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Abstract
Encoding data structures store enough information to answer the queries they are meant to
support but not enough to recover their underlying datasets. In this paper we give the first
encoding data structure for the challenging problem of order-preserving pattern matching. This
problem was introduced only a few years ago but has already attracted significant attention
because of its applications in data analysis. Two strings are said to be an order-preserving match
if the relative order of their characters is the same: e.g., 4, 1, 3, 2 and 10, 3, 7, 5 are an order-
preserving match. We show how, given a string S[1..n] over an arbitrary alphabet and a constant
c ≥ 1, we can build an O(n log logn)-bit encoding such that later, given a pattern P [1..m] with
m ≤ logc n, we can return the number of order-preserving occurrences of P in S in O(m) time.
Within the same time bound we can also return the starting position of some order-preserving
match for P in S (if such a match exists). We prove that our space bound is within a constant
factor of optimal; our query time is optimal if log σ = Ω(logn). Our space bound contrasts with
the Ω(n logn) bits needed in the worst case to store S itself, an index for order-preserving pattern
matching with no restrictions on the pattern length, or an index for standard pattern matching
even with restrictions on the pattern length. Moreover, we can build our encoding knowing only
how each character compares to O(logc n) neighbouring characters.
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1 Introduction

As datasets have grown even faster than computer memories, researchers have designed
increasingly space-efficient data structures. We can now store a sequence of n numbers
from {1, . . . , σ} with σ ≤ n in about n words, and sometimes n log σ bits or even nH bits,
where H is the empirical entropy of the sequence, and still support many powerful queries
quickly. If we are interested only in queries of the form “what is the position of the smallest
number between the ith and jth?”, however, we can do even better: regardless of σ or
H, we need store only 2n + o(n) bits to be able to answer in constant time [21]. Such a
data structure, that stores enough information to answer the queries it is meant to support
but not enough to recover the underlying dataset, is called an encoding [38]. As well as
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23:2 An Encoding for Order-Preserving Matching

the variant of range-minimum queries mentioned above, there are now efficient encoding
data structures for range top-k [14, 24, 27], range selection [34], range majority [35], range
maximum-segment-sum [23] and range nearest-larger-value [20] on sequences of numbers,
and range-minimum [26] and range nearest-larger-value [30, 31] on two-dimensional arrays
of numbers; all of these queries return positions but not values from the sequence or array.
Perhaps Orlandi and Venturini’s [36] results about sublinear-sized data structures for sub-
string occurrence estimation are the closest to the ones we present in this paper, in that
they are more related to pattern matching than range queries: the authors showed how we
can store a sequence of n numbers from {1, . . . , σ} in significantly less than n log σ bits but
such that we can estimate quickly and well how often any pattern occurs in the sequence.

Encoding data structures can offer better space bounds than traditional data structures
that store the underlying dataset somehow (even in succinct or compressed form), and
possibly even security guarantees: if we can build an encoding data structure using only
public information, then we need not worry about it being reverse-engineered to reveal
private information. From the theoretical point of view, encoding data structures pose new
interesting combinatorial problems and promise to be a challenging field for future research.

In this paper we give the first encoding for order-preserving pattern matching, which asks
us to search in a text for substrings whose characters have the same relative order as those
in a pattern. For example, in 6, 3, 9, 2, 7, 5, 4, 8, 1, the order-preserving matches of 2, 1, 3 are
6, 3, 9 and 5, 4, 8. Kubica et al. [33] and Kim et al. [32] formally introduced this problem and
gave efficient online algorithms for it. Other researchers have continued their investigation,
and we briefly survey their results in Section 2. As well as its theoretical interest, this
problem has practical applications in data analysis. For example, mining for correlations
in large datasets is complicated by amplification or damping — e.g., the euro fluctuating
against the dollar may cause the pound to fluctuate similarly a few days later, but to a
greater or lesser extent — and if we search only for sequences of values that rise or fall by
exactly the same amount at each step we are likely to miss many potentially interesting
leads. In such settings, searching for sequences in which only the relative order of the values
is constrained to be the same is certainly more robust.

In Section 2 we discuss some previous work on order-preserving pattern matching. In
Section 3 we review the algorithmic tools we use in the rest of the paper. In Section 4
we prove our first result showing how, given a string S[1..n] over an arbitrary alphabet [σ]
and a constant c ≥ 1, we can store O(n log logn) bits — regardless of σ — such that later,
given a pattern P [1..m] with m < logc n, in O(n logc n) time we can scan our encoding
and report all the order-preserving matches of P in S. Our space bound contrasts with
the Ω(n logn) bits needed in the worst case, when log σ = Ω(logn), to store S itself, an
index for order-preserving pattern matching with no restriction on the pattern length, or
an index for standard pattern matching even with restrictions on the pattern length. (If
S is a permutation then we can recover it from an index for unrestricted order-preserving
pattern matching, or from an index for standard matching of patterns of length 2, even
when they do not report the positions of the matches. Notice this does not contradict
Orlandi and Venturini’s result, mentioned above, about estimating substring frequency, since
that permits additive error.) In fact, we build our representation of S knowing only how
each character compares to 2 logc n neighbouring characters. We show in Section 5 how to
adapt and build on this representation to obtain indexed order-preserving pattern matching,
instead of scan-based, allowing queries in O

(
m log3 n

)
time but now reporting the position

of only one match.
In Section 6 we give our main result showing how to speed up our index using weak prefix
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search and other algorithmic improvements. The final index is able to count the number
of occurrences and return the position of an order-preserving match (if one exists) in O(m)
time. This query time is optimal if log σ = Ω(logn). Finally, in Section 7 we show that our
space bound is optimal (up to constant factors) even for data structures that only return
whether or not S contains any order-preserving matches.

2 Previous Work

Although recently introduced, order-preserving pattern matching has received considerable
attention and has been studied in different settings. For the online problem, where the
pattern is given in advance, the first contributions were inspired by the classical Knuth-
Morris-Pratt and Boyer-Moore algorithms [5, 12, 32, 33]. The proposed algorithms have
guaranteed linear time worst-case complexity or sublinear time average complexity. However,
for the online problem the best results in practice are obtained by algorithms based on the
concept of filtration, in which some sort of “order-preserving” fingerprint is applied to the
text and the pattern [6, 7, 8, 10, 11, 18, 15]. This approach was successfully applied also to
the harder problem of matching with errors [8, 25, 28].

There has also been work on indexed order-preserving pattern matching. Crochemore et
al. [13] showed how, given a string S[1..n], in O

(
n
√

logn
)
time we can build an O(n logn)-

bit index such that later, given a pattern P [1..m] over an alphabet polynomially bounded
in m, we can return the starting positions of all the occ order-preserving matches of P in S
in optimal O(m+ occ) time. Their index is a kind of suffix tree, and other researchers [39]
are trying to reduce the space bound to n log σ + o(n log σ) bits, where σ is the size of the
alphabet of S, by using a kind of Burrows–Wheeler Transform instead (similar to recent
work [22] on parameterized pattern matching [1]). Even if they succeed, however, when
σ = nΩ(1) the resulting index will still take linear space — i.e., Ω(n) words or Ω(n logn)
bits.

In addition to Crochemore et al.’s result, other offline solutions have been proposed
combining the idea of fingerprint and indexing. Chhabra et al. [9] showed how to speed
up the search by building an FM-index [19] on the binary string expressing whether in the
input text each element is smaller or larger than the next one. By expanding this approach,
Decaroli et al. [15] show how to build a compressed file format supporting order-preserving
matching without the need of full decompression. Experiments show that this compressed
file format takes roughly the same space as gzip and that in most cases the search is orders of
magnitude faster than the sequential scan of the text. We point out that these approaches,
although interesting for the applications, do not have competitive worst case bounds on the
search cost as we get from Crochemore et al. and in this paper.

3 Background

In this section we collect a set of algorithmic tools that will be used in our solutions. In
the following we report each result together with a brief description of the solved problem.
More details can be obtained by consulting the corresponding references. All the results
hold in the unit cost word-RAM model, where each memory word has size w = Ω(logn)
bits, where n is the input size. In this model arithmetic and boolean operations on memory
words require O(1) time.

Rank queries on binary vector. In the next solutions we will need to support Rank queries
on a binary vector B[1..n]. Given an index i, Rank(i) on B returns the number of 1s in the
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prefix B[1..i]. We report here a result in [29].

I Theorem 1. Given a binary vector B[1..n], we can support Rank queries in constant time
by using n+ o(n) bits of space.

Elias-Fano representation. In the following we will need to encode an increasing sequence
of values in almost optimal space. There are several solutions to this problem, we report
here the result obtained with the, so-called, Elias-Fano representation [16, 17].

I Theorem 2. An increasing sequence of n values up to u can be represented by using
log
(
u
n

)
+ O(n) = n log u

n + O(n) bits, so that we can access any value of the sequence in
constant time.

Minimal perfect hash functions. In our solution we will make use of Monotone minimal
perfect hash functions (Mmphf) [2].

Given a subset of S = {x1, x2, . . . , xn} ⊆ U of size n, a minimal perfect hash function
has to injectively map keys in S to the integers in [n].

A monotone minimal perfect hash function is a Mphf h() that preserves the lexicographic
ordering, i.e., for any two strings x and y in the set, x ≤ y if and only if h(x) ≤ h(y). Results
on Mmphfs focus their attention on dictionaries of binary strings [2]. The results can be
easily generalized to dictionaries with strings over larger alphabets. The following theorem
reports the obvious generalization of Theorem 3.1 in [2] and Theorem 2 in [4].

I Theorem 3. Given a dictionary of n strings drawn from the alphabet [σ], there is a
monotone minimal perfect hash function h() that occupies O(n log(` log σ)) bits of space,
where ` is the average length of the strings in the dictionary. Given a string P [1..m], h(P )
is computed in O(1 +m log σ/w) time.

Weak prefix search. The Prefix Search Problem is a well-known problem in data-structure
design for strings. It asks for the preprocessing of a given set of n strings in such a way
that, given a query-pattern P , (the lexicographic range of) all the strings in the dictionary
which have P as a prefix can be returned efficiently in time and space.

Belazzougui et al. [4] introduced the weak variant of the problem that allows for a one-
sided error in the answer. Indeed, in the Weak Prefix Search Problem the answer to a query
is required to be correct only in the case that P is a prefix of at least one string in dictionary;
otherwise, the algorithm returns an arbitrary answer.

Due to these relaxed requirements, the data structures solving the problem are allowed
to use space sublinear in the total length of the indexed strings. Belazzougui et al. [4] focus
their attention on dictionaries of binary strings, but their results can be easily generalized
to dictionaries with strings over larger alphabets. The following theorem states the obvious
generalization of Theorem 5 in [4].

I Theorem 4. Given a dictionary of n strings drawn from the alphabet [σ], there exists a
data structure that weak prefix searches for a pattern P [1..m] in O(m log σ/w + log(m log σ))
time. The data structure uses O(n log(` log σ)) bits of space, where ` is the average length
of the strings in the dictionary.

We remark that the space bound in [4] is better than the one reported above as it is
stated in terms of the size the hollow trie, a conceptual tool introduced in [3], associated to
the indexed dictionary. This measure is always within O(n log(` log σ)) bits but it may be
much better depending on the dictionary. However, the weaker space bound suffices for the
aims of this paper.



T. Gagie, G. Manzini and R. Venturini 23:5

4 An Encoding for Scan-Based Search

As an introduction to our techniques, we show an O(n log logn) bit encoding supporting
scan-based order-preserving matching. Given a sequence S[1..n] we define the rank encoding
E(S)[1..n] as

E(S)[i] =



0.5 if S[i] is lexicographically smaller than any
character in {S[1], . . . , S[i− 1]},

j
if S[i] is equal to the lexicographically jth
character in {S[1], . . . , S[i− 1]},

j + 0.5
if S[i] is larger than the lexicographically jth
character in {S[1], . . . , S[i − 1]} but smaller
than the lexicographically (j + 1)st,

|{S[1], . . . , S[i− 1]}|+ 0.5 if S[i] is lexicographically larger than any
character in {S[1], . . . , S[i− 1]}.

This is similar to the representations used in previous papers on order-preserving matching.
We can build E(S) in O(n logn) time. However, we would ideally need E(S[i..n]) for
i = 1, . . . , n, since P [1..m] has an order-preserving match in S[i..i + m − 1] if and only if
E(P ) = E(S[i..i + m − 1]). Assuming P has polylogarithmic size, we can devise a more
space efficient encoding.

I Lemma 5. Given S[1..n] and a constant c ≥ 1 let ` = logc n. We can store O(n log logn)
bits such that later, given i and m ≤ `, we can compute E(S[i..i+m− 1]) in O(m) time.

Proof. For every position i in S which is multiple of ` = logc n, we store the ranks of the
characters in the window S[i..i + 2`]. The ranks are values at most 2` + 1, thus they are
stored in O(log `) bits each. We concatenate the ranks of each window in a vector V , which
has length O(n) and takes O(n log `) bits. Every range S[i..i + m − 1] of length m ≤ ` is
fully contained in at least one window and in constant time we can convert i into i′ such
that V [i′..i′ +m− 1] contains the ranks of S[i], . . . , S[i+m− 1] in that window.

Computing E(S[i..i+m− 1]) naïvely from these ranks would take O(m logm) time. We
can speed up this computation by exploiting the fact that S[i..i+m− 1] has polylogaritmic
length. Indeed, a recent result [37] introduces a data structure to represent a small dynamic
set S of O(wc) integers of w bits each supporting, among the others, insertions and rank
queries in O(1) time. Given an integer x, the rank of x is the number of integers in S that
are smaller than or equal to x. All operations are supported in constant time for sets of size
O(wc). This result allows us to compute E(S[i..i + m − 1]) in O(m) time. Indeed, we can
use the above data structure to insert S[i..i + m − 1]’s characters one after the other and
compute their ranks in constant time. J

It follows from Lemma 5 that given S and c, we can store an O(n log logn)-bit encoding of
S such that later, given a pattern P [1..m] withm ≤ logc n, we can compute E(S[i..i+m−1])
for each position i in turn and compare it to E(P ), and thus find all the order-preserving
matches of P in O(nm) time. (It is possible to speed this scan-based algorithm up by
avoiding computing each E(S[i..i+m−1]) from scratch but, since this is only an intermediate
result, we do not pursue it further here.) We note that we can construct the encoding
in Lemma 5 knowing only how each character of S compares to O(logc n) neighbouring
characters.
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I Corollary 6. Given S[1..n] and a constant c ≥ 1, we can store an encoding of S in
O(n log logn) bits such that later, given a pattern P [1..m] with m ≤ logc n, we can find all
the order-preserving matches of P in S in O(nm) time.

We will not use Corollary 6 in the rest of this paper, but we state it as a baseline easily
proven from Lemma 5.

5 Adding an Index to the Encoding

Suppose we are given S[1..n] and a constant c ≥ 1. We build the O(n log logn)-bit encoding
of Lemma 5 for ` = logc n + logn and call it S`. Using S` we can compute E(S′) for any
substring S′ of S of length |S′| ≤ ` in O(|S′|) time. We now show how to complement S`
with a kind of “sampled suffix array” using O(n log logn) more bits, such that we can search
for a pattern P [1..m] with m ≤ logc n and return the starting position of an order-preserving
match for P in S, if there is one. Our first solution has O

(
m log3 n

)
query time; we will

improve the query time to O(m) in the next section.
We define the rank-encoded suffix array R[1..n] of S such that R[i] = j if E(S[j..n]) is the

lexicographically ith string in {E(S[1..n]), E(S[2..n]), . . . , E(S[n..n])}. Note that E(S[i..n])
has length n− i+ 1. Figure 1 shows an example.

Our algorithm consists of a searching phase followed by a verification phase. The goal of
the searching phase is to identify a range [l, r] in R which contains all the encodings prefixed
by E(P ), if any, or an arbitrary interval if P does not occur. The verification phase has to
check if there is at least one occurrence of P in this interval, and return a position at which
P occurs.

Searching phase. Similarly to how we can use a normal suffix array and S to support
normal pattern matching, we could use R and S to find all order-preserving matches for a
pattern P [1..m] in O(m logn) time via binary search, i.e., at each step we choose an index
i, extract S[R[i]..R[i] + m − 1], compute its rank encoding and compare it to E(P ), all in
O(m) time. If m ≤ ` we can compute E(S[R[i]..R[i] +m− 1]) using S` instead of S, still in
O(m) time, but storing R still takes Ω(n logn) bits.

Therefore, for our searching phase we sample and store only every d-th element of R, by
position, and every element of R equal 1 or n or a multiple of d, where d = blogn/ log lognc.
This takes O(n log logn) bits. Notice we can still find in O(m logn) time via binary search
in the sampled R an order-preserving match for any pattern P [1..m] that has at least d
order-preserving matches in S. If P has fewer than d order-preserving matches in S but
we happen to have sampled a cell of R pointing to the starting position of one of those
matches, then our binary search still finds it. Otherwise, we find an interval of length at
most d− 1 which contains pointers at least to all the order-preserving matches for P in S;
on this interval we perform the verification phase.

Verification phase. The verification phase receives a range R[l, r] (although R is not
stored completely) and has to check if that range contains the starting position of an order
preserving match for P and, if so, return its position. This is done by adding auxiliary data
structures to the sampled entries of R.

Suppose that for each unsampled element R[i] = j we store the following data.
the smallest number L[i] (if one exists) such that S[j − 1..j + L[i] − 1] has at most d
order-preserving matches in S;
the rank B[i] = E(S[j−1..j+L[i]−1]rev)[L[i]+1] ≤ L[i]+1/2 of S[j−1] in S[j..j+L[i]−1],
where the superscript rev indicates that the string is reversed;
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i R[i] L[i] B[i] D[i] E(S[R[i]..n])

1 30 0.5
2 29 2 1.5 4 0.5 0.5
3 22 2 0.5 2 0.5 0.5 0.5 0.5 1.5 5 5.5 6.5 1
4 13 0.5 0.5 0.5 1 0.5 1.5 4 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
5 2 2 0.5 1 0.5 0.5 0.5 1.5 2.5 3.5 5.5 2.5 2 5 4 8 4 1 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 8 2
6 23 3 3.5 3 0.5 0.5 0.5 1.5 4.5 5.5 6.5 1
7 8 0.5 0.5 0.5 2.5 2.5 5.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
8 14 0.5 0.5 1 0.5 1.5 4 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
9 20 0.5 0.5 1.5 1.5 1.5 1.5 2.5 6 7 7.5 2

10 3 3 3.5 1 0.5 0.5 1.5 2.5 3.5 5.5 2.5 2 5 4 7.5 4 1 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 8 2
11 16 0.5 0.5 1.5 3.5 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
12 24 0.5 0.5 1.5 3.5 4.5 5.5 1
13 11 2 0.5 3 0.5 0.5 2.5 1 0.5 1 0.5 1.5 4 5 1 4 3.5 3.5 2 3 6 7 7.5 2
14 9 3 3.5 3 0.5 0.5 2.5 2.5 4.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
15 15 2 1.5 1 0.5 1 0.5 1.5 3.5 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
16 28 0.5 1.5 0.5
17 7 3 1.5 4 0.5 1.5 0.5 0.5 3 2.5 5.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
18 19 3 1.5 5 0.5 1.5 0.5 2 1.5 1.5 1.5 2.5 6 7 7.5 2
19 12 0.5 1.5 1 0.5 1 0.5 1.5 4 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
20 1 0.5 1.5 1.5 0.5 2 2.5 3.5 5.5 2.5 2 5 4 8 4 1 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 8 2
21 21 2 2.5 1 0.5 1.5 1.5 1.5 1.5 2.5 6 6.5 7.5 2
22 10 2 1.5 2 0.5 1.5 1.5 3.5 2 0.5 1 0.5 1.5 5 6 1 5 4.5 4 2 3 6 7 7.5 2
23 27 4 1.5 2 0.5 1.5 2.5 0.5
24 6 0.5 1.5 2.5 0.5 0.5 4 3 5.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
25 18 4 1 3 0.5 1.5 2.5 0.5 3 2.5 2.5 2 2.5 6 7 7.5 2
26 26 4 0.5 1 0.5 1.5 2.5 3.5 0.5
27 17 2 2.5 3 0.5 1.5 2.5 3.5 1 3 2.5 2.5 2 2.5 6 7 7.5 2
28 5 0.5 1.5 2.5 3.5 1.5 1 4 3 5.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
29 25 2 2.5 4 0.5 1.5 2.5 3.5 4.5 1
30 4 0.5 1.5 2.5 3.5 4.5 2.5 2 5 4 6.5 4 1 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2

Figure 1 The rank-encoded suffix array R[1..30] for S[1..30] =
3 9 7 2 3 5 6 8 4 3 6 5 9 5 2 2 0 1 5 6 0 5 4 3 1 2 5 6 7 1, with L[i], B[i] and D[i] computed for d = 4.
Stored values are shown in boldface.

the distance D[i] to the cell of R containing j − 1 from the last sampled element x such
that E(S[x..x+ L[i]]) is lexicographically smaller than E(S[j − 1..j + L[i]− 1]).

Figure 1 shows the values in L, B and D for our example.
Assume we are given P [1..m] and i and told that S[R[i]..R[i] + m − 1] is an order-

preserving match for P , but we are not told the value R[i] = j. If R[i] is sampled, of course,
then we can return j immediately. If L[i] does not exist or is greater than m then P has
at least d order-preserving matches in S, so we can find one in O(m) time: we consider
the sampled values from R that precede and follow R[i] and check with Lemma 5 whether
there are order-preserving matches starting at those sampled values. Otherwise, from L[i],
B[i] and P , we can compute E(S[j − 1..j + L[i] − 1]) in O(m logm) time: we take the
length-L[i] prefix of P ; if B[i] is an integer, we prepend to P [1..L[i]] a character equal to
the lexicographically B[i]th character in that prefix; if B[i] is r+ 0.5 for some integer r with
1 ≤ r < L[i], we prepend a character lexicographically between the lexicographically rth and
(r + 1)st characters in the prefix; if B[i] = 0.5 or B[i] = L[i] + 0.5, we prepend a character
lexicographically smaller or larger than any in the prefix, respectively. We can then find in
O(m logn) time the position in R of x, the last sampled element such that E(S[x..x+L[i]])

CVIT 2016
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is lexicographically smaller than E(S[j− 1..j+L[i]− 1]). Adding D[i] to this position gives
us the position i′ of j − 1 in R. Repeating this procedure until we reach a sampled cell of
R takes O

(
m log2 n/ log logn

)
= O

(
m log2 n

)
time, and we can then compute and return

j. As the reader may have noticed, the procedure is very similar to how we use backward
stepping to locate occurrences of a pattern with an FM-index [19], so we refer to it as a
backward step at position i.

Even if we do not really know whether S[R[i]..R[i] +m−1] is an order-preserving match
for P , we can still start at the cell R[i] and repeatedly apply this procedure: if we do not find
a sampled cell after d − 1 repetitions, then S[R[i]..R[i] + m − 1] is not an order-preserving
match for P ; if we do, then we add the number of times we have repeated the procedure
to the contents of the sampled cell to obtain the contents of R[i] = j. Then, using S` we
compute E(S[j..j + m − 1]) in O(m) time, compare it to E(P ) and, if they are the same,
return j. This still takes O

(
m log2 n

)
time. Therefore, after our searching phase, if we find

an interval [l, r] of length at most d− 1 which contains pointers to all the order-preserving
matches for P in S (instead of an order-preserving match directly), then we can check each
cell in that interval with this procedure, in a total of O

(
m log3 n

)
time.

If R[i] = j is the starting position of an order-preserving match for a pattern P [1..m]
with m ≤ logc n that has at most d order-preserving matches in S, then L[i] ≤ logc n.
Moreover, if R[i′] = j − 1 then L[i′] ≤ logc n + 1 and, more generally, if R[i′′] = j − t then
L[i′′] ≤ logc n + t. Therefore, we can repeat the stepping procedure described above and
find j without ever reading a value in L larger than logc n + logn and, since each value in
B is bounded in terms of the corresponding value in L, without ever reading a value in B
larger than logc n+logn+1/2. It follows that we can replace any values in L and B greater
than logc n + logn + 1/2 by the flag −1, indicating that we can stop the procedure when
we read it. With this modification, each value in L and B takes O(log logn) bits, so L, B
and D take a total of O(n log logn) bits. Since also the encoding S` from Lemma 5 with
` = logc n + logn takes O(n log logn) bits, the following intermediate theorem summarizes
our results so far.

I Theorem 7. Given S[1..n] and a constant c ≥ 1, we can store an encoding of S in
O(n log logn) bits such that later, given a pattern P [1..m] with m ≤ logc n, in O

(
m log3 n

)
time we can return the position of an order-preserving match of P in S (if one exists).

A complete search example. Suppose we are searching for order-preserving matches for
P = 2 3 1 2 in the string S[1..30] shown in Figure 1. Binary search on R tells us that pointers
to all the matches are located in R strictly between R[16] = 28 and R[19] = 12, because

E(S[28..30]) = E(6 7 1) = 0.5 1.5 0.5
≺ E(P ) = E(2 3 1 2) = 0.5 1.5 0.5 2
≺ E(S[12..14]) = E(5 9 5) = 0.5 1.5 1 ;

notice R[16] = 28 and R[19] = 12 are stored because 16, 28 and 12 are multiples of d = 4.
We first check whether R[17] points to an order-preserving match for P . That is, we

assume (incorrectly) that it does; we take the first L[17] = 3 characters of P ; and, because
B[17] = 1.5, we prepend a character between the lexicographically first and second, say
1.5. This gives us 1.5 2 3 1, whose encoding is 0.5 1.5 2.5 0.5. Another binary search on R

shows that R[20] = 1 is the last sampled element x such that E(S[x..x + 3]), in this case
0.5 1.5 1.5 0.5, is lexicographically smaller than 0.5 1.5 2.5 0.5. Adding D[17] = 4 to 20, we
would conclude that R[24] = R[17] − 1 (which happens to be true in this case) and that
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0.5 1.5 2.5 0.5 is a prefix of E(S[R[24]..n]) (which also happens to be true). Since R[24] = 6
is sampled, however, we compute E(S[7..10]) = 0.5 1.5 0.5 0.5 and, since it is not the same
as P ’s encoding, we reject our initial assumption that R[17] points to an order-preserving
match for P .

We now check whether R[18] points to an order preserving match for P . That is, we
assume (correctly this time) that it does; we take the first L[18] = 3 characters of P ; and,
because B[18] = 1.5, we prepend a character between the lexicographically first and second,
say 1.5. This again gives us 1.5 3 2 1, whose encoding is 0.5 1.5 2.5 0.5. As before, a binary
search on R shows that R[20] = 1 is the last sampled element x such that E(S[x..x+ 3]) is
lexicographically smaller than 0.5 1.5 2.5 0.5. AddingD[18] = 5 to 20, we conclude (correctly)
that R[25] = R[18]− 1 and that 0.5 1.5 2.5 0.5 is a prefix of E(S[R[25]..n])

Repeating this procedure with L[25] = 4, B[25] = 1 and D[25] = 3, we build a string
with encoding 0.5 1.5 2.5 0.5, say 2 3 4 1, and prepend a character equal to the lexicographic-
ally first, 1. This gives us 1 2 3 4 1, whose encoding is 0.5 1.5 2.5 3.5 1. Another binary search
shows that R[24] = 6 is the last sampled element x such that E(S[x..x+4]) is lexicographic-
ally smaller than 0.5 1.5 2.5 3.5 1. We conclude (again correctly) that R[27] = R[18]− 2 and
that 0.5 1.5 2.5 3.5 1 is a prefix of E(S[R[27]..n]).

Finally, repeating this procedure with L[27] = 2, B[27] = 2.5 and D[27] = 3, we build a
string with encoding 0.5 1.5, say 1 2, and prepend a character lexicographically greater than
any currently in the string, say 3. This gives us 3 1 2, whose encoding is 0.5 0.5 1.5. A final
binary search show that R[8] = 14 is the last sampled element x such that E(S[x..x + 2])
is lexicographically smaller than 0.5 0.5 1.5. We conclude (again correctly) that R[11] =
R[18]− 3 and that 0.5 0.5 1.5 is a prefix of E(S[R[11]..n]). Since R[11] = 16 is sampled, we
compute E(S[19..22]) = 0.5 1.5 0.5 2 and, since it matches P ’s encoding, we indeed report
S[19..22] as an order-preserving match for P .

6 Achieving O(m) query time

In this section we prove our main result:

I Theorem 8. Given S[1..n] and a constant c ≥ 1, we can store an encoding of S in
O(n log logn) bits such that later, given a pattern P [1..m] with m ≤ logc n, in O(m) time
we can return the position of an order-preserving match of P in S (if one exists). In O(m)
time we can also report the total number of order-preserving occurrences of P in S.

Compared to Theorem 7, we improve the query time from O
(
m log3 n

)
to O(m). This

is achieved by speeding up several steps of the algorithm described in the previous section.

Speeding up pattern’s encoding. Given a pattern P [1..m], the algorithm has to compute
its encoding E(P [1..m]). Doing this naïvely as in the previous section would cost O(m logm)
time, which is, by itself, larger than our target time complexity. However, since m is
polylogarithmic in n, we can speed this up as we sped up the computation of the rank-
encoding of S[i..i+m−1] in the proof of Lemma 5, and obtain E(P ) in O(m) time. Indeed,
we can insert P ’s characters one after the other in the data structures of [37] and compute
their ranks in constant time.

Dealing with short patterns. The approach used by our solution cannot achieve a o(d)
query time. This is because we answer a query by performing Θ(d) backward steps regardless
of the pattern’s length.

This means that for very short patterns, namely m = o(d) = o(logn/ log logn), the
solution cannot achieve O(m) query time. However, we can precompute and store the
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answers of all these short patterns in o(n) bits. Indeed, we can find a small constant c such
that the encoding of a pattern of length at most c logn/ log logn is a binary string of length
o(logn). Thus, there are o(

√
n) possible encodings. For each of these encodings we explicitly

store the number of its occurrences and the position of one of them in o(n) bits. From now
on, thus, we can safely assume that m = Ω(logn/ log logn).

Speeding up searching phase. The searching phase of the previous algorithm has two
important drawbacks. First, it costs O(m logn) time and, thus, it is obviously too expensive
for our target time complexity. Second, binary searching on the sampled entries in R gives
too imprecise results. Indeed, it finds a range [l, r] of positions in R which may be potential
matches for P . However, if the entire range is within two consecutive sampled positions,
we are only guaranteed that all the occurrences of P are in the range but there may exist
positions in the range which do not match P . This uncertainty forces us to explicitly check
every single position in the range until a match for P is found, if any. This implies that we
have to check r − l + 1 = O(d) positions in the worst case. Since every check has a cost
proportional to m, this gives ω(m) query time.

We use the data structure for weak prefix search of Theorem 4 to index the encodings
of all suffixes of the text truncated at length ` = logc n + logn. This way, we can find
the range [l, r] of suffixes prefixed by E(P [1..m]) in O(m log logn/w + log(m log logn)) =
O(m log logn/w + log logn) time with a data structure of size O(n log logn) bits. This is
because E(P [1..m]) is drawn from an alphabet of size O(logc n), and both m and ` are in
O(logc n). Apart from its faster query time, this solution has stronger guarantees. Indeed,
if the pattern P has at least one occurrence, the range [l, r] contains all and only the occur-
rences of P . Instead, if the pattern P does not occur, [l, r] is an arbitrary and meaningless
range. In both cases, just a single check of any position in the range is enough to answer
the order-preserving query. This property gives an O(logn/ log logn) factor improvement
over the previous solution.

Speeding up verification phase. It is clear by the discussion above that the verification
phase has to check only one position in the range [l, r]. If the range contains at least one
sampled entry of R, we are done. Otherwise, we have to perform at most d backward steps
as in the previous solution.

We now improve the computation of every single backward step. Assume we have to
perform a backward step at i, where R[i] = j. Before performing the backward step, we
have to compute the encoding E(S[j − 1..j + L[i]− 1]) given E(S[j..j + u]), for some value
of L[i] and u with u ≥ L[i]. Our goal is to do this in O(1 +m log logn/w) time. Notice
that removing symbols at the end of S[j..j + u] is not an issue as this does not change the
encoding of the remaining symbols. However, it is much more challenging to compute the
encoding after the insertion the symbol S[j − 1]. Observe that the encoding of a symbol
S[k] in S[j-1..j+L[i]-1] either does not change, if S[j − 1] ≥ S[k], or has to be increased by
one, if S[j − 1] > S[k]. The main issue is that we have to process O(w/ log logn) symbols
of the encoding in parallel to achieve the target time complexity.

This is achieved as follows. Apart from E(S[j − 1..j +L[i]− 1]), we also keep a different
encoding R(S[j..j + u]) for S[j..j + u]. The encoding R stores O(log logn)-bit ranks which
reppresent the relative order among symbols in S[j..j + u]. More preciselly, for any two
symbols S[k] and S[k′], R(S[j..j+u])[k] < R(S[j..j+u])[k′] iff S[k] < S[k′]. Notice that we
are not constraining these ranking values to form a consecutive interval, i.e., there may be
missing values.
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Our goal is to compute R(S[j−1..j+L[i]−1]) from R(S[j..j+u]) as we perform backward
steps. For this reason, we do not no longer store the value B[i] as in the previous solution.
Instead, we store two positions P [i] and O[i] which are the positions of the predecessor and
an occurrence of S[j − 1] in S[j..j + L[i] − 1], if any. This way, we can compute compute
R(S[j−1..j+L[i]−1]) by prepending an appropriate rank r for symbol S[j−1]. The value of r
equals R(S[j..L[i]−1])[O[i]], if there already exists an occurrence of S[j−1] in S[j..L[i]−1],
or r = R(S[j..L[i] − 1])[P [i]] + 1, otherwise. In the latter case, we increase any value in
R(S[j..L[i] − 1]) which is larger than or equal to r to guarantee that there is no collision
with the assigned rank. This can be done in O(1 + L[i] log logn/w) = O(1 +m log logn/w)
time by exploiting word parallelism of the RAM model. We observe that the positions with
a rank larger than r are exactly the positions that we need to increase by one in order to
compute E(S[j − 1..j + L[i]− 1]).

Now the backward step at i is i′ = k + D[i], where k is the sampled entry in R whose
encoding has the prefix of lenght L[i] which is the largest prefix which is (lexicographically)
smaller that or equal to E(S[j − 1..j + L[i] − 1]). Notice that equality may occur only for
at most one prefix as otherwise S[j − 1..j +L[i]− 1] would occur more than d times, which
was excluded in the construction.

Thus, the problem is to compute k, given i and E(S[j − 1..j +L[i]− 1]). It is crucial to
observe that E(S[j − 1..j +L[i]− 1]) depends only on S and L[i] and not on the pattern P
we are searching for. Thus, there exists just one valid E(S[j− 1..j+L[i]− 1]) that could be
used at query time for a backward step at i. Notice that, if the pattern P does not occur,
the encoding that will be used at i may be different, but in this case it is not necessary to
compute a correct backward step. Consider the set E of all these, at most n, encodings.
The goal is to map each encoding in E to its corresponding sampled entry in R. This can be
done as follows. We build a monotone minimal perfect hash function h() on E to map each
encoding to its lexicographic rank. Obviously, the encodings to be map to a certain sampled
entry i in R form a consecutive range in the lexicographic ordering. Moreover, none of these
ranges overlap. Thus, we can use a binary vector B to mark each of these ranges, so that,
given the lexicographic rank of an encoding, we can infer its closest sampled entry. The
binary vector is obtained by processing the sampled entries in R in lexicographic order and
by writing the size of its range in unary. It is easy to see that the sampled entry prefixed by
x = E(S[j − 1..j + L[i] − 1]) can be computed as Rank1(h(x)) in constant time. The data
structure that stores B and supports Rank requires O(n) bits (see Theorem 1).

The evaluation of h() is the dominant cost, and, thus, a backward step is computed in
O(1 +m log logn/w) time. The overall space usage of this solution is O(n log logn) bits,
because B has at most 2n bits and h() requires O(n log logn) bits by Theorem 3.

Since we perform at most d backward steps, it follows that the overall query time is
O(d× (1 +m log logn/w) = O(m). The equality follows by observing that d = O(logn/ log logn),
m = Ω(logn/ log logn) and w = Ω(logn).

We finally observe that we could use the weak prefix search data structure instead of h()
to perform a backward step. However, this would introduce a term O(logn) in the query
time, which would be dominant for short patterns, i.e., m = o(logn).

Query algorithm. We report here the query algorithm for a pattern P [1..m], with m =
Ω(logn/ log logn). Recall that for shorter patterns we store all possible answers.

We first compute E(P [1..m]) in O(1 +m log logn/w) time. Then, we perform a weak
prefix search to identify the range [l, r] of encodings that are prefixed by E(P [1..m]) in
O(m log logn/w + log logn) time. If P has at least one occurrence, the search is guaranteed
to find the correct range; otherwise, the range may be arbitrary but the subsequent check
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will identify the mistake and report zero occurrences.
In the checking phase, there are only two possible cases. The first case occurs when [l, r]

contains a sampled entry, say i, in R. Thus, we can use the encoding from Lemma 5 to
compare E(S[R[i]..R[i]+m−1]) and E(P [1..m]) in O(m) time. If they are equal, we report
R[i]; otherwise, we are guaranteed that there is no occurrence of P in S.

The second case is when there is no sampled entry in [l, r]. We arbitrarily select an
index i ∈ [l, r] and we perform a sequence of backward steps starting from i. If P has at
least one occurrence, we are guaranteed to find a sampled entry e in at most d backward
steps. The overall time of these backward steps is O(d×m log logn/w) = O(m). If e
is not found, we conclude that P has no occurrence. Otherwise, we explicitly compare
E(S[R[e] + b..R[e] + m + b − 1]) and E(P [1..m]) in O(m) time, where b is the number of
performed backward steps. We report R[e] + b only in case of a successful comparison. Note
that if P occurs, then the number of its occurrences is r − l + 1.

7 Space Lower Bound

In this section we prove that our solution is space optimal. This is done by showing a lower
bound on the space that any data structure must use to solve the easier problem of just
establishing if a given pattern P has at least one order-preserving occurrence in S.

More precisely, in this section we prove the following theorem.

I Theorem 9. Any encoding data structure that indexes any S[1..n] over the alphabet [σ]
with log σ = Ω(log logn) which, given a pattern P [1..m] with m = logn, establishes if P has
any order-preserving occurrence in S must use Ω(n log logn) bits of space.

By contradiction, we assume that there exists a data structure D that uses o(n log logn)
bits. We prove that this implies that we can store any string S[1..n] in less than n log σ bits,
which is clearly impossible.

We start by splitting S into n/m blocks of size m = logn characters each. Let Bi denote
the ith block in this partition. Observe that if we know both the list L(Bi) of characters
that occur in Bi together with their number of occurrences and E(Bi), we can recover Bi.
This is because E(Bi) implicitly tells us how to permute the characters in L(Bi) to obtain
Bi. Obviously, if we are able to reconstruct each Bi, we can reconstruct S. Thus, our goal
is to use D together with additional data structures to obtain E(Bi) and L(Bi), for any Bi.

We first directly encode L(Bi) for each i by encoding the sorted sequence of characters
with Elias-Fano representation. By Theorem 2, we know that this requires m log σ

m +O(m)
bits. Summing up over all the blocks, the overall space used is n log σ

m +O(n) bits.
Now it remains to obtain the encodings of all the blocks. Consider the set E of the

encodings of all the substrings of S of length m. We do not store E because it would require
too much space. Instead, for each block Bi, we store the lexicographic rank of Bi in E .
This way, we are keeping track of those elements in E that are blocks and their positions in
S. This requires O(n) bits, because there are n/ logn blocks and storing each rank needs
O(logn) bits.

We are now ready to retrieve the encoding of all the blocks, which is the last step to be
able to reconstruct S. This is done by searching in D for every possible encoding of exactly
m characters. The data structure will be able to tell us the ones that occurs in S, i.e., we
are retrieving the entire set E . Thus, we sort E and replace each the stored rank of each
block with its original encoding.

Thus, we are able to reconstruct S by using D and additional data structures which uses
n log σ − n log logn+O(n) bits of space. This implies that D cannot use o(n log logn) bits.
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8 Conclusion

We have given an encoding data structure for order-preserving pattern matching: given
a string S of length n over an arbitrary alphabet and a constant c ≥ 1, we can store
O(n log logn) bits such that later, given a pattern P of length m ≤ logc n, in O(m) time we
can return the position of an order-preserving match of P in S (if one exists) and report the
number of such matches. Our space bound is within a constant factor of optimal, even for
only detecting whether a match exists, and our time bound is optimal when the alphabet
size is at least logarithmic in n. We can build our encoding knowing only how each character
of S compares to O(logc n) neighbouring characters. We believe our results will help open
up a new line of research, where space is saved by restricting the set of possible queries or
by relaxing the acceptable answers, that will help us deal with the rapid growth of datasets.
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