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Abstract

We prove the existence of at least two geometrically different periodic
solutions with winding number N for the forced relativistic pendulum.
The instability of a solution is also proved. The proof is topological
and based on the version of the Poincaré-Birkhoff theorem by Franks.
Moreover, with some restriction on the parameters, we prove the ex-
istence of twist dynamics.

1 Introduction and statement of the main re-

sults

We are concerned with the equation of the forced relativistic pendulum

(1)
d

dt

( ẋ√
1− ẋ2

)
+ a sinx = f(t),

where a is a positive real constant and f is a T -periodic real function with
mean value zero over a period.

Results on the existence of solutions to (1) and on their qualitative properties
have been recently given (by different methods) by various authors. We refer
to the works of Brezis-Mawhin [3] where it is proved the existence of a T -
periodic solution and of Bereanu-Torres [2] who provided the existence of a
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second solution not differing from the previous by a multiple of 2π. From
now on, multiplicity has to be understood in this way. These works use
very delicate variational techniques. As for topological methods we refer
to Bereanu-Jebelean-Mawhin [1] where it is proved the existence of two T -
periodic solutions using degree arguments and upper and lower solutions. In
this case, a restriction on the parameters a and T is required.

Another interesting topic concerning (1) is the question of the stability of
the solutions; in this direction, Chu-Lei-Zhang [5] found stable T -periodic
solutions for the related case of a relativistic pendulum with variable length
using KAM theory and Birkhoff normal form.

Our contribution in the present paper contains two main results (Theorem 1
and Theorem 3 below) which we describe in what follows.

Our first result deals with the existence of T -periodic solutions with winding
number N , i.e. solutions x(·) such that x(t + T ) = x(t) + 2Nπ,N ∈ Z for
all t ∈ R. Obviously, T -periodic solutions correspond to the case N = 0. We
first show (Proposition 1) that the condition

(2)
∣∣∣2Nπ
T

∣∣∣ < 1

is necessary for the existence of T -periodic solutions with winding number N ;
this agrees with physical intuition, which suggests (due to the bound arising
from the speed of light) that we cannot expect solutions for every value of
N and T . The necessary condition is also sufficient; in fact we prove

Theorem 1. For every N ∈ Z such that |2Nπ
T
| < 1 there exist at least two

solutions such that x(t + T ) = x(t) + 2Nπ,N ∈ Z for all t ∈ R. Moreover,
at least one of them is unstable.

The crucial fact is the passage from the Lagrangian to the Hamiltonian form
performed by the Legendre transform. This eliminates the singularity and
allows us to obtain solutions as fixed points of the Poincaré map associated
to the planar Hamiltonian system corresponding to (1). If we consider the
case N = 0 we obtain

(3) q̇ = Hp, ṗ = −Hq

where H =
√
p2 + 1 − a cos q − f(t)q. This transform has been used by

Mawhin in [16] for other purposes. More precisely, in Section 2 we first give
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a version of the Poincaré-Birkhoff theorem (Theorem 4) which is a variant of
the result by Franks [7]. Then, in Section 3 we show (Lemma 4 and Lemma
5) that under (2) the assumptions of Theorem 4 are satisfied. The proof of
Theorem 4.2 in [7] is developed by elaborated techniques from differential
geometry, while the proof of our Theorem 4 requires more elementary tech-
niques based on the application of a result of Le Calvez-Wang [4] (Theorem
5). The crucial notion for our argument is that of exact symplectic map (see
[14] for an introduction on exact symplectic maps). It is worth mentioning
that Franks gave in [7] applications of his abstract result to the equation of
the forced (non-relativistic) pendulum; anyway they need some clarification.
As for a comparison with this and other results on the (non-relativistic) pen-
dulum, we refer the interested reader to the end of this introductory section.
For the proof of the instability result in Theorem 1 we use a theorem by
Ortega [20], together with the Poincaré-Hopf Theorem [8].

Our second result provides a restriction on the parameter a which makes the
Poincaré map a ”twist map”, whose definition is recalled at the beginning of
Section 2.2. More precisely in Section 3.2 we prove, by a Sturm comparison
argument,

Theorem 2. If a < π2

T 2 , then the Poincaré map associated to system (3) is
twist. If a = π2/T 2 and f does not vanish identically the same result holds
true. Moreover the condition a ≤ π2

T 2 is optimal.

This important fact leads us to more information on the number of solutions
and their stability properties. To state these results, we adapt a definition
given in [22] saying that a planar first order system in the variables (q, p)
is degenerate if there exists a curve (qs(0), ps(0)) such that the application
s 7→ qs(0) is defined from R onto R, satisfies qs+2π(t) = qs(t) + 2π and
ps+2π(t) = ps(t), is bijective in [0, 2π) and continuous and for every s ∈ [0, 2π)
the point (qs(0), ps(0)) is the initial condition of a T -periodic solutions with
winding number N . Then we can state

Theorem 3. If 0 < a < π2/T 2 either the number of isolated T -periodic
solutions with winding number N is finite or we are in the degenerate case
and every degenerate solution is unstable. If a = π2/T 2 and f(t) is not the
trigonometric function a sin(2Nπ

T
t), the same result holds true.

The qualitative properties of the T -periodic solutions with winding number
N (whose existence is guaranteed by Theorem 1 and, in the context of twist
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maps, by Ortega’s result [21] recalled in Theorem 6) follow from the ap-
plication of two abstract facts for planar, exact symplectic and twist maps
(Corollary 2 and Corollary 3 in Section 2) which follow from Theorem 6 as
well. At this stage, it is important to recall and develop the ”intersection
property”.

We end this introductory section by a comparison between our results (and
their method of proof) and some (somehow analogue) results for the forced
non-relativistic pendulum equation

(4) ẍ+ a sinx = f(t)

with analogous hypothesis as in equation (1). It is well known that it has
at least two T -periodic solutions. The existence of one solution was proved
by Hamel [9] and rediscovered independently by Dancer [6] and Willem [23].
Then the existence of a second solution has been proved by Mawhin and
Willem [17] using mountain pass arguments. It is worth mentioning that
also Franks [7] gave his contribution using his version of the Poincaré-Birkhoff
theorem. More details on Franks’s result will be given at the end of section
3.1. We stress that our approach and results apply also in the case of equa-
tion (4): it is just a matter of computation, the arguments are completely
analogous. Therefore our results are an improvement also concerning the
non-relativistic case.

The paper is organised as follows. In Section 2 we state and prove the
abstract results for planar maps that we need in the sequel. More precisely,
in Section 2.1 we deal with the existence of two fixed points of a planar exact
symplectic map (Theorem 4); in Section 2.2 we focus on exact symplectic
and twist maps, recall the existence of two fixed points (Theorem 6) and
give some qualitative results on the number of such solutions (Corollary 2)
and of their index (Corollary 3). In Section 3 we prove, using the results of
Section 2, Theorem 1, Theorem 2 and Theorem 3. In Section 4 we give some
more detailed results in the particular case when equation (1) is autonomous.
This is done for a better understanding of the main results.

I want to thank Professor Rafael Ortega who introduced me to this problem.
Without his constant and patient supervision this work would have not been
possible. I am indebted to Professor Anna Capietto whose suggestions have
been very useful for the final layout.
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2 Two versions of the Poincaré-Birkhoff The-

orem

2.1 If the annulus is not invariant

The classical Poincaré-Birkhoff theorem gives two fixed points of an area
preserving homeomorphism of the annulus which satisfies a boundary twist
condition. In this section we will state a variation of this theorem due to
Franks [7] in which it is eliminated the invariance of the annulus despite an
increasing of regularity.
In a plane with coordinate (θ, r), consider, for 0 < a < b, the two strips

Ã = R× [−a, a] and B̃ = R× [−b, b] so that Ã ⊂ B̃, and the corresponding
annuli A = S1 × [−a, a] and B = S1 × [−b, b] so that A ⊂ B. Here we
understand S1 = R/2πZ.
We will deal with an embedding S̃ : Ã→ B̃ defined as follows:

S̃(θ, r) = (θ1, r1)

and {
θ1 = F (θ, r)
r1 = G(θ, r)

where F,G : R2 → R are functions of class C2 such that

F (θ + 2π, r) = F (θ, r) + 2π, G(θ + 2π, r) = G(θ, r).

By the definition of S̃ we are allowed to think S̃ as a lift of a map S : A→ B
defined on the cylinder. Moreover we will suppose that the map S is isotopic
to the inclusion i, i.e. there exists a C2 map f : A× [0, 1]→ B such that for
every t ∈ [0, 1], ft(x) = f(t, x) is a diffeomorphism from A onto its image,
f0 = S and f1 = i.

Now consider the standard volume form ω = dθ ∧ dr and remember that S̃
is area preserving if dθ ∧ dr = dθ1 ∧ dr1. Now, if we consider the 1-form

α = r1dθ1 − rdθ,

we have that S̃ is symplectic if and only if α is closed. But the strip is
contractible, so closed and exact forms coincide. Summing up we have that
S̃ is symplectic if and only if there exists V ∈ C3(Ã) such that

dV = r1dθ1 − rdθ.
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This equivalence is no longer true in the cylinder, in fact the primitive V
could be multi-valued. So we have the following

Definition 1. We say that S̃ is exact symplectic if there exists a function
V ∈ C3(Ã) such that

dV = r1dθ1 − rdθ and V (θ + 2π, r) = V (θ, r) ∀(θ, r).

Now we can state the slightly modified theorem by Franks. He dealt with a
map defined from an annulus into itself, we will need the case of a map defined
from a strip into itself. His proof deals with very sophisticated techniques
of differential geometry. We will reach the requested version translating his
proof in our concrete case of the cylinder so that it will be understandable
also for people who do not deal with those abstract tools.

Theorem 4. Consider a map S̃ : Ã → B̃ which is the lift of an exact
symplectic embedding S : A→ B isotopic to the inclusion such that S(A) ⊂
intB. Suppose that the following boundary twist condition is satisfied: there
exists δ > 0 such that

F (θ, a)− θ > δ, θ ∈ [0, 2π)

F (θ,−a)− θ < −δ, θ ∈ [0, 2π).

Then S̃ has at least two fixed points.

The strategy of the proof is to extend S̃ to an homeomorphism g̃ of the strip
B̃. So we can use the fact that the fixed points of the Poincaré-Birkhoff
theorem are in fact fixed points of the lift. More precisely we will use the
following result in [4]

Theorem 5. Let Ã be a strip and let A be its corresponding annulus. Con-
sider a map S̃ : Ã → Ã which is the lift of a homeomorphism S : A → A,
isotopic by homeomorphisms to the identity and area preserving. Suppose
that the following boundary twist condition is satisfied:

F (θ, a)− θ > 0, θ ∈ [0, 2π)

F (θ,−a)− θ < 0, θ ∈ [0, 2π).
(5)

Then S̃ has at least two fixed points.
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At the beginning we will work in the annuli A and B. We observe that in this
case is not possible to apply the isotopy extension theorem as stated in [18,
p.63] because B should be without boundary. Anyway, by the hypothesis
S(A) ⊂ intB it is possible to slightly modify it in order to extend S to g1 :
B → B so that g1 is isotopic to the identity and restricted to a neighbourhood
of ∂B is the identity (this is achieved in [11, Theorem 1.3, p.180]). Notice
that g1 does not preserve the area out of A.
Now choose a0 slightly smaller than a and define the following subsets that
we will use during the proof

Ã0 = R× [−a0, a0]
A0 = S1 × [−a0, a0].

In order to apply theorem 5 and get the result, let us prove the following two
lemmas:

Lemma 1. It is possible to alter g1 : B → B finding a diffeomorphism
g2 : B → B such that

• g2 is area preserving on B,

• g2|A0 = S,

• g2|∂B = Id.

Lemma 2. It is possible to alter the lift g̃2 : B̃ → B̃ finding g̃ : B̃ → B̃ such
that

• g̃ is area preserving on B̃,

• g̃ has no fixed points out of Ã,

• g̃ satisfy the boundary twist condition (5),

• g̃ = g̃2 on Ã.

So theorem 4 will follow from the application of theorem 5 to g̃.

Proof of Lemma 1. To prove this lemma we will use Moser’s ideas, presented
in [19] in a more general framework. Let us break the proof in several steps.
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Step 1. Let B+ = S1 × [a0, b] ⊂ B. It results

µ(B+) =

∫
B+

det g′1(θ, r)dθdr.

Let g1(θ, r) = (θ1, r1). The 1-form r1dθ1 − rdθ is exact symplectic on A so
its integral over any closed path in A must vanish, in particular we have∫

S1×{a0}
rdθ =

∫
g1(S1×{a0})

rdθ.

Moreover, because g1 is the identity over S1 × {b} we have∫
S1×{b}

rdθ =

∫
g1(S1×{b})

rdθ

so that ∫
∂B+

rdθ =

∫
∂B+

r1dθ1.

Notice that θ1 = θ1(θ, r) and r1 = r1(θ, r) so that dθ1 = ∂θ1
∂θ
dθ + ∂θ1

∂r
dr.

Finally, by Green’s formula,∫
B+

dθdr =

∫
B+

det g′1(θ, r)dθdr

that implies our claim.

Step 2. Define Ω(θ, r) = 1 − det g′1(θ, r). Then there exist two C1

functions α(θ, r) and β(θ, r) 2π-periodic in θ that vanish on ∂B and such
that Ω = ∂β

∂r
− ∂α

∂θ
.

Consider the two functions

α(θ, r) = −
∫ θ

0

[Ω(Θ, r)− Ω̄(r)]dΘ and β(θ, r) =

∫ r

a0

Ω̄(ρ)dρ.

with Ω̄(r) = 1
2π

∫ 2π

0
Ω(θ, r)dθ. First of all they are of class C1 because g1 is

of class C2.
Notice that from Step 1 we have that

(6)

∫ b

a0

∫ 2π

0

Ω(θ, r)dθdr = 0,
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and, remembering that g1 is the identity on a neighbourhood of ∂B, it results

(7) Ω(θ, b) = 0

Moreover, an exact symplectic map is also area preserving so the determinant
of the Jacobian is 1. It follows that

(8) Ω(θ, r) = 0 on S1 × [a0, a].

By computation we get Ω = ∂β
∂r
− ∂α

∂θ
on B+. The fact that α and β are

2π-periodic with respect to θ is trivial for β, while comes from (6) for α.
Moreover, remembering (7) we have

α(θ, b) = −
∫ θ

0

[Ω(Θ, b)− Ω̄(b)]dΘ = 0

and by (6)

β(θ, b) =
1

2π

∫ b

a0

∫ 2π

0

Ω(θ, r)dθ = 0

and, by (8), α and β vanish on S1 × [a0, a]. We can do the same on
S1 × [−b0,−a0] and find α(θ, r) and β(θ, r) with the same property. Finally
we can extend these functions to all B setting α(θ, r) = 0 and β(θ, r) = 0 on
A0 and the properties on S1 × [a0, a] guarantee the regularity.

Step 3. Consider the function, for t ∈ [0, 1], Ωt(θ, r) = (1 − t) +
t det g′1(θ, r) and define the vector field

X1(t, θ, r) =
1

Ωt(θ, r)
α(θ, r), X2(t, θ, r) = − 1

Ωt(θ, r)
β(θ, r)

and the associated differential equation

θ̇ = X1(t, θ, r), ṙ = X2(t, θ, r)

with solution φt = (Θt, Rt) passing through (θ, r) at time t = 0. The solution
is unique because X1 and X2 are of class C1 (this justifies the hypothesis of
S being C2). We claim that

Ωt(Θt, Rt) det(
∂(Θt, Rt)

∂(θ, r)
) = 1, t ∈ [0, 1].
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Remember that a map isotopic to the identity is also orientation preserving,
while the converse is false in the cylinder (as a counterexample take the
map (θ, r) 7→ (−θ,−r)). Hence we have that det g′1 > 0 so that the vector
field is well defined. Notice that if (θ, r) ∈ B the solution does not leave
B because the boundary circles of B are continua of fixed points: it implies
that φt(B) = B. Using Liouville formula for the linearized equation we have,
for every t ∈ [0, 1]

Ωt(Θt, Rt) det(
∂(Θt, Rt)

∂(θ, r)
)

= Ωt(Θt, Rt) exp{
∫ t

0

tr(
∂X1

∂θ
+
∂X2

∂r
)(s,Θs, Rs)ds}

= Ωt(Θt, Rt) exp{
∫ t

0

(− 1

Ω2
t

α
∂Ωt

∂θ
+

1

Ω2
t

β
∂Ωt

∂r
− 1

Ωt

∂Ωt

∂t
)ds}

where in the last equality we used the properties of Ω and the fact that
∂Ωt/∂t = −Ω.
So, we have to prove that

Ωt(Θt, Rt) exp{
∫ t

0

(− 1

Ω2
t

α
∂Ωt

∂θ
+

1

Ω2
t

β
∂Ωt

∂r
− 1

Ωt

∂Ωt

∂t
)ds} = 1.

Passing to the logarithm and differentiating with respect to t this equality is
true if and only if

− 1

Ω2
t

α
∂Ωt

∂θ
+

1

Ω2
t

β
∂Ωt

∂r
− 1

Ωt

∂Ωt

∂t
= − 1

Ωt

[
∂Ωt

∂θ
Θ̇t +

∂Ωt

∂r
Ṙt +

∂Ωt

∂t
]

that is the case remembering the definition of Θt and Rt.

Step 4. The function g2 = g1 ◦ φ1 satisfies the lemma.
Indeed, by the previous step

det g′2 = det(g′1 ◦ φ1) detφ′1 = Ω1(Θ1, R1) det(
∂(Θ1, R1)

∂(θ, r)
) = 1

that means that is area preserving. Moreover, by the definition of the vector
field (X1, X2) we have φ1|∂B = Id and φ1|A0 = Id that imply g2|∂B = Id and
g2|A0 = S.
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With the same notation let us conclude with the proof of Lemma 2. This
part does not involve differential forms so we report the version by Franks.

Proof of Lemma 2. Let g̃2 : B̃ → B̃ be the lift (fixed by the boundary twist
condition) of g2 that extends f̃ : Ã→ B̃. Now consider

M0 := sup
x∈B̃

d(g̃2(x), x)

where d is the distance in R2 and fix M > M0. So we have that M is greater
than the distance that a point in B̃ could be moved by g̃2. Now consider the
strip Ã+ = R × [a0, a0 + ε] ⊂ Ã such that by the boundary twist condition
and continuity we have that for all x ∈ Ã+

(9) P (g̃2(x))− P (x) > δ

where P (x1, x2) = x1 is the projection on the first component.
Define h̃ : B̃ → B̃ by

h̃(θ, r) = (θ +Mρ(r), r)

where ρ(r) is smooth, monotone such that ρ(r) = 0 for r < a0 and ρ(r) = 1
for r > a0 + ε. Notice that h̃ is area preserving, it is the identity for r < a0,
it is a translation by M if r > a0 + ε, if x ∈ Ã+ then h̃(x) ∈ Ã+ and
P (h̃(x)) > P (x).
Finally consider

g̃3 = g̃2 ◦ h̃.
For x ∈ Ã+ we have, using (9)

P (g̃3(x))− P (x) = P (g̃2(h̃(x)))− P (x) > δ + P (h̃(x))− P (x) > δ > 0

which means that we do not have fixed points in Ã+. Moreover, if we take
x = (θ, r) ∈ R × [a0 + ε, b] then g̃3(x) = g̃2(h̃(x)) = g̃2(θ + M, r) and by
definition of M that means that we do not have fixed points in R× [a0 + ε, b]
and the boundary twist condition is satisfied on R× {b}.
To conclude we consider Ã− = R × [−a0 − ε,−a0] and define analogously
h̃′(θ, r) = (θ−Mρ(r), r) with similar properties of h̃. Defining g̃ = g̃3 ◦ h̃′ we
get also the complete boundary twist condition.

Let us conclude with a remark on the stability of such fixed points. Re-
member that a fixed point p of a one-to-one continuous map S : U ⊂ RN →
RN is said to be stable in the sense of Liapunov if for every neighbourhood
V of p there exists another neighbourhood W ⊂ V such that, for each n > 0,
Sn(W ) is well defined and Sn(W ) ⊂ V . We have:

11



Corollary 1. If S is analytic, at least one of the fixed points coming from
theorem 4 is unstable.

Proof. For the special case of dimension two, there exists a relation between
the stability of a fixed point and its fixed point index. In fact it was proved
in [20] that if a continuous one-to-one map S which is also orientation and
area preserving has a stable fixed point p then either S = Id in some neigh-
bourhood of p or there exists a sequence of Jordan curves {Γn} converging
to p such that, for each n,

Γn ∩ Fix(S) = ∅, i(S, Γ̂n) = 1

where Γ̂n is the bounded component of R2 \ Γn.
The set of fixed points can be described by the equation

(F (θ, r)− θ)2 + (G(θ, r)− r)2 = 0

This is an analytic subset of the plane, indeed is the set of the zeros of an
analytic function. The local structure of these sets is described in [12]: they
can contain arcs, isolated points and points with a finite number of branches
emanating from them. In the cases of a non isolated fixed point we can not
find a sequence of Jordan curves converging to the point and not crossing
the set, so we have instability. In the case of isolated fixed points, remember
that the Euler characteristic of the strip is null, so, using the Poincaré-Hopf
index formula for manifolds with boundary [8, p.447 Theorem 3.1 and p.233
Proposition 4.5], at least one fixed point does not have positive index and so
it is unstable.

2.2 The twist condition

In this section we will consider the case in which the map S satisfies a twist
condition. More precisely, using the same notation of the previous section,
consider a map S : Ω → R where Ω = {(θ, r) ∈ R2 : a < r < ψ(θ)}, a is a
fixed constant and ψ : R →]a,+∞] is a 2π-periodic, lower semi-continuous
function.

Definition 2. The defined above map S satisfies the twist condition if
∂θ1 /∂r > 0. If the map is defined from an annulus into itself, we say that
satisfies the twist condition if the lift satisfies the same condition.

12



Note that the just introduced twist condition and the boundary twist condi-
tion used in Theorem 4 and 5 are independent. Indeed, consider the annulus
A = S1 × [−1, 1]: the map {

θ1 = θ + er

r1 = r

satisfies the twist condition but not the boundary twist one; the map{
θ1 = θ + r2 + 3

2
r

r1 = r

satisfies the boundary twist condition but not the twist one. Moreover the
two conditions coexist in the map{

θ1 = θ + r
r1 = r.

The twist condition is important in itself because it is fundamental for the
application of the Aubry-Mather theory. In our case it will lead us to more
results on the equation of the forced relativistic pendulum.
It can be proved [21] that

Theorem 6. Assume that S is exact symplectic and satisfies the twist con-
dition. Fix an integer N and assume that for each θ ∈ R there exists
rθ ∈]a, ψ(θ)[ with

(10) F (θ, a) < θ + 2Nπ < F (θ, rθ).

Then the system

(11)

{
F (θ, r) = θ + 2Nπ
G(θ, r) = r,

with θ ∈ [0, 2π[, (θ, r) ∈ Ω, has at least two solutions.

We will explore some consequences of this theorem but let us first point
out some remarks on the concept of intersection property.
Consider the cylinder C = S1 × R with the usual covering map Π(θ, r) =
(θ, r); by the periodicity of S, we can define a new map, also denoted by
S, mapping Π(Ω) into C. Consider also a non contractible Jordan curve
Γ in C with positive orientation. The curve Γ divides C in two connected
components and let us call R−(Γ) the lower one and R+(Γ) the other one;
similarly the curve Γ1 = S(Γ) divides C in two connected components and
let us call R−(Γ1) and R+(Γ1). We can give the following
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Definition 3. Using the notations given above, we say that a map S : C →
C has the intersection property if for every non-contractible Jordan curve
Γ ⊂ C that is the graph of a function,

Γ ∩ S(Γ) 6= ∅.

A map S : C → C has the strong intersection property if it has the intersec-
tion property and for every non-contractible Jordan curve Γ ⊂ C that is the
graph of a function, either Γ = S(Γ) or

S(Γ) ∩R+(Γ) 6= ∅ and S(Γ) ∩R−(Γ) 6= ∅.

In the proof of theorem 6 it was proved that if a map S : C → C
is exact symplectic and preserves the orientation, then it has the strong
intersection property. Note that the strong intersection property implies
the intersection property, while the converse is false. As a counterexample
consider the following map of the cylinder in itself:{

θ1 = θ
r1 = r + ψ(θ)

where ψ(θ) is a non-negative continuous function such that exists θ∗ such
that ψ(θ∗) = 0.
Moreover we have that

Lemma 3. If a map S : C → C has the strong intersection property, then
for every non-contractible Jordan curve Γ ⊂ C that is the graph of a function
we have

#{p ∈ Γ ∩ S(Γ)} ≥ 2.

Proof. The case Γ = S(Γ) is trivial. In the other case the strong intersection
property implies that there exist two points p+ ∈ R+(Γ) and p− ∈ R−(Γ)
that are connected by an arc γ ⊂ S(Γ). But S(Γ) is a Jordan curve so there
must exists another arc γ∗ ⊂ S(Γ) connecting p− to p+ and crossing Γ in a
point p∗ 6= p.

Now we are ready to prove two corollaries of theorem 6

Corollary 2. If in theorem 6 we require also that S(θ, r) is analytic then the
set of the solutions of system (11) is either finite or the graph of an analytic
2π-periodic function.
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Proof. By (10) and the twist condition, we get that for each θ the equation

(12) F (θ, r) = θ + 2Nπ

has a unique solution r := φ(θ). By the uniqueness we have that φ is
2π-periodic. Moreover, because of the twist condition we can apply, for a
fixed θ, the analytic version of the implicit function theorem and get an
open neighbourhood Uθ and an analytic function φ̃ : Uθ → R such that
F (θ, φ̃(θ)) = θ + 2Nπ on Uθ. But, by uniqueness, φ(θ) = φ̃(θ) on Uθ. Re-
peating the argument for each θ, we get that φ is also analytic. So, S(θ, φ(θ))
is the graph of an analytic function in the cylinder: let us call it φ1(θ). This
comes from the analyticity and the periodicity of S and the fact that φ(θ)
satisfies equation (12). So, by Lemma 3, φ and φ1 must intersect in at least
two points of the cylinder that are the solutions of system (11) when elevated.
Moreover, from the theory of analytic functions, we know that either the set
{θ ∈ [0, 2π] : φ(θ) = φ1(θ)} is finite or φ(θ) = φ1(θ) ∀θ.

Corollary 3. Suppose that in theorem 6, condition (10) is satisfied for some
N ∈ Z. Let (θ̂, r̂) be an isolated solution of system (11) and define the map
T (θ, r) = (θ + 2π, r). Then i(T−NS, (θ̂, r̂)) is either −1 or 0 or 1.

Proof. First of all notice that i(T−NS, (θ̂, r̂)) is well defined because (θ̂, r̂) is
an isolated fixed point of T−NS. To compute the index remember that

i(T−NS, (θ̂, r̂)) = deg(T−NS − Id,Bδ(θ̂, r̂))

where deg indicates the Brouwer degree and δ could be chosen small enough
by the excision property. So we will deal with the degree of the map

(T−NS − Id)(θ, r) = (F (θ, r)− 2Nπ − θ,G(θ, r)− r)
:= (F̃ (θ, r), G̃(θ, r)) := S̃(θ, r)

and to compute it we will use a technique by Krasnosel’skii [13] that allows
to reduce the dimension.
By the hypothesis, the point (θ̂, r̂) is an isolated zero of F̃ (θ, r) and by

the twist condition ∂F̃
∂r

= ∂F
∂r

> 0. So we can apply the implicit function

theorem to the equation F̃ (θ, r) = 0 and find a C1 function φ(θ) defined on
a neighbourhood of θ̂ such that F̃ (θ, φ(θ)) = 0 and φ(θ̂) = r̂. Hence it is well
defined the function

Φ(θ) = G̃(θ, φ(θ))
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which has θ̂ as an isolated zero. Now consider the homotopy

H((θ, r), λ) =

{
λF̃ (θ, r) + (1− λ)(r − φ(θ))

λG̃(θ, r) + (1− λ)Φ(θ).

We claim that it is admissible i.e. (θ̂, r̂) is an isolated zero for every λ. Indeed
consider the system

(13)

{
λF̃ (θ, r) + (1− λ)(r − φ(θ)) = 0

λG̃(θ, r) + (1− λ)Φ(θ) = 0.

Because of the twist condition, if we define F(θ, r, λ) = λF̃ (θ, r)+(1−λ)(r−
φ(θ)), we have

∂F
∂r

(θ̂, r̂, λ) = λ
∂F̃

∂r
(θ̂, r̂) + (1− λ) > 0

and so we can apply the implicit function theorem to solve the first equation
in a neighbourhood of θ̂ and by the uniqueness the only solution is r = φ(θ).
Substituting it in the second equation we get, because of the definition of
Φ(θ),

λG̃(θ, φ(θ)) + (1− λ)Φ(θ) = 0⇒ λΦ(θ) + (1− λ)Φ(θ) = 0⇒ Φ(θ) = 0

that, remember, has θ̂ as an isolated solution. So (θ̂, r̂) is an isolated solution
of system (13) and we can choose δ small enough such that (θ̂, r̂) is the only
solution in Bδ(θ̂, r̂). So we are led to the computation of the degree of the
map

(θ, r) 7−→ (r − φ(θ),Φ(θ))

that, if Φ′(θ̂) 6= 0, can be easily computed by linearization.
However it could happen that Φ′(θ̂) = 0. So consider the other homotopy

H((θ, r)λ) =

{
λF̃ (θ̂, r) + (1− λ)(r − φ(θ))
Φ(θ)

where θ̂ is fixed. To prove that it is admissible, consider the system{
λF̃ (θ̂, r) + (1− λ)(r − φ(θ)) = 0
Φ(θ) = 0.
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By the definition of Φ(θ) we have that θ̂ is an isolated solution of the second
equation that, substituted in the first one, gives λF̃ (θ̂, r)+(1−λ)(r− r̂) = 0.
We have that r̂ is a solution and is also the only one, because by the twist
condition we have

∂

∂r
[λF̃ (θ̂, r) + (1− λ)(r − r̂)] > 0.

So (θ̂, r̂) is an isolated solution of the system, the homotopy is admissible
and we can compute the degree of the function

W (θ, r) = (F̃ (θ̂, r),Φ(θ)).

To use the factorization property of the degree consider the function L(x, y) =
(y, x). We have

deg(L◦W,Bδ(θ̂, r̂)) = deg(L,Bδ(0, 0)) deg(W,Bδ(θ̂, r̂)) = − deg(W,Bδ(θ̂, r̂)).

Now, by the factorization property

deg(W,Bδ(θ̂, r̂)) = − deg(F̃ , Ir̂) deg(Φ, Iθ̂)

=− sign{∂F
∂r

(θ̂, r̂)} deg(Φ, Iθ̂) = − deg(Φ, Iθ̂).

The function Φ is defined in dimension 1 so its degree can be either 0 or 1 or
−1. Finally i(T−NS, (θ̂, r̂)) can be either 0 or 1 or −1.

Remark 1. An intuitive idea of when these cases could occur is given by
figure 1.
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(a) i = +1, Φ′(θ̂) 6= 0 (b) i = +1, Φ′(θ̂) = 0

(c) i = 0, Φ′(θ̂) = 0 (d) i = −1, Φ′(θ̂) = 0

(e) i = −1, Φ′(θ̂) 6= 0

Figure 1: Possibilities of intersections
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3 Applications to the Poincaré map induced

by a forced relativistic pendulum

3.1 Proof of theorem 1

We are looking for T -periodic solutions with winding number N of the equa-
tion

(14)
d

dt

(
ẋ√

1− ẋ2

)
+ a sinx = f(t),

under the hypothesis previously stated in the introduction.
First of all notice that physical intuition suggests that it should not be pos-
sible to have such solutions for every N and T , because of the bound given
by the speed of light. This is a necessary condition that holds for a larger
class of equations, namely:

Proposition 1. Let x(t) be a T -periodic solution with winding number N of

(15)
d

dt

(
ẋ√

1− ẋ2

)
= F (t, x)

where F (t, x) is continuous and T -periodic in t.
Then

(16)

∣∣∣∣2NπT
∣∣∣∣ < 1.

Proof. By Lagrange theorem we get

|2Nπ| = |x(t+ T )− x(t)| = |ẋ(c)T |

for some c ∈ (t, t + T ). But the domain of equation (15) is |ẋ(t)| < 1 for all
t, so

|2Nπ| < T.

In this section we will see why the relativistic condition (16) is also sufficient
to have T -periodic solutions with winding number N . The proof will be an
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application of theorem 4 considering S̃ the Poincaré map.

First of all, let us perform the change of variables

(17) y(t) = x(t)− 2Nπ

T
t.

Notice that in this way y(t+T ) = y(t) and T -periodic solutions with winding
number N of (14) correspond to classical T -periodic solution of

(18)
d

dt

 ẏ + 2Nπ
T√

1− (ẏ + 2Nπ
T

)2

+ a sin

(
y +

2Nπ

T
t

)
= f(t).

We will find T -periodic solutions of equation (18) as fixed points of the
Poincaré map.
Equation (18) can be seen as the Euler-Lagrange equation coming from the
Lagrangian

L(y, ẏ, t) = −
√

1− (ẏ +
2Nπ

T
)2 + a cos

(
y +

2Nπ

T
t

)
+ f(t)y

and presents singularities. On the other hand, if we perform the change of
variables given by the Legendre Transform

(19)

{
q = y

p = ∂L
∂ẏ

=
ẏ+ 2Nπ

T√
1−(ẏ+ 2Nπ

T
)2
,

we get the Hamiltonian

H(q, p, t) = [pẏ−L(q, ẋ, t)]ẏ=ẏ(p) =
√
p2 + 1− 2Nπ

T
p−a cos(q+

2Nπ

T
t)−f(t)q

and the new Hamiltonian system

(20)

{
q̇ = p√

1+p2
− 2Nπ

T

ṗ = −a sin
(
q + 2Nπ

T
t
)

+ f(t).

that has no singularities and has solutions globally defined.
Now let S(q0, p0) = (Q(q0, p0), P (q0, p0)) = (q(T, q0, p0), p(T, q0, p0)) be the
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Poincaré map associated to system (20) that is well defined because of the
boundedness of the second term. First of all notice that the Poincaré map is
isotopic to the inclusion. The isotopy is simply given by the flow φ, in fact
we have the isotopy

φ(tT, q0, p0) t ∈ [0, 1].

Notice that this isotopy is valid also in the cylinder because by periodicity
we have

φ(t, q0 + 2π, p0) = φ(t, q0, p0) + (2π, 0).

Moreover, inspired by [14] we can prove

Lemma 4. The Poincaré map S is exact symplectic in the cylinder.

Proof. Let us call θ = q0, r = p0 and K = 2Nπ
T

. Consider the function

V (θ, r) =

∫ T

0

[p(
p√

1 + p2
−K)−H(q, p, t)]dt

=

∫ T

0

[−

√
1

1 + p2(t, θ, r)
+ a cos(q(t, θ, r) +Kt) + f(t)q(t, θ, r)]dt.

First of all, it follows from the periodicity of (18) and the change of variables
(19) that q(t, θ+ 2π, r) = q(t, θ, r) + 2π and p(t, θ+ 2π, r) = p(t, θ, r). Hence
we have

V (θ + 2π, r) = V (θ, r)

using the hypothesis of the null mean value of f . Now let us compute the
differential dV . We have

Vθ =

∫ T

0

[
p

(1 + p2)3/2
∂p

∂θ
+ (−a sin(q +Kt) + f(t))

∂q

∂θ
]dt

=

∫ T

0

[
p

(1 + p2)3/2
∂p

∂θ
+ ṗ

∂q

∂θ
]dt

(21)

using the second equation in (20). Now, integrating by parts and using the
first equation in (20) we get∫ T

0

ṗ
∂q

∂θ
dt = [p

∂q

∂θ
]T0 −

∫ T

0

p
∂q̇

∂θ
dt = [p

∂q

∂θ
]T0 −

∫ T

0

p

(1 + p2)3/2
∂p

∂θ
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that, substituted in (21) gives

Vθ = p(T )
∂q

∂θ
(T )− p(0)

∂q

∂θ
(0).

Analogously we can get

Vr = p(T )
∂q

∂r
(T )− p(0)

∂q

∂r
(0).

Hence dV = p1dq1 − pdq, that means that the function V will satisfy the
thesis.

Finally, the relativistic effect will give also the boundary twist condition:

Lemma 5. If |2Nπ
T
| < 1 then there exists p̃ > 0 and δ > 0 such that

Q(q,−p̃)− q < −δ and Q(q, p̃)− q > δ.

Proof. Let us prove the first inequality, being the second similar. Let us call
K := 2Nπ

T
, |K| < 1 and consider the function, coming from system (20),

A(p) =
p√
p2 + 1

.

We have that A(p) is an odd increasing function such that A(0) = 0 and
limp→±∞A(p) = ±1. Since |K| < 1, by continuity, we can find p̂ > 0 such
that {

A(p) > K for p > p̂
A(p) < K for p < −p̂.

Now, integrating the second equation of (20) we get, for t ∈ [0, T ]

p(t) = p0 −
∫ t

0

a sin(q(s) +K)ds+

∫ t

0

f(s)ds ≤ p0 + t(a+ ‖f‖∞)

and so we can find p̃ > 0 large enough so that if p0 < −p̃ then p(t) < −p̂ for
t ∈ [0, T ]. It means

q̇(t) =
p(t)√

1 + p2(t)
− 2Nπ

T
< 0 t ∈ [0, T ]

that is q(t) is decreasing if t ∈ [0, T ] so,

Q(q0,−p̃) = q(T, q0,−p̃) < q(0, q0,−p̃) = q0.

Now a standard compactness argument concludes the proof.
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Now it is straightforward the application of theorem 4 choosing the strip
Ã = R × [−p̃, p̃] and the fact that solutions of system (20) are globally
defined implies that we can find a larger strip B̃ such that S(Ã) ⊂ intB̃.
Finally we have that the right-hand side of (20) is analytic in (q, p) then, by
analytic dependence on initial conditions, also the Poincaré map is analytic.
Notice that we do not need the analyticity of f [15, p.44]. So, using corollary
1 we get the instability of one solution.
Then theorem 1 is proved.

Remark 2. Similar results on the classical pendulum have been obtained
by Franks in [7, Proposition 5.1]. He proved the existence of fixed points
for the Poincaré map using his version of the Poincaré-Birkhoff theorem
and affirmed that they should have positive or negative index. This result
needs some clarification. In fact there is another possibility: there could
be only a continuum of fixed points and the fixed point index could not be
defined. Consider the equation of the classical pendulum: the existence or
not of forcing terms f of null mean value such that the periodic solutions
are represented only by a continuum in still an open problem. Anyway, as a
related example consider the equation

ÿ + a sin(y +
2π

T
t) = 0

where the potential depends on time. Its T -periodic solutions correspond, via
the change of variables x = y + 2π

T
t to solutions x(t) of

ẍ+ a sinx = 0

such that x(t+T ) = x(t)+2π. These solutions forms the graph of a function
in the phase space, so it is impossible to define the index.

3.2 Proof of theorem 2 and consequences

We will prove the result for the Poincaré map of system (20). In the case
a = π2/T 2 we will have to prevent the function f from being the trigono-
metric function a sin(2Nπ

T
t).

According to the previous section let us call S(q0, p0) = (Q(q0, p0), P (q0, p0)) =

(q(T, q0, p0), p(T, q0, p0)) the Poincaré map associated to system (20) in which
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we suppose a ≤ π2/T 2. We have to prove that ∂q
∂p0

(T, q0, p0) > 0.
If we call

x(t) =
∂q

∂p0
(t, q0, p0) y(t) =

∂p

∂p0
(t, q0, p0)

we know from the elementary theory of ODEs that the vector (x(t), y(t))
satisfies the variational equation

ẋ = 1
(1+p2(t,q0,p0))3/2

y

ẏ = −a cos(q(t, q0, p0) + 2Nπ
T
t)x

x(0) = 0
y(0) = 1

that is equivalent to the problem

(22)


d
dt

(ẋ(1 + p2(t, q0, p0))
3/2) + a cos(q(t, q0, p0) + 2Nπ

T
t)x = 0

x(0) = 0
ẋ(0) = ( 1

p20+1
)3/2.

Now consider the equation

(23) z̈ +
π2

T 2
z = 0

and first suppose that a < π2/T 2. In this case we have that

(1 + p(t)2)3/2 ≥ 1 and a cos(q +
2Nπ

T
t) ≤ a < π2/T 2

then (23) is a strict Sturm majorant of (22). So the Sturm theory and the
fact that the function z(t) = sin(t π

T
) is a solution of (23), prove that x(T ) > 0

and the thesis will follow.
Now consider the case a = π2/T 2. First of all the hypothesis f(t) 6=
a sin(2Nπ

T
t) prevents q = 2kπ from being a solution. This means that there

exists an open subset of positive measure of [0, T ] on which q 6= 2kπ and so∫ T

0

π2

T 2
cos q(t)dt <

∫ T

0

π2

T 2
dt.

In this case we can use a generalization of the classical Sturm separation
theorem. It can be achieved adapting the classical proof (cf. [10]) to our
framework. Consider the argumentum θ1 and θ2 respectively of (22) and
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(23) coming from the Prufer change of variables; then we can conclude
that θ1(T ) > θ2(T ). Remembering that in this framework we have that
x(t̃) = 0 ⇔ θ(t̃) = kπ for some k ∈ Z and we are rotating in the clockwise
sense, we can conclude using the same argumentation of the previous case
translated into the phase-space (x, pẋ). The proof of theorem 2 is complete.

Remark 3. The condition a ≤ π2

T 2 is optimal. Indeed suppose a > π2

T 2 and
consider the autonomous system{

q̇ = p√
1+p2
− 2Nπ

T

ṗ = −a sin(q + 2Nπ
T
t).

Notice that (p = 0, q = −2Nπ
T
t) is an obvious solution. As before consider the

variational equation

d

dt
(ẋ(1 + p2(t, q0, p0))

3/2) + a cos(q(t, q0, p0) +
2Nπ

T
t)x = 0.

Notice that evaluated in the above solution it is nothing but

ẍ+ ax = 0.

Using Sturm comparison with ÿ + π2

T 2y = 0 we can conclude analogously as
before that x(T ) < 0: it means that we do not have the twist condition.
Finally note that in the case a = π2

T 2 we have x(T ) = 0 and again the twist
condition fails.

The fact that the Poincaré map satisfies the twist condition allows us to
enter in the huge chapter of twist maps. In particular we will get some more
results on equation (1). To state it remember that a T -periodic solution with
winding number N is said to be isolated if there exists δ > 0 such that every
solution (q(t), p(t)) satisfying

0 < |q(0)− q̂(0)|+ |p(0)− p̂(0)| < δ

is not T -periodic with winding number N .
We have

Theorem 7. If 0 < a < π2/T 2 either the number of isolated T -periodic
solutions with winding number N is finite or we are in the degenerate case
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and every degenerate solution is unstable. Moreover, in the first situation,
the index of such solution is either −1 or 0 or 1. If we consider the case
a = π2/T 2 and we add the hypothesis that f(t) is not the trigonometric
function a sin(2Nπ

T
t), we get the same results.

Proof. By the twist condition we can apply the results of section 2.2. In
particular theorem 6 runs with Ω = {(q, p) ∈ R2 : −p̃ < p < p̃} where p̃
comes from Lemma 5. Indeed, if we take rθ = p̃− ε with ε sufficiently small,
condition (10) holds with N = 0 by continuous dependence, and from the
previous section we have that the Poincaré map is exact symplectic. This is
another way to find two periodic solutions. Notice that it is a weaker result
because we need the restriction on the parameter a.
Anyway the Poincaré map is analytic, so, by corollary 2, we have that fixed
points either are isolated or form the graph of an analytic 2π-periodic func-
tion. Moreover by corollary 3 we have the informations on the degree.
The translation of these results from the Poincaré map to the differential
equation gives informations on the periodic solutions of system (20) and,
by the change of variables (17) we get analogous results on the T -periodic
solutions with winding number N of system (14).

4 The autonomous case

Finally, consider the case f = 0, i.e. the autonomous equation

(24)
d

dt

(
ẋ√

1− ẋ2

)
+ a sinx = 0

with a ≤ π2

T 2 , that can be treated with a phase portrait analysis. Let us
consider the case T = 2π, so that a ≤ 1/4.
First of all it is easily seen that the points (kπ, 0), k ∈ Z are constant solutions

in the phase space (x, ẋ). This analysis is quite simple because the energy

(25) E(x, ẋ) =
1√

1− ẋ2
− a cosx+ a

is a first integral and we suddenly reach the conditions

(26) E ≥ 1 and − 1 < ẋ < 1.
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Remembering that a ≤ 1/4 we get the phase portrait in figure 4 where we
have the constant solution (0, 0) for E = 1, periodic orbits for 1 < E < 1+2a,
the heteroclinic orbits for E = 1 + 2a and the unbounded solutions for
E > 1 + 2a. Moreover, from the first integral (25) we can see the velocity as
a function of the time and energy and ẋ → ±1 as E → +∞ depending on
the sign of ẋ(0).

Figure 2: Phase portrait

Now we turn to the study of the period of the periodic orbits, in particular,
in order to complete theorem 1 we will study the number of 2π-periodic orbits.

Proposition 2. The only 2π-periodic solutions of equation (24) are the con-
stant ones (kπ, 0) with k ∈ Z.

Proof. We will prove that the period of every orbit (except for the constants
one) is strictly greater than 2π. To do so, by the symmetries of the phase
portrait, it is enough to prove that for every non-constant periodic orbit,
ẋ(π, x0, 0) > 0 with x0 < 0.
Let us write the solution x(t, E) such that x(0, E) = arccos(1 − E/a) and
ẋ(0, E) = 0 and compute ∂ẋ

∂E
(π,E). Remembering (26) and a ≤ 1/4 we have

∂ẋ

∂E
> 0 for E > 1.

Notice that the point (0, 0) is a strict minimum of E(x0, ẋ0) an so

ẋ(π,E(0, 0)) < ẋ(π,E(x0, ẋ0)) ∀(x0, ẋ0) 6= (0, 0).
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Now, remembering that E is constant on the solutions, we have that for every
initial condition (x0, ẋ0) such that 1 < E(x0, ẋ0) < 1 + 2a there exists x̂ < 0
such that E(x0, ẋ0) = E(x̂, 0) and ẋ(π,E(x̂, 0)) > ẋ(π,E(0, 0)) = 0.

Looking for T -periodic solutions with winding number N we can do the
following. By the phase portrait analysis we got that for E > 1 + 2a the
solution is unbounded and the orbit in the phase plane is the graph of a
function. In this case we will show

Proposition 3. Fix |N | ≥ 1 and T ≥ 2π such that 2Nπ
T

< 1. Then there
exists exactly one value of the energy E > 1 + 2a such that

x(T + t, E) = x(t, E) + 2Nπ.

Proof. Let us prove in the case t = 0, x(0) = 0 and N > 0.
Remembering the energy (25) we can define a function TN(E) such that
x(TN(E)) = 2Nπ (i.e. TN(E) is the time needed by a solution starting from
0 at t = 0 to reach 2Nπ), namely

TN(E) =

∫ 2Nπ

0

dx√
1− 1

(E+a cosx−a)2

.

Notice that it is continuous, monotone decreasing in E and

lim
E→1+2a

TN(E) = +∞, lim
E→+∞

TN(E) = 2Nπ.

The proposition is proved if we can find E > 1 + 2a such that TN(E) = T .
It is automatic using the properties just mentioned and the fact that by
hypothesis T > 2Nπ.
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