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 Phytoextraction of heavy metals from marine sediments and optimization aspects 

of process parameters, 

 Application of new bioremediation methods for the removal of heavy metals from 

marine sediments using different aquatic plant species, 

 Determination of some organic (pesticides) compounds in marine sediments. 
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ABSTRACT 

The aim of this study was to investigate the concentrations and pollution levels of heavy metals, 

organochlorine pesticides and polyciclic aromatic hydrocarbons in marine sediments from the 

Leghorn harbor (Italy) on the Mediterranean Sea The phytoextraction capacity of three aquatic 

plants Salvinia natans, Vallisneria spiralis and Cabomba aquatica were also tested in order to 

remove lead and copper, present in high concentration in these sediments. The average metal 

concentrations accumulated by the plants in the studied area, detectable in the extracting 
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solutions were: > Pb (3.328 ±0.032 mg/kg D.W) and Cu (2.641±0.014 mg/kg D.W) for S.natans, 

>3.107 ± 0.034 g/kg D.W forV. spiralis and >2.400 ± 0.029 mg/kg DW, C. aquatica, 

respectively. Pesticides occurrence was also analyzed sediments sample being performed by gas 

chromatography coupled with mass spectrometry (GC/MS). 

According to the metal and organic compounds accumulation patterns of S.natans, this species 

seemed to be valuable for application in the phytoextraction strategies. 

Keywords: Marine sediments, heavy metals, aquatic plants, organochlorine pesticides, polycyclic 

aromatic hydrocarbons, polychlorinated biphenyls 

1. Introduction 

During the industrial revolution and development, the environmental pollution by heavy 

metals became a serious problem, disturbing the natural biogeochemical cycles (Khan et al., 

2007). 

Worldwide, in marine environments, harbors have had a long history in acting as sinks 

for contaminants produced by navigation. Beside this, the surrounding industrial and urban 

settlements were also a contamination source of these areas (Taylor et al., 2004). Dredging of 

sediments from such harbors was necessary to prevent flooding and allow shipping traffic 

efficiency, but also for remediation purposes, where the risk to the environment and health might 

be high (SedNet, 2013). Sediments have played an important role in the transport of nutrients, 

metals and other contaminants through river systems to the world’s oceans and seas (Gibbs, 

1977). 

Heavy metals in marine sediments have natural and anthropogenic (human) origins: the 

distribution and accumulation are influenced by sediment texture, mineralogical composition, 

reduction/oxidation state, and adsorption/desorption processes (cycles) as well as physical 
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transport. Moreover, metals can be absorbed from the water column onto fine particles surfaces 

and moved thereafter towards sediments; participating in various biogeochemical mechanisms 

with significant mobility, it can affect the ecosystems through bio-accumulation and bio-

magnification processes (Manahan, 2000). Metal concentrations in sediments are generally much 

higher than in water and may act as a source of chemicals in the water column and also, 

adversely, affect sediment-dwelling organisms through direct toxicity (Martı´nez et al., 2007; 

Sawasdee et al., 2011). The high Pb concentration in the marine environments is attributed to 

several sources such as boat exhaust systems, oil spill, and petroleum compounds from motor 

boats employed for fishing and sewage effluents discharged into water (Laxen, 1983). Lead 

pollution derived from different industrial sources is expected to be carried to the inlets via 

mixed wastewater effluents or by boat-engine fuel spills, thus accumulating in these areas (Abu-

Zied et al., 2012).  

Lead is one of the most ubiquitous toxic metals and has no known biological necessity; in 

high levels, it is lethal for most living organisms (Goyer, 1993; Goyer, 1991). Lead undergoes 

methylation in the environment; organ-lead species are thought to accumulate more readily than 

inorganic species
 
(Moore, 1991). The input of copper into marine environment comes from 

different sources, including mining, smelting, domestic and industrial activities and from 

algaecides and an antifouling applied to boat hulls (Fabrizio and Coccioni, 2012). Copper is 

naturally found in rocks, water, and air, being an essential element for plant growth. It is an 

important constituent of many enzymes of oxidation–reduction reactions (Lepp, 1981). However, 

a high intake of copper is known to cause adverse health problems (Gorell et al., 1997). 

Contamination by organochlorine compounds has spread all over the globe and continues 

to be detected in a wide range of environmental media including water, sediment and fish 
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(Tanabe et al., 1994). The application of organochlorine pesticide on land enters in aquatic 

environment by runoff or atmospheric deposition (Colombo et al., 1990; Fushiwaki and Urano, 

2001). Plants provide a large range of potential defense mechanisms at the cellular level, which 

are involved directly in the detoxification, and also have the ability to survive even to high metal 

concentrations (Macnair, 1990). Moreover, plant species vary significantly in their ability to 

accumulate metals and other organic elements from contaminated soils and waters (Raskin et al., 

1994). 

The phytoremediation process stands for the use of living green plants which are able to 

fix or adsorb toxic contaminants, contributing to their reduction or disappearance (Shen and Chen, 

2000). The accumulation of these contaminants in plants can cause some physiological and 

biochemical changes (Perry et al., 2002; Dhir et al., 2004). The submerged aquatic plants are 

particularly useful in the abatement, monitoring reduction and removal of organic and inorganic 

pollutants from water (Dunbabin and Bowmer, 1992; Mishra and Tripathi, 2009). They do not 

migrate and attain equilibrium with their surroundings within a short period (Raskin et al., 1994). 

Aquatic plants are unique
 
bioindicator species for the evaluation of water quality and subsequent

 

risk assessment. The absorption and accumulation of elements by these plants can follow two 

different paths, for example, the root system, and leaf area (Sawidis et al., 2001). 

The aim of this study was (1) to quantify the concentrations of heavy metals (Cd, Pb, Ni, 

Cr, Zn and Cu) in the marine sediments (Mediterranean sea, harbour of Leghorn, Italy), (2) to 

apply and to test the ability of three aquatic plant species (i.e. Salvinia natans, Vallisneria 

spiralis and Cabomba aquatica) to translocate and accumulate heavy metals in their different 

parts, (3) and to assess the concentration of organochlorides, pesticides and polyciclic aromatic 

hydrocarbons presents in these sediments. 
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2. Materials and methods 

2.1. Description of study areas 

Sediment samples were collected from the Leghorn harbor (Italy) on the Mediterranean 

Sea. Polluted marine sediments were dredged in February, 2014 from the sea bottom of 

approximately 7 m to depth (43°33´2´´N; 10°17´39´´E), (Fig. 1). The climate in the studied area 

belongs to the Mediterranean climate, which is characterized by warm to hot, dry summers and 

mild to cool, wet winters. The precipitate annual average is about 759 mm. The average annual 

temperature is 15.5°C in the coldest month (January), while July is the warmest month, with an 

average monthly temperature of 23.8°C, reaching an absolute average maximum of 37.8°C (Doni 

et al., 2015). 

2.2. Organochloride pesticides, polychlorinated biphenyls, polyciclic aromatic hydrocarbons 

and heavy metals analysis 

2.2.1. Reagents and standards 

 Reagents used in the research comprised the following: n-hexane, n-acetone, 

trimethylpentane, methanol, anhydrous sodium sulfate were of analytical grade and were 

obtained from Sigma Aldrich (Germany) and de-ionized water  

In order to determine the organochloride pesticides and polyciclic aromatic hydrocarbons 

content, the sediment was dried at room temperature for 48 h. All the OCP standards 

acenaphthene, acenaphthylene, acenaphthylene-D8, anthracene, anthracene-D10, 

benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, 

benzo(k)fluoranthene, chlordane, chlorpyrifos, crysene, p-p'DDD, p-p'DDE, p-p'DDT, 

dibenzo(ah)anthracene, dibenzo(ah)anthracene-D14, dieldrin,  endosulfan sulfate, phenanthrene, 

fluoranthene, fluorene, naphthalene, PCB052, PCB101, PCB 118, PCB128, PCB138, PCB170, 
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PCB180, PCB187,  PCB194, PCB206, pyrene, indeno(1,2,3-cd)pyrene, simazine and trifluralin 

were purchased from O2SI Smart Solution, (USA).  

Standard solutions were prepared in acetone at a concentration of 100 µg/mL and diluted 

with acetone when necessary. The entire glassware was cleaned with laboratory detergent, 

sequentially rinsed with de-ionized water, acetone, and methanol and heated in an oven at 300 
◦
C 

for 12 h. 

2.2.2. Sample extraction for GC/MS analysis  

A quantity of 2 g of dried sediment was extracted by adding 3 mL of acetone and was 

placed in an ultrasound bath for 10 minutes, followed by the addition of 3ml hexane and 

subjected afterwards to another 10 minutes of ultrasound treatment. The extraction procedure 

was repeated two times to improve the efficiency of recovery. The organic extracts were 

combined, added of 2 mL of trimethylpentane and concentrated by a nitrogen stream for the 

elimination of acetone and hexane. In order to remove the sulphur compounds, trimethylpentane 

solution was shaken with 1 mL of 2-propanol and 1 mL of TBA-sulfite reagent for 1 min. 

Afterwards, 5 mL of water was added and the test tube was shaken for another minute, followed 

by centrifugation, and the trimethylpentane phase was transferred to a test tube (Jensen et al., 

1977). The trimethylpentane phase was finally concentrated to 1 mL and purified on activated 

silica stationary phase. The repeatability of the method was assessed on the basis of 3 parallel 

determinations of pesticides. 

2.2.3. GC/MS conditions 

Mass spectrometry analyses were performed with an Agilent 7010 GC/MS instrument 

(Palo Alto, CA, USA) equipped with a DB-5MS fused-silica capillary column (30 m × 0.25 

mmI.D., film thickness 0.25 µm; J&W Scientific). Helium was used as the carrier gas at a flow 
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rate of 1.0 mL/min. A 1-µL sample was introduced by split-mode injection (split ratio 10:1). 

Triple quadrupole GC /MS is the most sensitive GC/MS/ MS system with the lowest, 0.5 fg. The 

mass spectrometer was run in electron ionization (EI) mode with an electron energy of 70 eV, 

scanning a range of 50-550 amu. The manifold temperature was kept at 230 
◦
C. For sample 

monitoring and confirmation analysis, SIM mode was used with a dwell time of 50 ms for each 

ion. All OCPs were identified by retention time and specific ions. They were quantified by 

comparison to the internal standard. 

2.3. Heavy metals from dredged marine sediments 

The concentration levels of heavy metals (Cu, Cr, Ni, Pb, Zn and Cd) was detected in 

sediments samples by extraction, using the following extracting solutions: HCl (1M), double 

distilled water, NaCl (36‰) and concentrate HNO3 (67 %). The sediment contains most studied 

forms of heavy metals in oxidative status 0, in order to determine the amount of heavy metals; 

their existence was passed in the salt form by treatment with acids. In this in order to be able to 

determine the amount of heavy metals existence was passed in the salt form by treatment with 

acids.  

In particular, 200 g of sediment was stirred for 6 hours in 200 mL of extracting solutions 

(each in separate solution). At the end of the predetermined time, the suspension was filtered and 

the resulting solution was analysed by inductively coupled plasma optical emission spectrometer 

(ICP–OES, Optima 5300 DV, Perkin–Elmer, USA). The measured heavy metal concentrations 

are summarized in (Table 1).  

Heavy metals (Cu, Cd, Zn) detected in sediment samples were below the limit of 

detection, except lead and copper, which were in higher concentrations. 

2.4. Plant material and growing conditions for phytoextraction studies 
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Three submerged aquatic plants species were used in the present study: fanwort 

(Cabomba aquatica), tape grass (Vallisneria spiralis), and floating fern (Salvinia natans). The 

plants’ growth experiments were performed in a hydroponic greenhouse system (at University of 

Agricultural Sciences and Veterinary Medicine in Cluj-Napoca, Romania), with an addition of 

fertilizer (Complex 3, 0.5 %). Plants aged 50 days, were selected for the phytoremediation 

experiments. The plants were kept under laboratory conditions for an acclimatization period of 4 

days in modified Hoagland nutrient solution with the following chemical composition: 1 mM 

KNO3; 1 mM Ca(NO3)2×4H2O; 1 mM NH4H2PO4; 1 mM MgSO4×7H2O; 25 mM KCl; 12.5 mM 

H3BO3; 1 mM  MnSO4×H2O; 1 mM ZnSO4×7H2O; 0.25 mM CuSO4×5H2O; 0.25 mM H2MoO4 

(85% MoO3) with Fe(III) citrate (Taiz and Zeiger, 2002) as iron source, at room temperature (21-

23°C) with a 14/10 h (light/dark) photoperiod. The plants were cultivated in 250 mL Erlenmeyer 

flasks (5 g), containing 100 mL of lead solution of sediment and 100 mL Hoagland solution.  

The phytoremediation experiments were carried out for 10 days. The sediments resulted 

from the solution´s heavy metal content was checked by Atomic Absorption Spectrometer 

(SensAA Dual GBC Scientific Equipment, Australia). 

The phytoremediation process was analysed at various operational parameters in the 

following conditions: a) effect of initial lead concentration: Ci =2.5-4 mg/L (initial metal 

concentration), mplant = 5-11 g fresh weight plant, the volume of solution: V = 0.2 L, room 

temperature: T= 21 - 23 °C; b) effect of initial pH 3-5, mplant = 5 g fresh weight plant, Ci = 2.5-5 

mg/L, V = 0.2 L, T= 21-23 °C. During the experiments, water samples were collected at regular 

24 hour intervals from the nutrient solution in order to determine the heavy metal content for 

sediment. 
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The characterization of the phytoremediation process was realized through the 

determination of the phytoremediation efficiency and capacity using the following equation:  

where E, (%) represents the efficiency, Ci and Cf the initial and final concentration of lead 

(mg/L) in the aqueous solution, the qmax (mg/g) represents the amount of heavy metals adsorbed 

onto unit weight of plant, V (L) means the volume of heavy metals aqueous solution and m (g) 

the plant quantity. 

2.5. Digestion of plant material and determination of heavy metal content 

At the end of the experiment, plant samples were dried for 12 h at 60ºC in a forcedly –

drought oven. The dried plant samples (approximately 0.2 g) were digested in 8 mL of 

concentrated nitric acid (Merck, Germany) at 40°C for 8 h. After digestion, the solutions were 

filled up to volume with distilled water to 50 mL. Determinations of heavy metal concentrations 

in all samples were carried out by the Atomic Absorption Spectrometer. 

2.6. The bio-concentration factor (BCF) 

The bio-concentration factor (BCF) is defined as the ratio of the total concentration of 

elements accumulated in plants to the heavy metal concentrations in experimental solutions (the 

heavy metals from the experimental solutions were extracted from the analyzed sediments) 

representing an important parameter in the heavy metal uptake studies (Dunbabin and Bowmer, 

1992). 

100=(%),
i

fi
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CC
E  (1)

 

m

VCC
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The BCF is calculated using the formula: BCF=Concentration of metal in the 

plant/Concentration of metal in water (Jitar et al., 2015). 

2.7. Statistical analysis 

The standard deviation was calculated from three replicated concentration values using 

the Microsoft Excels statistical package. Each treatment was replicated three times and all data 

are expressed as the means ± S.D. The data obtained were compared with t test to confirm any 

significant differences. The results are considered significant at P < 0.05.  

3. Results and discussion 

3.1. Sediment characteristics 

The sediment samples were used for the analysis of the physicochemical parameters. 

There were analyzed the sediments taken from a depth of 7 m with a pH 7.65, using the 

ISO10390: 2005 method. The chloride concentration in our solution was measured by 

potentiometric titration with AgNO3. All the experiments were realized at room temperature. The 

moisture content of the sediment was calculated, taking into consideration the weightless of the 

sample after being heated at 105°C during 24 h. The results of physicochemical properties of the 

investigated sediments are presented in (Table 2).  

3.2. Metal accumulation in the aquatic plants tissues  

In the phytoextraction studies, the bioaccumulation of lead and copper in aquatic plants 

was monitored. The results of this study indicate that the extent of heavy metal accumulation is 

differed among the aquatic plant species. Relatively high amounts of accumulated Pb and Cu is 

observed in the order Salvinia natans > Vallisneria spiralis > Cabomba aquatica. The highest 

concentrations of Pb in the aquatic plants are associated with the high concentrations in the 

surrounding sediments. In some cases, copper has not been detected. 
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As Table 3 shows, all the plants accumulated copper only from the solution with HNO3 in 

Hoagland. However the highest removal amount (2.641±0.014 mg/kg) was obtained at Salvinia 

natans. Rahman and Hasegawa (2008) reported that the highest concentrations of arsenic in this 

aquatic plant (Salvinia natans) were 2.400 ±0.02 µmol (g dry weight)
-1

 respectively, over 5 

days. 

The concentrations of lead in the sediments have an initial concentration of 3.5 mg/L, and 

can be detected from all solutions. The measured Pb concentrations varied between 3 mg/kg and 

0.250 mg/kg DW at different experimental solutions, where the highest concentration of lead 

was accumulated by Salvinia natans (3.328 ±0.032 mg/kg DW), and using sodium chloride with 

Hoagland nutrient solution. Aquatic plants V. spiralis and C. aquatica had a very low rate of 

accumulation, demonstrating a decreased survival in this experimental condition.  

Marques et al. (2009) observed maximum Pb concentrations of 1178 mg/kg in the roots 

and 149 mg/kg dry weight in the leaves of R. ulmifolius, over 16 days. According to the 

literature, a lower concentration of heavy metals is proving to be more easily accumulated in the 

plant and opposite (Dhir, 2009). 

The above results indicate that these aquatic plants might accumulate large amounts of 

lead and copper in their tissues. These results are similar to the findings of Dhir (2004) who 

reported that Salvinia natans is a metal hyperaccumulator plant which was able to tolerate and 

bioconcencentrate hight quantities of Fe
2+

, Cr 
6+

, and Ni
2+

 metals (Chorom et al., 2012). 

Plants can uptake the heavy metals via their roots and in certain cases, such as 

submerged plants, by their leaves. The metal uptake occurred by two pathways: first step 

extracellular (apoplastically), which is a fast one followed by intracellular (simplistically), 

which is a slow level. The heavy metals’ uptake in the fast stage was possible by physical and 
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chemical sorption (adsorption) as well by ion exchange processes. The slower stage is the 

intracellular uptake and transport of the metals into the cells (Raskin et al., 1994). 

 Metal concentrations in plants vary by plant species. Plant uptake of heavy metals from 

sediments occurs either passively with the mass flow of water into the roots, or through active 

transport across the plasma membrane of root epidermal cells. The bioavailability of trace 

elements to plants is ultimately controlled by the nature of the sediments, their total 

concentration in the sediments and their chemical forms (Favas et al., 2014). 

3.3. The bio-concentration of metals (BCF) 

The determined bioconcentration values by Salvinia natans, Vallisneria spiralis and 

Cabomba aquatic for Pb is represented in (Fig. 2). 
 

BCF was used to assess the availability of heavy metals in the used experimental 

solution. BCF values of heavy metals, determined in the three plant species, originated from 

various types of wetlands, reflecting their heavy metals accumulation ability in the surrounding 

environments. The plant bioaccumulation factor (Salvinia natans, Vallisneria spiralis and 

Cabomba aqauatica) for lead is shown in Fig. 2. Based on the values calculated, BCF plants are 

classified as follows: Salvinia natans>Vallisneria spiralis >Cabomba aquatica. The highest 

values (25 µg/L) recorded in this study were observed at experimental solution, using NaCl with 

Hoagland nutrient solution, in all cases. The lowest values of BCF in plants were registered in 

the case of Cabomba aquatica (<1) (Qui et al., 2001).  This can be explained by the fact that the 

plant has a decreased lead bioaccumulation capacity. 

Therefore, it can be concluded, that Salvinia natans possess a higher accumulative ability 

in the above-mentioned experimental solution in comparison with the other two plant species. 

3.4. Organochlorine pesticides polyciclic aromatic hydrocarbons and polychlorinated biphenyls  
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Unlike heavy metals, all chlorinated hydrocarbons are anthropogenic in origin. Non-

persistent pesticides are very unlikely to contaminate the marine environment significantly, since 

they will be degraded before reaching it (Michael, 1978).
 
The highly chlorinated hydrocarbons 

are found in the deeper sediments and are more readily adsorbed on sedimenting particles. On 

the other hand, the less-chlorinated hydrocarbons are more easily decomposed. 

PAHs are included in the organic compound class containing two or more benzene rings. PAHs 

in the marine environment may be of different origins: pyrolytic (forest fires, volcanic eruptions, 

waste incineration and combustion of fossil fuels), petrogenic (from petroleum and its 

fractionation products), or diagenetic (diagenetic transformation of biogenic precursors on 

marine sediment) (Nikolaou et al., 2009). 

They are characterized by high toxicity, persistence and the ability to bioaccumulation in 

the environment. Due to their molecular weights, they can be divided into low molecular weight 

compounds (LMW), e.g., naphthalene, acenaphthylene, fluorene, phenanthrene, and pyrene, and 

high molecular weight compounds (HMW), e.g., benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene, 

and coronene (Boonyatumanond et al., 2007).  

The distribution of various pesticides in the sediment from the three locations sampled is 

summarized in Fig. 3. 

Only seven PAHs compounds (4–6 aromatic ring specie),  benzo(a)anthracene,  benzo(a) 

fluoranthene, benzo(b)fluoranthene benzo(k)fluoranthene benezo(a)pyrene, benzo(g,h,i) 

perylene, dibenzo(a,h)anthracene) were detected above the determination limits. No PAHs with 

six or more aromatic rings were observed to be present above the detection limits, although it has 

been shown that the particle fraction of “Asian Brown Cloud” can carry a significant amount of 

PAHs to mountain region (Loewen et al., 2005). 
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Benzo(b)fluoranthene was present in the highest concentration in sediment samples, in all 

studied pesticides average levels of up to 0.2633 ng/g. Benzo(a)anthracene, benzo(a) 

fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, benezo(a)pyrene, benzo(g,h,i) 

perylene, dibenzo(a,h)anthracene concentrations was however lower than benzo (b)fluoranthene 

ranging in all  sediments samples studied.  

The detection limit was 0,0008ng/g of aldrin and 0.0005 ng/g of dieldrin, detected in 

sediment samples. Statistically, the differences in the mean concentrations of aldrin and dieldrin 

for the studied sites were significant (p < 0.05). Doong et al. (2002) reported a concentration 

range of 0.05–0.15 lg kg
-1

 for aldrin and 0.12–5.8 lg kg
-1

 for dieldrin. In the present study, 

however, the concentrationof detected dieldrin was much higher while aldrin was lower than the 

one in the study. Another study by Darko et al. (2008)
 
reported lower concentrations of aldrin 

and dieldrin - 0.65 ng g1 (lg kg
-1

) and 0.072 ng g1 (lg kg-
1
) in Lake Bosomtwi in the Ashanti 

region of Ghana. The absence of aldrin in the analyzed sediments samples may be attributed to a 

cessation of their use in the area and also to their decomposition in the environment. The import 

of aldrin pesticides, widely used in the 1950’s and 1960’s, has been banned in Morocco since the 

1984  National implementation plan for Stockholm Convention on Persistent Organic Pollutants 

(POPs). Directorate for surveillance and risk prevention. Rabat, Morocco (Ministry of Territory 

Management, Water and Environment, 2006).  

Endosulfan sulfate concentrations detected in the sediment samples were relatively low, 

as compared with those reported by Mensah (2012), wherein the measured endosulfan sulfate 

concentration in sediment was of 0.06 ng/g. Endosulfan sulfate concentration was relatively low 

and the absence of alpha-endosulfan indicated a high rate of degradation of the compound. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

From the sediment samples studied, p-p'DDD, p-p' DDE and p-p'DDT levels were 

significantly lower than p,p-DDT. The concentration of p-p'DDD, p-p' DDE and p-p'DDT ranged 

from 0.0015 ng/g to 0.0053 ng/g to 0.0018 ng/g, among the studied samples with the highest 

mean concentration being p-p'DDE. Some p-p´DDT metabolites were detected in sediments but 

did not exceed permissible limits. In this research pp´-DDT concentrations in sediment are 

lower, in comparison with other years, when the DDT concentration was much higher, indicating 

a slow degradation process for DDT. DDT has been banned from agricultural use and restricted 

for public health purposes, under the Stockholm convention in which Ghana is a signatory. The 

present investigation therefore gives an indication on the restricted use of DDT for agricultural 

and vector control purposes in Ghana (Mensah et al., 2012). 

The mean distribution of polychlorinated biphenyls (PCB) from sediment is shown in 

Figure 3. Usually the lower chlorinated (tri and tetrachlorobiphenyls) are the ones with the 

highest removal rates from contaminated soils (Erickson, M.D., 1997). It was also observed an 

increase in the concentration of PCB101 (20 %), PCB 138 (40 %), PCB170 (41 %), PCB 180 (45 

%) and PCB 194 (64 %). In this sediment samples most of the PCB was below the detection 

limit. PCB has very low water solubility (0.0027–0.42 ng/L
-1

) and is very hydrophobic
 
(Gomes et 

al., 2014). 

4. Conclusions 

The purpose of this research was to analyze the concentration of heavy metal pollutants 

the concentration of heavy metal pollutants and organic compound levels in the sediments 

collected from Leghorn harbor (Italy) on the Mediterranean Sea. The phytoextraction possibility 

was studied in order to asses a new alternative method for multimetal remediation purposes. 

Three plants, namely Salvinia natans, Vallisneria spiralis and Cabomba aquatica were tested for 
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the removal of lead and copper from the sediment. These three plants proved to be highly 

effective in absorbing Pb at different concentrations. The correlation between the final metal 

concentration in the water and the metal concentration in the plant indicated that these plants can 

be used effectively for the removal of heavy metals from a solution with various concentrations. 

The amount of heavy metals accumulated in plants showed a potential use for application in 

waters contaminated with Pb which are widely used from basic household items to complex 

industrial technologies. In the present investigation there were not registered changes in the 

levels for the DDT because it was taken out of use only specific classes of pesticides show the 

changes. benzo(a)anthracene, benzo(a)fluoranthene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, benezo(a)pyrene, benzo(g,h,i) perylene, dibenzo(a,h)anthracene 

concentrations were however lower than benzo(b)fluoranthene ranging in all the studied 

sediments samples. The obtained results showed the presence of chlorinated organic pesticides 

polycyclic aromatic hydrocarbons and ploclorobifenili in low concentrations. 

In addition, the results of this study suggested that Salvinia natans was a good candidate 

for removing Pb and Cu from the polluted aquatic environments. 
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Table 1. Heavy metals concentrations in the four extracting solutions 

 

Sample Cu 

mg/L 

Pb 

mg/L 

Zn 

mg/L 

Ni 

mg/L 

Cd 

mg/L 

Cr 

mg/L 

HCl 1M ND 3.5 0.51 1.8 0.20 0.42 

H2O ND 0.57 0.038 0.26 0.055 0.028 

NaCl 

36 ‰ 

ND 2.52 0.040 1.99 0.33 0.33 

HNO3 

67 % 

0.48 2.35 2.74 2.48 0.44 2.274 

  *
ND-non-detected 
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Table 2. General characteristics of the sediments. 

 

Characteristics Values 

pH sediment 7.65 

Electrical conductivity (dS m
-1

) 3.54 

Determination of chlorine in the sediment (Cl
-
) 

g/mol 

35.453 

NaCl (g/mol) 58.44 

Water salinity (%) 3.5 

Porosity (%) 35 

Density (kg/m
3
) 1750 

Moisture (%)
a
 32.4 

Cl
-
 concentration in the sediment extract (M) 0.0282 

Cl
-
 (1 Kg/sediment) (g\Kg) 6.2 

 a
 The percentage is calculated on dry mass 
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Table. 3 The amount of Pb and Cu accumulated by aquatic plants during the 10-day exposure. 

 

Aquatic plant 

species 

 

Heavy metal 

concentration 

 

Experimental 

solutions 

 

Pb content in 

plant 

(mg/kg DW) 

Cu content in plant 

(mg/kg DW) 

 

 

 

Salvinia 

natans 

3 mg/L Pb NaCl with 

Hoagland 

3.328 ±0.032 ND 

3 mg/L Pb NaCl without 

Hoagland 

3.247±0.020 ND 

2.8 mg/L Pb
 

0.8 mg/L Cu 

HNO3 with 

Hoagland 

2.852 ±0.013 2.641±0.014 

 3.5 mg/L Pb HCl with 

Hoagland 

1. 938±0.013 ND 

 

 

 

Vallisneria 

spiralis 

3 mg/L Pb NaCl with 

Hoagland 

3.107 ±0.034 ND 

3.5 mg/L Pb NaCl without 

Hoagland 

3.061±0.028 ND 

2.8 mg/L Pb
 

0.8 mg/L Cu
 

HNO3 with 

Hoagland 

2.640 ±0.034 2.409±0.048 

 3.5 mg/L Pb HCl with 

Hoagland 

1.935 ±0.048 ND 

 

 

 

Cabomba 

aquatica 

3 mgL Pb NaCl with 

Hoagland 

2.400 ±0.029 ND 

3 mg/L Pb NaCl without 

Hoagland 

1.965 ±0.183 ND 

2.8 mg/L Pb
 

0.8 mg/L Cu
 

HNO3 with 

Hoagland 

0.205 ±0.003 1.941±0.028 
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 3.5 mg/L HCl with 

Hoagland 

1.780±0.005 ND 

 ND- non-detected concentration (mg/L) 

 DW- dry weight (mg/Kg) 
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Fig. 1 
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Fig.2  
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Fig. 3  
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Figure captions  

 

Figure 1 Map of the study location and sampling sites in the Leghorn area of Italy 

Figure 2 Bioconcentration factors for Salvinia natans, Vallisneria spiralis and Cabomba 

aquatica in different experimental solutions. Results are expressed as means ± S.D (n=3) 

Figure 3 The distribution of various pesticides in the sediment from the three locations sampled 

is summarized 

 



Table 1. Heavy metals concentrations in the four extracting solutions 

 

Sample Cu 

mg/L 

Pb 

mg/L 

Zn 

mg/L 

Ni 

mg/L 

Cd 

mg/L 

Cr 

mg/L 

HCl 1M ND 3.5 0.51 1.8 0.20 0.42 

H2O ND 0.57 0.038 0.26 0.055 0.028 

NaCl 

36 ‰ 

ND 2.52 0.040 1.99 0.33 0.33 

HNO3 

67 % 

0.48 2.35 2.74 2.48 0.44 2.274 

  *
ND-non-detected 
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Table 2. General characteristics of the sediments. 

 

Characteristics Values 

pH sediment 7.65 

Electrical conductivity (dS m
-1

) 3.54 

Determination of chlorine in the sediment (Cl
-
) 

g/mol 

35.453 

NaCl (g/mol) 58.44 

Water salinity (%) 3.5 

Porosity (%) 35 

Density (kg/m
3
) 1750 

Moisture (%)
a
 32.4 

Cl
-
 concentration in the sediment extract (M) 0.0282 

Cl
-
 (1 Kg/sediment) (g\Kg) 6.2 

 a
 The percentage is calculated on dry mass 

 

 

 

 

 

 

 

 

 

 

 

 



Table. 3 The amount of Pb and Cu accumulated by aquatic plants during the 10-day exposure. 

 

Aquatic plant 

species 

 

Heavy metal 

concentration 

 

Experimental 

solutions 

 

Pb content in 

plant 

(mg/kg DW) 

Cu content in plant 

(mg/kg DW) 

 

 

 

Salvinia 

natans 

3 mg/L Pb NaCl with 

Hoagland 

3.328 ±0.032 ND 

3 mg/L Pb NaCl without 

Hoagland 

3.247±0.020 ND 

2.8 mg/L Pb
 

0.8 mg/L Cu 

HNO3 with 

Hoagland 

2.852 ±0.013 2.641±0.014 

 3.5 mg/L Pb HCl with 

Hoagland 

1. 938±0.013 ND 

 

 

 

Vallisneria 

spiralis 

3 mg/L Pb NaCl with 

Hoagland 

3.107 ±0.034 ND 

3.5 mg/L Pb NaCl without 

Hoagland 

3.061±0.028 ND 

2.8 mg/L Pb
 

0.8 mg/L Cu
 

HNO3 with 

Hoagland 

2.640 ±0.034 2.409±0.048 

 3.5 mg/L Pb HCl with 

Hoagland 

1.935 ±0.048 ND 

 

 

 

Cabomba 

aquatica 

3 mgL Pb NaCl with 

Hoagland 

2.400 ±0.029 ND 

3 mg/L Pb NaCl without 

Hoagland 

1.965 ±0.183 ND 

2.8 mg/L Pb
 

0.8 mg/L Cu
 

HNO3 with 

Hoagland 

0.205 ±0.003 1.941±0.028 

 3.5 mg/L HCl with 

Hoagland 

1.780±0.005 ND 

 ND- non-detected concentration (mg/L) 

 DW- dry weight (mg/Kg) 
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