15.61 13.70 17.45
120× 150 12000 19.18 17.91 19.84 21.53 20.30 18.79 16.61 20.74
150× 200 8000 21.68 20.48 22.42 24.27 23.05 21.40 18.82 23.28
180× 240 5000 23.84 22.33 24.65 26.42 25.18 23.44 20.42 25.89
210× 280 3000 25.68 24.20 26.51 28.47 26.97 25.11 22.65 27.21
240× 320 2000 27.21 25.55 27.29 29.45 28.32 26.23 23.95 28.91
270× 360 1500 28.50 27.49 29.08 31.04 29.85 27.82 25.58 29.98
300× 400 1000 29.93 28.16 31.56 32.07 30.75 29.05 27.65 31.69

Table 2 Computational Results - Average elapsed times (secs)

m× n num α = 1 α = 1 α = 3 α = 5 α = 1/3 α = 1/3 α = 1/4 α = 1/4
β = 2 β = 3 β = 5 β = 6 β = 1/2 β = 3/4 β = 3/2 β = 1/3

30× 40 50000 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.010
60× 80 30000 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
90× 120 20000 0.104 0.105 0.103 0.102 0.103 0.105 0.107 0.103
120× 150 12000 0.217 0.220 0.215 0.213 0.215 0.219 0.227 0.212
150× 200 8000 0.440 0.451 0.435 0.429 0.435 0.446 0.459 0.426
180× 240 5000 0.796 0.816 0.789 0.769 0.782 0.807 0.826 0.782
210× 280 3000 1.072 1.099 1.062 1.035 1.045 1.076 1.140 1.02
240× 320 2000 1.607 1.632 1.539 1.524 1.556 1.586 1.693 1.532
270× 360 1500 2.786 2.933 2.734 2.673 2.733 2.786 2.982 2.689
300× 400 1000 3.925 3.993 4.021 3.709 3.799 3.904 4.355 3.775
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The obtained results point out on the behavior of the solution algorithm with
respect to the problem dimension. In particular, it is worth noticing that:

– the algorithm manages real parameters α and β which can be non-integers;
– it is possible to solve quite large problems in a reasonable time;
– the average number of the vertices of the generated efficient path increases

with the dimension of the problem;
– the time needed to solve the instances increases exponentially with the

dimension of the problem.

6 Conclusions

In this paper an algorithm to generate the efficient frontier of a class of bi-
criteria problems is proposed. With this aim, some new theoretical results are
stated in order to recognize the efficient points. Numerical examples and a
computational test are also provided in order to clarify the use and the per-
formance of the algorithm.
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