$$
\begin{aligned}
& \text { to be sent to } \\
& \text { Annales de l'Institut Henri Poincare C: Analyse Non Lineaire } \\
& \text { SARD PROPERTY FOR THE ENDPOINT MAP ON SOME } \\
& \text { CARNOT GROUPS } \\
& \text { ENRICO LE DONNE, RICHARD MONTGOMERY, ALESSANDRO OTTAZZI, } \\
& \text { PIERRE PANSU, AND DAVIDE VITTONE } \\
& \text { AbsTRACT. In Carnot-Carathéodory or sub-Riemannian geometry, one of the ma- } \\
& \text { jor open problems is whether the conclusions of Sard's theorem holds for the end- } \\
& \text { point map, a canonical map from an infinite-dimensional path space to the under- } \\
& \text { lying finite-dimensional manifold. The set of critical values for the endpoint map } \\
& \text { is also known as abnormal set, being the set of endpoints of abnormal extremals } \\
& \text { leaving the base point. We prove that a strong version of Sard's property holds } \\
& \text { for all step-2 Carnot groups and several other classes of Lie groups endowed with } \\
& \text { left-invariant distributions. Namely, we prove that the abnormal set lies in a proper } \\
& \text { analytic subvariety. In doing so we examine several characterizations of the abnor- } \\
& \text { mal set in the case of Lie groups. }
\end{aligned}
$$

Contents

1. Introduction 2
2. Preliminaries 5
2.1. Differential of the endpoint map 5
2.2. Carnot groups 7
2.3. Abnormal curves 8
2.4. Hamiltonian formalism and reduction 10
2.5. Abnormal varieties and connection with extremal polynomials 11
2.6. Lifts of abnormal curves 14
2.7. Normal curves 15
2.8. The Goh condition 15
3. Step-2 Carnot groups 16

Date: March 4, 2015.

2010 Mathematics Subject Classification. 53C17, 22F50, 22E25 14M17.
Key words and phrases. Sard's property, endpoint map, abnormal curves, Carnot groups, polarized groups, sub-Riemannian geometry.

$$
\begin{aligned}
\text { End : } L^{2}([0,1], V) & \rightarrow G \\
u & \mapsto \gamma_{u}(1)
\end{aligned}
$$

4 where γ_{u} is the curve on G leaving from the origin $e \in G$ with derivative $\left(\mathrm{d} L_{\gamma(t)}\right)_{e} u(t)$.
The abnormal set of (G, V) is the subset $\operatorname{Abn}(e) \subset G$ of all singular values of the endpoint map. Equivalently, $\operatorname{Abn}(e)$ is the union of all abnormal curves passing through the origin (see Section 2.3). If the abnormal set has measure 0, then (G, V) is 8 said to satisfy the Sard Property. Proving the Sard Property in the general context of polarized manifolds is one of the major open problems in sub-Riemannian geometry, see the questions in [Mon02, Sec. 10.2] and Problem III in [Agr13]. In this paper,

51 we will focus on the following stronger versions of Sard's property in the context of 52 groups.

Definition 1.1 (Algebraic and Analytic Sard Property). We say that a polarized group (G, V) satisfies the Algebraic (respectively, Analytic) Sard Property if its abnormal set $\operatorname{Abn}(e)$ is contained in a proper real algebraic (respectively, analytic) subvariety of G.

Our main results are summarized by:
Theorem 1.2. The following Carnot groups satisfy the Algebraic Sard Property:
(1) Carnot groups of step 2;
(2) The free-nilpotent group of rank 3 and step 3;
(3) The free-nilpotent group of rank 2 and step 4;
(4) The nilpotent part of the Iwasawa decomposition of any semisimple Lie group equipped with the distribution defined by the sum of the simple root spaces.
The following polarized groups satisfy the Analytic Sard Property:
(5) Split semisimple Lie groups equipped with the distribution given by the subspace of the Cartan decomposition with negative eigenvalue.
(6) Split semisimple Lie groups equipped with the distribution defined by the sum of the nonzero root spaces.

Earlier work [Mon94] allows us
(7) compact semisimple Lie groups equipped with the distribution defined by the sum of the nonzero root spaces, (i.e., the orthogonal to the maximal torus relative to a bi-invariant metric).
Case (1) will be proved reducing the problem to the case of a smooth map between finite-dimensional manifolds and applying the classical Sard Theorem to this map. The proof will crucially use the fact that in a Carnot group of step 2 each abnormal curve is contained in a proper subgroup. This latter property may fail for step 3 , see Section 6.3. However, a similar strategy together with the notion of abnormal varieties, see (2.21), might yield a proof of Sard Property for general Carnot groups.

The proof of cases (2)-(6) is based on the observation that, if \mathcal{X} is a family of contact vector fields (meaning infinitesimal symmetries of the distribution) vanishing at the identity, then for any horizontal curve γ leaving from the origin with control u we have

$$
\left(R_{\gamma(1)}\right)_{*} V+\left(L_{\gamma(1)}\right)_{*} V+\mathcal{X}(\gamma(1)) \subset \operatorname{Im}\left(\mathrm{d}_{\operatorname{End}_{u}}\right) \subset T_{\gamma(1)} G
$$

79 Therefore if $g \in G$ is such that

$$
\begin{equation*}
\left(R_{g}\right)_{*} V+\left(L_{g}\right)_{*} V+\mathcal{X}(g)=T_{g} G \tag{1.3}
\end{equation*}
$$

80 then g is not a singular value of the endpoint map. In fact, if (1.3) is describable as 81 a non-trivial system of polynomial inequations for g, then (G, V) has the Algebraic

104 Theorem 1.5. Let G be a sub-Riemannian Carnot group of step 3. The Sub-analytic
105 Sard Property holds for locally length minimizing abnormal curves. Namely, the set $106 \mathrm{Abn}^{l m}(e)$ is contained in a sub-analytic set of codimension at least 1.

$$
\begin{equation*}
\frac{\mathrm{d} \gamma}{\mathrm{~d} t}(t)=\left(\mathrm{d} L_{\gamma(t)}\right)_{e} u(t) \tag{2.1}
\end{equation*}
$$

42 with initial condition $\gamma(0)=e$. Viceversa, if $\gamma:[0,1] \rightarrow G$ is an absolutely continuous curve that solves (2.1) for some $u \in L^{2}([0,1], V)$, then we say that γ is horizontal with respect to V and that $u=u_{\gamma}$ is its control. In other words, the derivatives of γ 145 lie in the left-invariant subbundle, denoted by Δ, that coincides with V at e.
146 The endpoint map starting at e with controls in V is the map

$$
\begin{aligned}
\text { End : } L^{2}([0,1], V) & \rightarrow & G \\
u & \mapsto & \gamma_{u}(1) .
\end{aligned}
$$

147 2.1. Differential of the endpoint map. The following result is standard and a 148 proof of it can be found (in the more general context of Carnot-Carathéodory mani49 folds) in [Mon02, Proposition 5.2.5, see also Appendix E].

150 Theorem 2.2 (Differential of End). The endpoint map End is a smooth map between ${ }_{51}$ the Hilbert space $L^{2}([0,1], V)$ and G. If γ is a horizontal curve leaving from the origin
the tangent space of G at $\gamma(1)$, is given by

$$
\mathrm{d} \operatorname{End}_{u} v=\left(\mathrm{d} R_{\gamma(1)}\right)_{e} \int_{0}^{1} \operatorname{Ad}_{\gamma(t)} v(t) \mathrm{d} t, \quad \forall v \in L^{2}([0,1], V)
$$

154 with respect to ϵ of (2.1) for $\gamma_{u+\epsilon v}$)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\gamma(t) \cdot v(t)+\sigma \cdot u(t) .
$$

160 Now it is easy to see that $\int_{0}^{t} \operatorname{Ad}_{\gamma(s)}(v(s)) \mathrm{d} s \cdot \gamma(t)$ satisfies the above equation with 161

$$
\begin{equation*}
\operatorname{Im}\left(\mathrm{d} \mathrm{End}_{u}\right)=\left(\mathrm{d} R_{\gamma(1)}\right)_{e}\left(\operatorname{span}\left\{\operatorname{Ad}_{\gamma(t)} V: t \in[0,1]\right\}\right) \tag{2.4}
\end{equation*}
$$

174 Remark 2.5. Evaluating (2.4) at $t=0$ and $t=1$ yields

$$
\begin{equation*}
\left(\mathrm{d} R_{\gamma(1)}\right)_{e} V+\left(\mathrm{d} L_{\gamma(1)}\right)_{e} V \subset \operatorname{Im}\left(\mathrm{~d}_{\operatorname{End}_{u}}\right) \tag{2.6}
\end{equation*}
$$

175 Remark 2.7. Proposition 2.3 implies immediately that for strongly bracket generating 176 distributions, the endpoint map is a submersion at every $u \neq 0$. We recall that a 177 polarized group (G, V) is strongly bracket generating if for every $X \in V \backslash\{0\}$, one 178 has $V+[X, V]=\mathfrak{g}$.

$$
\begin{equation*}
\left(\mathrm{d} R_{\gamma(1)}\right)_{e} \operatorname{Ad}_{\gamma(t)}[V, V] \subseteq \operatorname{Im}\left(\mathrm{d}^{\operatorname{End}}{ }_{u}\right) \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{S}(\gamma(1)) \subset \operatorname{Im}\left(\mathrm{d}_{\operatorname{End}}^{u}\right) . \tag{2.11}
\end{equation*}
$$

6 Indeed, let $\xi \in \mathcal{S}$ and let ϕ_{ξ}^{s} be the corresponding flow at time s. Since $\xi_{e}=0$, we have that $\phi_{\xi}^{s}(e)=e$. Consider the curve $\gamma^{s}:=\phi_{\xi}^{s} \circ \gamma$. Notice that $\gamma^{s}(e)=e$ and that γ^{s} is horizontal, because ξ is a contact vector field. Therefore,

$$
\operatorname{End}\left(u^{s}\right)=\gamma^{s}(1)=\Phi_{\xi}^{s}(\gamma(1)),
$$

199 where u^{s} is the control of γ^{s}. Differentiating at $s=0$, we conclude that $\xi(\gamma(1))$, 00 which is an arbitrary point in $\mathcal{S}(\gamma(1))$, belongs to $\left.\operatorname{Im}\left(\mathrm{d}_{\operatorname{End}}^{u}\right)\right)$.
2.2. Carnot groups. Among the polarized groups, Carnot groups are the most distinguished. A Carnot group is a simply connected, polarized Lie group (G, V) whose Lie algebra \mathfrak{g} admits a direct sum decomposition in nontrivial vector subspaces

$$
\mathfrak{g}=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{s} \quad \text { such that } \quad\left[V_{i}, V_{j}\right]=V_{i+j}
$$

Remark 2.8 (Goh's condition is automatic in rank 2). Assume that $\operatorname{dim} V=2$. We claim that if γ is horizontal leaving from the origin with control u, then for all $t \in[0,1]$ we have

Indeed, we may assume that γ is parametrized by arc length and that t is a point of differentiability. Hence, $\gamma(t)^{-1} \gamma(t+\epsilon)=\exp (u(t) \epsilon+o(\epsilon))$. Notice that since $u(t) \in$ $V \backslash\{0\}$ and $\operatorname{dim} V=2$, it follows that $[u(t), V]=[V, V]$. Therefore $\operatorname{Ad}_{\gamma(t)}^{-1} \operatorname{Ad}_{\gamma(t+\epsilon)} V=$ $e^{\operatorname{ad}_{u(t) \epsilon+o(\epsilon)}} V$. Hence, for all $Y \in V$

$$
\epsilon[u(t), Y]+o(\epsilon) \in V+\operatorname{Ad}_{\gamma(t)}^{-1} \operatorname{Ad}_{\gamma(t+\epsilon)} V .
$$

Therefore, Proposition 2.3 implies that $\operatorname{Ad}_{\gamma(t)}[u(t), Y] \in\left(\mathrm{d} R_{\gamma(1)}\right)_{e}^{-1} \operatorname{Im}\left(\mathrm{~d}_{\operatorname{End}}^{u}\right.$), which proves the claim.

By (2.35) below, formula (2.9) implies that, whenever γ is an abnormal curve (see Section 2.3) in a polarized group (G, V) of rank 2, then γ satisfies the Goh condition (see Section 2.8).

Remark 2.10 (Action of contact maps). We associate to the subspace $V \subseteq \mathfrak{g}$ a leftinvariant subbundle Δ of $T G$ such that $\Delta_{e}=V$. A vector field $\xi \in \operatorname{Vec}(G)$ is said to be contact if its flow Φ_{ξ}^{s} preserves Δ. Denote by

$$
\mathcal{S}:=\left\{\xi \in \operatorname{Vec}(G) \mid \xi \text { contact, } \xi_{e}=0\right\}
$$

the space of global contact vector fields on G that vanish at the identity. We claim that, for every horizontal curve γ leaving from the origin,
where $V_{k}=\{0\}, k>s$ and $V_{1}=V$. We refer to the i th summand V_{i} as the i th layer.
The above decomposition is also called the stratification of \mathfrak{g} and Carnot groups are often referred to in the analysis literature as stratified groups. The step of a Carnot group is the total number s of layers and equals the degree of nilpotency of

$$
\begin{equation*}
\operatorname{Abn}(e):=\{\gamma(1) \mid \gamma \text { abnormal }, \gamma(0)=e\}=\{\text { critical values of End }\} \tag{2.13}
\end{equation*}
$$

\mathfrak{g} : all Lie brackets of length greater than s vanish. Every Carnot group admits at least a canonical outer automorphism, the 'scaling' δ_{λ} which on \mathfrak{g} is equal to the multiplication by λ^{i} on the i th layer.
Since G is simply connected and nilpotent, the exponential map exp : $\mathfrak{g} \rightarrow G$ is a diffeomorphism. We write log for the inverse of exp. When we use log to identify \mathfrak{g} with G the group law on G becomes a polynomial map $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ with $0 \in \mathfrak{g}$ playing the role of the identity element $e \in G$.

2.3. Abnormal curves.

Definition 2.12 (Abnormal curve). Let (G, V) be a polarized group. Let $\gamma:[0,1] \rightarrow$ G be a horizontal curve leaving from the origin with control u. If $\operatorname{Im}\left(\mathrm{d}_{\operatorname{End}}^{u}\right) \subsetneq T_{\gamma(1)} G$, we say that γ is abnormal.

In other words, γ is abnormal if and only if $\gamma(1)$ is a critical value of End. We define the abnormal set of (G, V) as

The Sard Problem in sub-Riemannian geometry is the study of the above abnormal set. More information can be found in [Mon02, page 182].

Interpretation of abnormal equations via right-invariant forms. Proposition 2.3 gives an interpretation for a curve to be abnormal, which, to the best of our knowledge, is not in the literature.

Corollary 2.14. Let (G, V) be a polarized group and let $\gamma:[0,1] \rightarrow G$ be a horizontal curve. Then the following are equivalent:
(1) γ is abnormal;
(2) there exists $\lambda \in \mathfrak{g}^{*} \backslash\{0\}$ such that $\lambda\left(\operatorname{Ad}_{\gamma(t)} V\right)=\{0\}$ for every $t \in[0,1]$;
(3) there exists a right-invariant 1 -form α on G such that $\alpha\left(\Delta_{\gamma(t)}\right)=\{0\}$ for every $t \in[0,1]$, where Δ is the left-invariant distribution induced by V.

Proof. (2) and (3) are obviously equivalent. By Proposition 2.3, γ is abnormal if and only if there is a proper subspace of \mathfrak{g} that contains $\operatorname{Ad}_{\gamma(t)} V$ for all t.

Interpretation of abnormal equations via left-invariant adjoint equations. The previous section characterized singular curves for a left-invariant distribution on a Lie group G in terms of right-invariant one-forms. This section characterizes the same curves in terms of left-invariant one-forms. This left-invariant characterization is the one used in [Mon94, Equations (12), (13) and (14)] and [GK95, equations in Section 2.3]. We establish the equivalence of the two characterizations directly using Lie theory. Then we take a second, Hamiltonian, perspective on the equivalence of characterizations. In this perspective, the right-invariant characterization is simply the momentum map applied to the Hamiltonian provided by the Maximum Principle.

Proposition 2.16. Let (G, V) be a polarized group and let $\gamma:[0,1] \rightarrow G$ be a horizontal curve with control u. Then the following are equivalent:
(1) γ is abnormal;
(2) there exists a curve $\eta:[0,1] \rightarrow \mathfrak{g}^{*}$, with $\left.\eta(t)\right|_{V}=0$ and $\eta(t) \neq 0$, for all $t \in[0,1]$, representing a curve of left-invariant one-forms, such that

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} \eta}{\mathrm{~d} t}(t)=\left(\operatorname{ad}_{u(t)}\right)^{*} \eta(t) \\
u(t) \in \operatorname{Ker}(w(\eta(t))) .
\end{array}\right.
$$

Remark 2.17. There is a sign difference between the first equation of (2) above, namely $\frac{\mathrm{d} \eta}{\mathrm{d} t}(t)=\left(\mathrm{ad}_{u(t)}\right)^{*} \eta(t)$, and the analogous equation in [Mon94, Sec. 4] that reads $\frac{\mathrm{d} \eta}{\mathrm{d} t}(t)=-\operatorname{ad}_{u(t)}^{*} \eta(t)$. The equations coincide if we set $\mathrm{ad}_{u}^{*}=-\left(\operatorname{ad}_{u}\right)^{*}$. To understand this minus sign, we first observe that in the equation above $\left(\operatorname{ad}_{u}\right)^{*}$ is the operator $\left(\mathrm{ad}_{u}\right)^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ dual to the adjoint operator, so that

$$
\left(\left(\operatorname{ad}_{u}\right)^{*} \lambda\right)(X)=\lambda\left(\operatorname{ad}_{u}(X)\right)=\lambda([u, X])
$$

In the equation of [Mon94, Sec. 4] the operator ad $_{u}^{*}$ is the differential of the co-adjoint action $\mathrm{Ad}^{*}: G \rightarrow g l\left(\mathfrak{g}^{*}\right)$ taken at $g=e$ in the direction $u \in \mathfrak{g}$. The minus sign arises out of the inverse needed to make the action a left action: $\operatorname{Ad}^{*}(g)=\left(\operatorname{Ad}_{g^{-1}}\right)^{*}$.

Golé and Karidi made good use of the coordinate version of the previous proposition. See [GK95, page 540], following [Mon94, Sec. 4]. See also [LDLMV13, LDLMV14]. To describe their version, fix a basis X_{1}, \ldots, X_{n} of \mathfrak{g} such that X_{1}, \ldots, X_{r} is a basis of V. Let $c_{i j}^{k}$ be the structure constant of \mathfrak{g} with respect to this basis, seen as left-invariant vector fields. Let $\left(u_{1}, \ldots, u_{r}\right) \in V$ be controls relative to this basis. Let $\eta_{i}=\eta\left(X_{i}\right)$ denote the linear coordinates of a covector $\eta \in \mathfrak{g}^{*}$ relative to this basis.

Proposition 2.18. Let (G, V) be a polarized group. Let $\gamma:[0,1] \rightarrow G$ be a horizontal curve with control $\sum_{i=1}^{r} u_{i}(t) X_{i}$. Under the above coordinate conventions, the following are equivalent:
(1) γ is abnormal;
(2) there exists a vector function $\left(0,0, \ldots, 0, \eta_{r+1}, \ldots, \eta_{n}\right):[0,1] \rightarrow \mathbb{R}^{n}$, never vanishing, such that

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} \eta_{i}}{\mathrm{~d} t}(t)+\sum_{j=1}^{r} \sum_{k=r+1}^{n} c_{i j}^{k} u_{j}(t) \eta_{k}(t)=0, \quad \text { for all } i=r+1, \ldots, n, \\
\sum_{j=1}^{r} \sum_{k=r+1}^{n} c_{i j}^{k} u_{j}(t) \eta_{k}(t)=0, \quad \text { for all } i=1, \ldots, r .
\end{array}\right.
$$

Both Corollary 2.14 and Proposition 2.16 lead to a one-form $\lambda(t) \in T_{\gamma(t)}^{*} G$ along the curve γ in G. The key to the equivalence of the right and left perspectives of these two propositions is that these one-forms along γ are equal. For the right-invariant version, Corollary 2.14 provides first the constant covector $\lambda^{R} \in \mathfrak{g}^{*}=T_{e}^{*} G$, and then

$$
\frac{1}{\Delta t}(\eta(t+\Delta t)-\eta(t))=\frac{1}{\Delta t}\left(\left(\operatorname{Ad}_{h(\Delta t)}\right)^{*}-\mathrm{Id}\right) \eta(t)
$$

$$
\begin{equation*}
P_{i}: T^{*} G \rightarrow \mathbb{R} ; P_{i}(g, p)=p\left(X_{i}(g)\right) \tag{2.20}
\end{equation*}
$$

294 Given a choice of controls $u_{a}(t), a=1,2 \ldots, r$ not all identically zero, form the

$$
H_{u}(g, p ; t)=\sum_{i=1}^{r} u_{a}(t) P_{a}(g, p)
$$

296 The Maximum Principle [AS04, Theorem 12.1] asserts that a curve γ in G is singular 297 for V if and only if when we take its control u, and form the Hamiltonian H_{u}, then 298 the corresponding Hamilton's equations have a nonzero solution $\zeta(t)=(q(t), p(t))$ 299 that lies on the variety $P_{a}=0, a=1,2, \ldots, r$. Here 'Nonzero' means that $p(t) \neq 0$, 300 for all t. The conditions $P_{a}=0$ mean that the solution lies in the annihilator of 301 the distribution defined by V. The first of Hamilton's equations, implies that γ has
control u, so that the solution ζ does project onto γ via the cotangent projection $\pi: T^{*} G \rightarrow G$.

The following two facts regarding symplectic geometry and Hamilton's equations allow us to immediately derive the Golé-Karidi form of the equations as expressed in Proposition 2.18. Fact 1. Hamilton's equations are equivalent to their 'Poisson form' $\dot{f}=\{f, H\}$. Here f is an arbitrary smooth function on phase space, $\dot{f}=$ $d f\left(X_{H}\right)$ is the derivative of f along the Hamiltonian vector field X_{H} for H, and $\{f, g\}$ is the Poisson bracket associated to the canonical symplectic form ω, so that $\{f, g\}=\omega\left(X_{f}, X_{g}\right)$. Fact 2. If X is any vector field on G (invariant or not), and if $P_{X}: T^{*} Q \rightarrow \mathbb{R}$ denotes the corresponding fiber-linear function defined by X as above, then $\left\{P_{X}, P_{Y}\right\}=-P_{[X, Y]}$.

Proof of Proposition 2.18 from the Maximum Principle. Take the $f=P_{i}$ and use, from Fact 2, that $\left\{P_{i}, P_{j}\right\}=-\sum c_{i j}^{k} P_{k}$. The P_{i} are equal to the η_{i} of the proposition.

Proposition 2.18 is just the coordinate form of Proposition 2.16, so we have also proved Proposition 2.16.

Proof of Corollary 2.14 from the Maximum principle.

Let $\gamma(t)$ be a singular extremal leaving the identity with control $u=\left(u_{1}, \ldots, u_{r}\right)$. Let H_{u} be the time-dependent Hamiltonian generating the one-form $\zeta(t)$ along γ as per the Maximum Principle. Since each of the P_{i} are left-invariant, so is H_{u}. Now any left-invariant Hamiltonian H_{u} on the cotangent bundle of a Lie group admits $n=$ $\operatorname{dim}(G)$ 'constants' of motion - these being the n components of the momentum map $J: T^{*} G \rightarrow \mathfrak{g}^{*}$ for the action of G on itself by left translation. Recall that a 'constant of the motion' is a vector function that is constant along all the solutions to Hamilton's equations. Different solutions may have different constants. The momentum map in this situation is well-known to equal right-trivialization: $T^{*} G \rightarrow G \times \mathfrak{g}^{*}$ composed with projection onto the second factor. In other words, if $\zeta(t)$ is any solution for H_{u}, then $J(\zeta(t))=\lambda=$ const and also $J(\zeta(t))=\mathrm{d} R_{\gamma(t)}^{*} \zeta(t)$. Now, our $p(t)$ must annihilate $V_{\gamma(t)}$. The fact that $p(t)$ equals λ, right-translated along γ, and that $\Delta_{\gamma(t)}$ equals to $V=\Delta_{e}$, left-translated along γ implies that $\lambda\left(\operatorname{Ad}_{\gamma(t)} V\right)=0$. We have established the claim.
2.5. Abnormal varieties and connection with extremal polynomials. The opportunity of considering the right-invariant trivialization of $T^{*} G$, hence arriving to Corollary 2.14, was suggested by the results of the two papers [LDLMV13, LDLMV14], where abnormal curves were characterized as those horizontal curves lying in specific algebraic varieties.

Given $\lambda \in \mathfrak{g}^{*} \backslash\{0\}$ we set

$$
\begin{equation*}
Z^{\lambda}:=\left\{g \in G:\left(\left(\operatorname{Ad}_{g}\right)^{*} \lambda\right)_{\mid V}=0\right\} . \tag{2.21}
\end{equation*}
$$

347
Let e_{1}, \ldots, e_{n} be a basis of \mathfrak{g} such that e_{1}, \ldots, e_{r} is a basis of V. Let X_{i} denote the extension of e_{i} as a left-invariant vector field on G. Let $c_{i j}^{k}$ be the structure constants of \mathfrak{g} in this basis, i.e.,

$$
\left[X_{i}, X_{j}\right]=\sum_{k} c_{i j}^{k} X_{k}
$$

349

For $\lambda \in \mathfrak{g}^{*}$, set

$$
P_{i}^{\lambda}(g):=\left(\left(\operatorname{Ad}_{g}\right)^{*} \lambda\right)\left(e_{i}\right) .
$$

350 Thus Z^{λ} is the set of common zeros of the functions $P_{i}^{\lambda}, i=1, \ldots, r$. When G is 351 nilpotent, these functions are polynomials.

Proposition 2.23. Let Y_{m} denote the extension of e_{m} as a right-invariant vector 353 field on G. Let $e_{1}^{*}, \ldots, e_{n}^{*}$ denote the basis vectors of \mathfrak{g}^{*} dual to e_{1}, \ldots, e_{n}. For all $354 i, j=1, \ldots, n$, we have

$$
\begin{equation*}
X_{i}=\sum_{m} P_{i}^{e_{m}^{*}} Y_{m} . \tag{2.24}
\end{equation*}
$$

355 Moreover, the functions P_{j}^{λ} satisfy $P_{j}^{\lambda}(e)=\lambda\left(e_{j}\right)$ and

$$
\begin{equation*}
X_{i} P_{j}^{\lambda}=\sum_{k=1}^{n} c_{i j}^{k} P_{k}^{\lambda}, \quad \forall i, j=1, \ldots, n, \lambda \in \mathfrak{g}^{*} \tag{2.25}
\end{equation*}
$$

356 In particular, in the setting of Carnot groups the functions P_{j}^{λ} coincide with the 357 extremal polynomials introduced in [LDLMV13, LDLMV14].

358 Proof. We verify (2.24) by

$$
\begin{gathered}
\sum_{m} P_{i}^{e_{m}^{*}}(g) Y_{m}(g)=\sum_{m}\left(\operatorname{Ad}_{g}\right)^{*}\left(e_{m}^{*}\right)\left(e_{i}\right)\left(R_{g}\right)_{*} e_{m}=\sum_{m} e_{m}^{*}\left(\operatorname{Ad}_{g}\left(e_{i}\right)\right)\left(R_{g}\right)_{*} e_{m} \\
=\left(R_{g}\right)_{*} \sum_{m} e_{m}^{*}\left(\operatorname{Ad}_{g}\left(e_{i}\right)\right) e_{m}=\left(R_{g}\right)_{*} \operatorname{Ad}_{g}\left(e_{i}\right)=\left(L_{g}\right)_{*} e_{i}=X_{i}(g)
\end{gathered}
$$

360 Next, on the one hand, since $\left[X_{i}, Y_{j}\right]=0$,

$$
\left[X_{i}, X_{j}\right]=\sum_{m}\left(X_{i} P_{j}^{e_{m}^{*}}\right) Y_{m}
$$

361 On the other hand, from (2.24)

$$
\left[X_{i}, X_{j}\right]=\sum_{k} c_{i j}^{k} X_{k}=\sum_{m}\left(\sum_{k} c_{i j}^{k} P_{k}^{e_{m}^{*}}\right) Y_{m}
$$

Thus

$$
X_{i} P_{j}^{e_{m}^{*}}=\sum_{k} c_{i j}^{k} P_{k}^{e_{m}^{*}}, \quad \forall i, j, m=1, \ldots, n
$$

363 Formula (2.25) follows because, by definition, the functions P_{j}^{λ} are linear in λ.
364 The extremal polynomials $\left(P_{j}^{v}\right)_{j=1, \ldots, n}^{v \in \mathbb{R}^{n}}$ were introduced in [LDLMV13, LDLMV14] in 365 the setting of Carnot groups; they were explicitly defined in a system of exponential 366 coordinates of the second type associated to a basis of \mathfrak{g} that is adapted to the 367 stratification of \mathfrak{g}, see Section 2.2. Here, adapted simply means that the fixed basis $368 e_{1}, \ldots, e_{n}$ of \mathfrak{g} consists of an (ordered) enumeration of a basis of the first layer V_{1}, 369 followed by a basis of the second layer V_{2}, etc. It was proved in [LDLMV14] that the 370 extremal polynomials satisfy

$$
P_{j}^{v}(e)=v_{j} \quad \text { and } \quad X_{i} P_{j}^{v}=\sum_{k=1}^{n} c_{i j}^{k} P_{k}^{v} \quad \forall i, j=1, \ldots, n, \forall v \in \mathbb{R}^{n}
$$

371 We need to check that, for any fixed $v \in \mathbb{R}^{n}$, the equality $P_{j}^{v}=P_{j}^{\lambda}$ holds for $\lambda:=$ $372 \sum_{m} v_{m} e_{m}^{*}$. Indeed, the differences $Q_{j}:=P_{j}^{v}-P_{j}^{\lambda}$ satisfy

$$
Q_{j}(e)=0 \quad \text { and } \quad X_{i} Q_{j}=\sum_{k=1}^{n} c_{i j}^{k} Q_{k} \quad \forall i, j=1, \ldots, n
$$

facio . k. 376 fact that $c_{i j}^{k}=0$ whenever $k \leq j$ (because the basis is adapted to the stratification), 377 we have

$$
Q_{j}(e)=0 \quad \text { and } \quad X_{i} Q_{j}=\sum_{k=j+1}^{n} c_{i j}^{k} Q_{k}=0 \quad \forall i=1, \ldots, n .
$$

379 Remark 2.26. In the study of Carnot groups of step 2 and step 3, it will be used

382 layer V_{s}, and $\lambda \in \mathfrak{g}^{*}$, then the variety

$$
\begin{equation*}
W^{\lambda}:=\left\{g \in G:\left(\left(\operatorname{Ad}_{g}\right)^{*} \lambda\right)_{\mid V_{s-1}}=0\right\} \tag{2.27}
\end{equation*}
$$

383 is a subgroup, whenever it contains the origin. Indeed, if $X \in \mathfrak{g}$ and $Y \in V_{s-1}$, then

$$
\left(\operatorname{Ad}_{\exp (X)}\right)^{*} \lambda(Y)=\left(e^{\operatorname{ad} X}\right)^{*} \lambda(Y)=\lambda(Y+[X, Y])
$$

and, if it contains the origin, it is

$$
\left\{X \in \mathfrak{g}: \lambda([X, Y])=0, \forall Y \in V_{s-1}\right\}
$$

4 2.7. Normal curves. Let (G, V) be a polarized group such that V is bracket generat-

$$
E x p=\text { End } \circ \widetilde{E x p}
$$

438 2.8. The Goh condition. Let (G, V) be a polarized group as in Section 2.7. We 439 introduce the well-known Goh condition by using the formalism of Corollary 2.14.

440 Definition 2.33. We say that an abnormal curve $\gamma:[0,1] \rightarrow G$ leaving from the

$$
\begin{equation*}
\lambda\left(\operatorname{Ad}_{\gamma(t)}(V+[V, V])\right)=0 \quad \text { for every } t \in[0,1] \tag{2.34}
\end{equation*}
$$

$$
\begin{equation*}
\bigcup_{t \in[0,1]} \operatorname{Ad}_{\gamma(t)}(V+[V, V])=d R_{\gamma(1)}^{-1}\left(\operatorname{Im}\left(\mathrm{~d}_{\operatorname{End}}^{u}\right)\right)+\bigcup_{t \in[0,1]} \operatorname{Ad}_{\gamma(t)}([V, V]) \tag{2.35}
\end{equation*}
$$

Equivalently, γ satisfies the Goh condition if and only if there exists a right-invariant 1 -form α on G such that $\alpha\left(\Delta_{\gamma(t)}^{2}\right)=\{0\}$ for every $t \in[0,1]$, where Δ^{2} is the leftinvariant distribution induced by $V+[V, V]$. Equivalently, denoting by u the controls associated with γ and recalling Proposition 2.3, if and only if the space

446 is a proper subspace of $\mathfrak{g}=T_{e} G$, which a posteriori is contained in ker λ, for λ as in 447 (2.34).
448 Remark 2.36. Clearly, any λ such that (2.34) holds is in the annihilator of $V+[V, V]$, 449 just by considering $t=0$ in (2.34).

450 The importance of the Goh condition stems from the following well-known fact: if 451γ is a strictly abnormal length minimizer (i.e., a length minimizer that is abnormal 452 but not also normal), then it satisfies Goh condition for some $\lambda \in \mathfrak{g}^{*} \backslash\{0\}$. See 453 [AS04, Chapter 20] and also [AS96]. Notice that not necessarily all the λ 's as in (2) 454 of Corollary 2.14 will satisfy (2.34), but at least one will. On the contrary, in the 455 particular case $\operatorname{dim} V=2$, every abnormal curve satisfies the Goh condition for every 456λ as in Corollary 2.14 (2); see Remark 2.8 and (2.9) in particular.

3. Step-2 Carnot groups

458 3.1. Facts about abnormal curves in two-step Carnot groups. We want to 459 study the abnormal set $\operatorname{Abn}(e)$ defined in (2.13) with the use of the abnormal varieties 460 defined in (2.21). In fact, by Proposition 2.22 we have the inclusion

$$
\operatorname{Abn}(e) \subseteq \bigcup_{\lambda \in \mathfrak{g}^{*} \backslash\{0\} \text { s.t. } e \in Z^{\lambda}} Z^{\lambda}
$$

461 In this section we will consider the case when the polarized group (G, V) is a Carnot 462 group of step 2. Namely, the Lie algebra of G admits the decomposition $\mathfrak{g}=V_{1} \oplus V_{2}$ 463 with $V=V_{1},\left[V_{1}, V_{1}\right]=V_{2}$, and $\left[\mathfrak{g}, V_{2}\right]=0$. Fix an element $\lambda \in \mathfrak{g}^{*}$. Since $\mathfrak{g}^{*}=V_{1}^{*} \oplus V_{2}^{*}$, 464 we can write $\lambda=\lambda_{1}+\lambda_{2}$ with $\lambda_{i} \in V_{i}^{*}$. As noticed in Remark 2.26, since G has step 4652 , if $X \in \mathfrak{g}$ and $Y \in V_{1}$, then

$$
\left(\operatorname{Ad}_{\exp (X)}\right)^{*} \lambda(Y)=\left(e^{\operatorname{ad} x}\right)^{*} \lambda(Y)=\lambda_{1}(Y)+\lambda_{2}([X, Y])
$$

466 Notice that, if $e=\exp (0) \in Z^{\lambda}$, then $\lambda_{1}(Y)=0$ for all $Y \in V_{1}$. Thus $\lambda_{1}=0$. 467 Therefore, any variety Z^{λ} containing the identity is of the form

$$
Z^{\lambda}=Z^{\lambda_{2}}=\exp \left\{X \in \mathfrak{g}: \lambda_{2}([X, Y])=0 \forall Y \in V_{1}\right\}
$$

468 The condition

$$
\lambda_{2}([X, Y])=0, \quad \forall Y \in V_{1}
$$

469 is linear in X, hence the set

$$
\mathfrak{z}^{\lambda}:=\log \left(Z^{\lambda}\right)=\left\{X \in \mathfrak{g}: \lambda_{2}([X, Y])=0 \forall Y \in V_{1}\right\}
$$

470 is a vector subspace. One can easily check that $\exp \left(V_{2}\right) \subset Z^{\lambda}$, hence $V_{2} \subset \mathfrak{z}^{\lambda}$. In 471 particular, \mathfrak{z}^{λ} is an ideal and $Z^{\lambda}=\exp \left(\mathfrak{z}^{\lambda}\right)$ is a normal subgroup of G. Actually, 472 one has $\mathfrak{z}^{\lambda}=\left(\mathfrak{z}^{\lambda} \cap V_{1}\right) \oplus V_{2}$. The space $\mathfrak{z}^{\lambda} \cap V_{1}$ is by definition the kernel of the 473 skew-symmetric form on V_{1}, which we already encountered in (2.15), defined by

$$
w(\lambda):(X, Y) \mapsto \lambda_{2}([X, Y])
$$

474 If now γ is a horizontal curve contained in Z^{λ} (and hence abnormal) with $\gamma(0)=0$, 475 then γ is contained in the subgroup H^{λ} generated by $\mathfrak{z}^{\lambda} \cap V_{1}$, i.e.,

$$
\begin{equation*}
H^{\lambda}:=\exp \left(\left(\mathfrak{z}^{\lambda} \cap V_{1}\right) \oplus\left[\mathfrak{z}^{\lambda} \cap V_{1}, \mathfrak{z}^{\lambda} \cap V_{1}\right]\right) . \tag{3.1}
\end{equation*}
$$

476 This implies that

$$
\operatorname{Abn}(e) \subseteq \bigcup_{\substack{\lambda \in \mathfrak{Q}^{*} \backslash\{0\} \\ \lambda_{1}=0}} H^{\lambda} .
$$

477 It is interesting to notice that also the reverse inclusion holds: indeed, for any $\lambda \in$ $478 \mathfrak{g}^{*} \backslash\{0\}$ with $\lambda_{1}=0$ and any point $p \in H^{\lambda}$, there exists an horizontal curve γ from 479 the origin to p that is entirely contained in $H^{\lambda} ; \gamma$ is then contained in Z^{λ} and hence 480 it is abnormal by Proposition 2.22. We deduce that

$$
\begin{equation*}
\operatorname{Abn}(e)=\bigcup_{\substack{\lambda \in \mathfrak{g}^{*} \backslash\{0\} \\ \lambda_{1}=0}} H^{\lambda} \tag{3.2}
\end{equation*}
$$

488 Proof. Let γ be an abnormal curve in G. Then there exists $\lambda \in \mathfrak{g}^{*} \backslash\{0\}$, with $\lambda_{1}=0$, 489 such that $\gamma \subset H^{\lambda}$, where H^{λ} is the subgroup defined in (3.1). By construction H^{λ} is 490 a Carnot subgroup. Since $\lambda \neq 0$ then H^{λ} is a proper subgroup (of step ≤ 2).
491 If γ is again abnormal in H^{λ}, then we iterate this process. Since dimension de492 creases, after finitely many steps one reaches a proper Carnot subgroup G^{\prime} in which 493γ is not abnormal.

494 3.2. Parametrizing abnormal varieties within free two-step Carnot groups. 495 Let G be a free-nilpotent 2-step Carnot group. Let $m \leq r:=\operatorname{dim}\left(V_{1}\right)$. Fix a m 496 dimensional vector subspace $W_{m}^{\prime} \subset V_{1}$. Denote by G_{m} the subgroup generated by $497 W_{m}^{\prime}$, and $X_{m}=G L(r, \mathbb{R}) \times G_{m}$, equipped with the left-invariant distribution given 498 at the origin by $W_{m}:=\{0\} \oplus W_{m}^{\prime}$. Observe that $G L(r, \mathbb{R})$ acts on G by graded 499 automorphisms. Let

$$
\Phi_{m}: X_{m} \rightarrow G, \quad(g, h) \mapsto g(h) .
$$

500 In a polarized group (X, V), given a submanifold $Y \subset X$, the endpoint map relative 501 to Y is $\operatorname{End}^{Y}: Y \times L^{2}([0,1], V) \rightarrow X,(y, u) \mapsto \gamma_{u}^{(y)}(1)$, where $\gamma_{u}^{(y)}$ satisfies (2.1) with $502 \gamma_{u}^{(y)}(0)=y$. We say that a horizontal curve γ with control u is non-singular relative 503 to Y if the differential at $(\gamma(0), u)$ of the endpoint map relative to Y is onto.

517 3.3. Application to general 2-step Carnot groups.
Proposition 3.5. Let G be a 2-step Carnot group. There exists a proper algebraic set $\Sigma \subset G$ that contains all abnormal curves leaving from the origin.

Proof. Let $f: \tilde{G} \rightarrow G$ be a surjective homomorphism from a free 2-step Carnot group of the same rank as G. Let γ be an abnormal curve leaving from the origin in G. It has a (unique) horizontal lift $\tilde{\gamma}$ in \tilde{G} leaving from the origin. According to Lemma 3.4, there exists an integer m and a non-singular (relative to $\Phi_{m}^{-1}(e)$) horizontal curve σ in X_{m} such that $\Phi_{m}(\sigma)=\tilde{\gamma}$, i.e., $f \circ \Phi_{m}(\sigma)=\gamma$. Namely, there exists $g \in G L(m, \mathbb{R})$ such that $\sigma(t)=\left(g, g^{-1} \tilde{\gamma}(t)\right)$. Consider the endpoint map End ${ }^{Y}$ on X_{m} relative to the submanifold $Y:=\Phi_{m}^{-1}(e)$. Let us explain informally the idea of the conclusion of the proof. The composition $f \circ \Phi_{m} \circ \operatorname{End}^{Y}$ is an endpoint map for G, with starting point at the identity e. Hence, since the differential of End^{Y} at the control of σ is onto, but the differential of $f \circ \Phi_{m} \circ \operatorname{End}^{Y}$ is not, the point $\gamma(1)$ is a singular value of $f \circ \Phi_{m}$. Hence, we will conclude using Sard's theorem.

Let us now give a more formal proof of the last claims. Consider the map ϕ_{m} : $Y \times L^{2}\left([0,1], W_{m}\right) \rightarrow L^{2}\left([0,1], V_{1}\right)$, defined as $\left(\phi_{m}(g, u)\right)(t):=g(u(t)) \in V_{1} \subseteq T_{e} \tilde{G}$, for $t \in[0,1]$. We then point out the equality

$$
\begin{equation*}
f \circ \Phi_{m} \circ \operatorname{End}^{Y}=\operatorname{End} \circ f_{*} \circ \psi_{m} \tag{3.6}
\end{equation*}
$$

534 where End : $L^{2}\left([0,1], V_{1}\right) \rightarrow G$ is the endpoint map of G and $f_{*}: L^{2}\left([0,1], V_{1}\right) \rightarrow$ $535 L^{2}\left([0,1], V_{1}\right)$ is the map

$$
\left(f_{*}(u)\right)(t)=(\mathrm{d} f)_{e}(u(t)) \in V_{1} \subseteq T_{e} G
$$

536 Since σ is abnormal, i.e., the differential $\mathrm{dEnd}_{u_{\gamma}}$ is not surjective, and the differential 537 of End^{Y} at the point $\left(g, u_{\sigma}\right)=\left(f_{*} \circ \psi_{m}\right) u_{\gamma}$ is surjective, from (3.6) we deduce that $538 \gamma(1)=\operatorname{End}^{Y}\left(g, u_{\sigma}\right)$ is a singular value for $f \circ \Phi_{m}$. By the classical Sard Theorem, the

60 If $W \subset V$ is a subspace, then the group it generates has the form $W \oplus \Lambda^{2} W \subset V \oplus \Lambda^{2} V$.
3.5. Proof that $\operatorname{Abn}(e)$ is contained in a set of codimension ≥ 3. We use the 62 view point discussed in Section 3.1 where we defined the sets \mathfrak{z}^{λ} and H^{λ}. We first claim that

$$
\begin{equation*}
\operatorname{dim} \mathfrak{z}^{\lambda} \cap V=\operatorname{dim}\left\{X \in V: \lambda_{2}([X, Y])=0 \forall Y \in V\right\} \leq r-2 \tag{3.8}
\end{equation*}
$$

564 for any $\lambda \in \mathfrak{g}^{*} \backslash\{0\}$ such that $\lambda_{1}=0$. Indeed, since $\lambda_{2} \neq 0$, the alternating 2-form $55 w(\lambda):(X, Y) \mapsto \lambda_{2}([X, Y])$ has rank at least 2.

Then, by (3.8), each $\mathfrak{z}^{\lambda} \cap V$ is contained in some $W \subset V$ with $\operatorname{dim}(W)=r-2$, hence $H^{\lambda} \subseteq W \oplus \Lambda^{2} W$ and, by (3.2),

$$
\operatorname{Abn}(e)=\bigcup_{\substack{\lambda \in \mathfrak{g}^{*} \backslash\{0\} \\ \lambda_{1}=0}} H^{\lambda} \subseteq \bigcup_{W \in G r(r, r-2)} W \oplus \Lambda^{2} W
$$

In fact, the equality

$$
\begin{equation*}
\operatorname{Abn}(e)=\bigcup_{W \in G r(r, r-2)} W \oplus \Lambda^{2} W \tag{3.9}
\end{equation*}
$$

569 holds: this is because every codimension 2 subspace $W \subset V$ is the kernel of a rank 2

We now notice that the Grassmannian $G r(r, r-2)$ of $(r-2)$-dimensional planes in V has dimension $2(r-2)$ and that each $W \oplus \Lambda^{2} W$ is (isomorphic to) the free group $\mathbb{F}_{m, 2}$ of rank $m=r-2$ and step 2, i.e.,

$$
\operatorname{dim}\left(W \oplus \Lambda^{2} W\right)=m+\frac{m(m-1)}{2}=\frac{(r-1)(r-2)}{2} .
$$

576 It follows that the set $\cup_{W \in G r(r, r-2)} W \oplus \Lambda^{2} W$ can be parametrized with a number of 577 parameters not greater than

$$
\operatorname{dim} \mathbb{F}_{m, 2}+\operatorname{dim} G r(r, m)=\frac{r(r+1)}{2}-3
$$

578 Since $\operatorname{dim} G=r(r+1) / 2$, the codimension 3 stated in Theorem 1.4 now follows from 579 (3.9).

580 3.6. Proof that $\operatorname{Abn}(e)$ is a semialgebraic set of codimension ≥ 3. Let $k=$ $581\lfloor(r-2) / 2\rfloor$ and let W be a codimension 2 vector subspace of V_{1}. Every pair $(\xi, \eta) \in$ $582 W \oplus \Lambda^{2} W$ can be written as

$$
\xi=\sum_{j=1}^{r-2} x_{j} \xi_{j}, \quad \eta=\sum_{i=1}^{k} z_{i} \xi_{2 i-1} \wedge \xi_{2 i},
$$

583 for some ($r-2$)-uple of vectors (e.g., a basis) $\left(\xi_{j}\right)_{1 \leq j \leq r-2}$ of W. Conversely, every 584 pair $(\xi, \eta) \in \mathfrak{g}=V \oplus \Lambda^{2} V$ of this form belongs to $W \oplus \Lambda^{2} W$ for some codimension 2 585 subspace W of V_{1}. Therefore

$$
\bigcup_{W \in G r(r, r-2)} W \oplus \Lambda^{2} W
$$

586 is the projection on the first factor of the algebraic subset

$$
\left\{\left(\xi, \eta, \xi_{1}, \ldots, \xi_{r-2}, x_{1}, \ldots, x_{r-2}, z_{1}, \ldots, z_{k}\right): \xi=\sum_{j=1}^{r-2} x_{j} \xi_{j}, \eta=\sum_{i=1}^{k} z_{i} \xi_{2 i-1} \wedge \xi_{2 i}\right\}
$$

587 of $\mathfrak{g} \times V^{r-2} \times \mathbb{R}^{r-2} \times \mathbb{R}^{k}$. Since the exponential map is an algebraic isomorphism, $588 \operatorname{Abn}(e)=\bigcup_{W \in \operatorname{Gr}(r, r-2)} W \oplus \Lambda^{2} W$ is semi-algebraic, and it is contained in an algebraic 589 set of the same codimension (see [BCR98, Proposition 2.8.2]).

In the rest of this section we proceed with the more precise description of the set $591 \operatorname{Abn}(e)$, as described in Theorem 1.4.

Each $\xi \in \Lambda^{2} V$ can be viewed, by contraction, as a linear skew symmetric map ${ }_{593} \xi: V^{*} \rightarrow V$. For example, if $\xi=v \wedge w$, then this map sends $\alpha \in V^{*}$ to $\alpha(v) w-\alpha(w) v$.

624 To compute dimension, we stratify $\operatorname{Abn}(e)$ according to the rank of its elements.
Definition 3.10. For $\xi \in \Lambda^{2} V$ let $\operatorname{supp}(\xi) \subset V$ denote the image of ξ, when ξ is viewed as a linear map $V^{*} \rightarrow V$. For $(v, \xi) \in V \oplus \Lambda^{2} V$ set $\operatorname{supp}(v, \xi)=\mathbb{R} v+\operatorname{supp}(\xi)$. Finally, $\operatorname{set} \operatorname{rank}(v, \xi)=\operatorname{dim}(\operatorname{supp}(v, \xi))$.
Proposition 3.11. If G is the free 2-step nilpotent group on r generators then

$$
\operatorname{Abn}(e)=\{(v, \xi): \operatorname{rank}(v, \xi) \leq r-2\}
$$

Proof. From (3.9) we can directly derive the new characterization. Suppose that $W \subset$ V is any subspace and $(w, \xi) \in W \oplus \Lambda^{2} W$. Then clearly $\operatorname{supp}(w, \xi) \subset W$. Conversely, if (w, ξ) has support a subspace of W, then one easily checks that $(w, \xi) \in W \oplus \Lambda^{2} W$. Taking W an arbitrary subspace of rank $r-2$ the result follows.

By combining Proposition 3.11 with some linear algebra we will conclude the proof of Theorem 1.4. This proof is independent of Sections 3.5 and 3.6 and yields a different perspective on the abnormal set.

Proof of Theorem 1.4. Let G be the free-nilpotent 2-step group on r generators. First, we write the polynomials defining $\operatorname{Abn}(e)$, then we compute dimensions. It is simpler to divide up into the case of even and odd rank r. We will consider the case of even rank in detail and leave most of the odd rank case up to the reader.

The linear algebraic Darboux theorem will prove useful for computations. All bivectors have even rank. This theorem asserts that the bivector $\xi \in \Lambda^{2} V$ has rank $2 m$ if and only if there exists $2 m$ linearly independent vectors $e_{1}, f_{1}, e_{2}, f_{2}, \ldots e_{m}, f_{m}$ in V such that $\xi=\sum_{i=1}^{m} e_{i} \wedge f_{i}$.
13 Let us now specialize to the case where $r=\operatorname{dim}(V)$ is even. Write

$$
r=2 s
$$

Using Darboux one checks that $\operatorname{rank}(0, \xi) \leq r-2$ if and only if $\xi^{s}=0$ (written out in components, ξ is a skew-symmetric $2 r \times 2 r$ matrix and the vanishing of ξ^{s} is exactly the vanishing of the Pfaffian of this matrix). Now, if $\operatorname{rank}(0, \xi)=r-2$ and $\operatorname{rank}(v, \xi) \leq r-2$, it must be the case that $v \in \operatorname{supp}(\xi)$; equivalently, in the Darboux basis, $v=\sum_{i=1}^{m} a_{i} e_{i}+\sum_{i=1}^{m} b_{i} f_{i}$. It follows in this case that $v \in \operatorname{supp}(\xi)$ if and only if $v \wedge \xi^{s-1}=0$. Now, if $\operatorname{rank}(0, \xi)<r-2$ then $\operatorname{rank}(0, \xi) \leq r-4$ and so $\operatorname{rank}(v, \xi) \leq r-3$ for any $v \in V$. But $\operatorname{rank}(0, \xi)<r-2$ if and only if $\xi^{s-1}=0$ in which case automatically $v \wedge \xi^{s-1}=0$.
We have proven that in the case $r=2 s$, the equations for $\operatorname{Abn}(e)$ are the polynomial equations $\xi^{s}=0$ and $v \wedge \xi^{s-1}=0$. The dimensions of the strata are easily checked to decrease with decreasing rank, so that the dimension of $\operatorname{Abn}(e)$ equals the dimension of the largest stratum, the stratum consisting of the (v, ξ) of even rank $r-2$. (The Darboux theorem and a bit of work yields that the stratum having rank k with k odd consists of exactly one $G l(V)$ orbit

661 Theorem 3.14. If $G=V \oplus \Lambda^{2} V$ is a free Carnot group with odd rank r, then $662 \operatorname{Abn}(e)=V \oplus\left(\Lambda^{2} V\right)_{\text {sing }}$.

The previous result, as well as the following one, easily follows from Proposi-
while the stratum having rank k with k even consists of exactly two $G l(V)$ orbits). A point (v, ξ) is in this stratum if and only if $\xi^{s}=0$ while $\xi^{s-1} \neq 0$ and $v \in \operatorname{supp}(\xi)$. Let us put the condition on v aside for the moment. The first condition on ξ is the Pfaffian equation which defines an algebraic hypersurface in $\Lambda^{2} V$, the zero locus of the Pfaffian of ξ. The second equation for ξ defines the smooth locus of the Pfaffian. Thus, the set of ξ 's satisfying the first two equations has dimension 1 less than that of $\Lambda^{2} V$, so its dimension is $\binom{r}{2}-1$. Now, on this smooth locus $\{P f=0\}_{\text {smooth }} \subset\{P f=0\}$ we have a well-defined algebraic map $F:\{P f=0\}_{\text {smooth }} \rightarrow G r(r, r-2)$ which sends ξ to $F(\xi)=\operatorname{supp}(\xi)$. Let $U \rightarrow G r(r, r-2)$ denote the canonical rank $r-2$ vector bundle over the Grassmannian. Thus $U \subset \mathbb{R}^{r} \times G r(r, r-2)$ consists of pairs (v, P) such that $v \in P$. Then $F^{*} U$ is a rank $r-2$ vector bundle over $\{P f=0\}_{\text {smooth }}$ consisting of pairs $(v, \xi) \in \mathbb{R}^{2} \times \Lambda^{2} V$ such that $v \in \operatorname{supp}(\xi)$ and ξ has rank $r-2$. In other words, the additional condition $v \in \operatorname{supp}(\xi)$ says exactly that $(v, \xi) \in F^{*} U$. It follows that the dimension of this principle stratum is $\operatorname{dim}\left(F^{*} U\right)=\left(\binom{r}{2}-1\right)+(r-2)=\operatorname{dim}(G)-3$.

Regarding the odd rank case

$$
r=2 s+1
$$

the same logic shows that the equations defining $\operatorname{Abn}(e)$ are $\xi^{s}=0$ and involves no condition on v. A well-known matrix computation [Arn71] shows that the subvariety $\left\{\xi^{s}=0\right\}$ in the odd rank case has codimension 3. Since the map $V \oplus \Lambda^{2} V \rightarrow \Lambda^{2} V$ is a projection, and since $\operatorname{Abn}(e)$ is the inverse image of $\left\{\xi^{s}=0\right\} \subset \Lambda^{2} V$ under this projection, its image remains codimension 3.

Recall that the rank of $\xi \in \Lambda^{2} V$ is the (even) dimension d of its support. For an open dense subset of elements of $\Lambda^{2} V$, the rank is as large as possible: r if r is even and $r-1$ if r is odd. We call singular the elements $\xi \in \Lambda^{2} V$ whose rank is less than the maximum and we write $\left(\Lambda^{2} V\right)_{\text {sing }}$ to denote the set of singular elements. From Proposition 3.11 we easily deduce the following.

Proposition 3.12. The projection of $\operatorname{Abn}(e)$ onto $\Lambda^{2} V$ coincides with the singular elements $\left(\Lambda^{2} V\right)_{\text {sing }} \subset \Lambda^{2} V$.

Remark 3.13. A consequence of the previous result is the fact that elements of the form $(0, \xi)$ where $\operatorname{rank}(\xi)$ is maximal can never be reached by abnormal curves. Notice that such elements are in the center of the group.

To be more precise about $\operatorname{Abn}(e)$ we must divide into two cases according to the parity of r. 4 tion 3.11. To describe the situation for r even, let us write $\left(\Lambda^{2} V\right)_{d}$ for those elements

670 We observe that $Y_{1}=\bar{Y} \backslash Y$.
Remark 3.16. Given any $g=(v, \xi) \in G$ we can define its singular rank to be the minimum of the dimensions of the image of the differential of the endpoint map d End (γ), where the minimum is taken over all γ that connect 0 to g. Thus, the singular rank of $g=0$ is r and is realized by the constant curve, while if ξ is generic 675 then the singular rank of $g=(0, \xi)$ is $\operatorname{dim}(G)$, which means that every horizontal 676 curve connecting 0 to g is not abnormal.

677 It can be easily proved that, if r is even and $v \in \operatorname{supp}(\xi)$, then the singular rank of $678 g$ is just $\operatorname{rank}(\xi)$. In this case we take a λ with $\operatorname{ker}(\lambda)=\operatorname{supp}(\xi)$ and realize g by any 679 horizontal curve lying inside $G(\lambda)$.

4. SuFficIEnt CONDITION FOR SARD'S PROPERTY

In Section 2.1 we observed that, given a polarized group (G, V) and a horizontal curve γ such that $\gamma(0)=e$ and with control u, the space $\left(\mathrm{d} R_{\gamma(1)}\right)_{e} V+\left(\mathrm{d} L_{\gamma(1)}\right)_{e} V+$ ${ }_{683} \mathcal{S}(\gamma(1))$ is a subset of $\operatorname{Im}\left(\mathrm{d}_{\operatorname{End}}^{u}\right) \subset T_{\gamma(1)} G$. Therefore, if $g \in G$ is such that

$$
\begin{equation*}
\operatorname{Ad}_{g^{-1}} V+V+\left(\mathrm{d} L_{g}\right)^{-1} \mathcal{X}(g)=\mathfrak{g} \tag{4.1}
\end{equation*}
$$

688 In the following we embed both sides of (4.1) in a larger Lie algebra $\tilde{\mathfrak{g}}$, and we find 689 conditions on $\tilde{\mathfrak{g}}$ that are sufficient for (4.1) to hold. The idea is to consider a group \tilde{G} 690 that acts, locally, on G via contact mappings, that is, diffeomorphisms that preserve 691 the left-invariant subbundle Δ. It turns out that the Lie algebra $\tilde{\mathfrak{g}}$ of \tilde{G}, viewed as 692 algebra of left-invariant vector fields on \tilde{G}, represents a space of contact vector fields 693 of G.

694 4.1. Algebraic prolongation. Let \tilde{G} be a Lie group and G and H two subgroups.

$$
\mathfrak{h}=V_{-h} \oplus \cdots \oplus V_{0}
$$

698 and

$$
\mathfrak{g}=V_{1} \oplus \cdots \oplus V_{s}
$$

699 in such a way that $\tilde{\mathfrak{g}}$ is graded, namely $\left[V_{i}, V_{j}\right] \subseteq V_{i+j}$, for $i, j=-h, \ldots, s$, and \mathfrak{g} is 700 stratified, i.e., $\left[V_{1}, V_{j}\right]=V_{j+1}$ for $j>0$. In other words, $\tilde{\mathfrak{g}}$ is a (finite-dimensional) 701 prolongation of the Carnot algebra \mathfrak{g}.

We have a local embedding of G within the quotient space $\tilde{G} / H:=\{g H: g \in G\}$ 703
via the restriction to G of the projection

$$
\begin{aligned}
\pi: \tilde{G} & \rightarrow \tilde{G} / H \\
p & \mapsto \pi(p):=[p]:=p H .
\end{aligned}
$$

704 The group \tilde{G} acts on \tilde{G} / H on the left:

$$
\begin{aligned}
\bar{L}_{\tilde{g}}: \tilde{G} / H & \rightarrow \tilde{G} / H \\
g H & \mapsto \bar{L}_{\tilde{g}}(g H):=\tilde{g} g H .
\end{aligned}
$$

705 We will repeatedly use the identity

$$
\begin{equation*}
\bar{L}_{\tilde{g}} \circ \pi=\pi \circ L_{\tilde{g}} \tag{4.2}
\end{equation*}
$$

On the groups \tilde{G} and G we consider the two left-invariant subbundles $\tilde{\Delta}$ and Δ that, respectively, are defined by

$$
\begin{aligned}
\tilde{\Delta}_{e} & :=\mathfrak{h}+V_{1}, \\
\Delta_{e} & :=V_{1} .
\end{aligned}
$$

708 Notice that both subbundles are bracket generating $\tilde{\mathfrak{g}}$ and \mathfrak{g}, respectively. Moreover, $709 \tilde{\Delta}$ is $\operatorname{ad}_{\mathfrak{h}}$-invariant, hence it passes to the quotient as a \tilde{G}-invariant subbundle $\bar{\Delta}$ on ${ }_{710} \tilde{G} / H$. Namely, there exists a subbundle $\bar{\Delta}$ of the tangent bundle of \tilde{G} / H such that

$$
\bar{\Delta}=\mathrm{d} \pi(\tilde{\Delta}) .
$$

711 Lemma 4.3. The map

$$
\begin{aligned}
i:=\pi_{\left.\right|_{G}}:(G, \Delta) & \rightarrow(\tilde{G} / H, \bar{\Delta}) \\
g & \mapsto g H
\end{aligned}
$$

712 is a local diffeomorphism and preserves the subbundles, i.e., it is locally a contacto713 morphism.

14 Proof. Since \mathfrak{g} is a complementary subspace of \mathfrak{h} in $\tilde{\mathfrak{g}}$, the differential $(\mathrm{d} i)_{e}$ is an 715 isomorphism between \mathfrak{g} and $T_{[e]} \tilde{G} / H$. Since by Equation (4.2) the map π is G 716 equivariant, then $(\mathrm{d} i)_{g}$ is an isomorphism for any arbitrary $g \in G$. Hence, the map i 717 is a local diffeomorphism. If X is a left-invariant section of Δ then

$$
(\mathrm{d} i)_{g} X_{g}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left[g \exp \left(t X_{e}\right)\right]\right|_{t=0} \in \bar{\Delta}_{[g]}
$$

718 since $X_{e} \in V_{1}$.
719 Let $\pi_{\mathfrak{g}}: \tilde{\mathfrak{g}}=V_{-h} \oplus \cdots \oplus V_{0} \oplus \mathfrak{g} \rightarrow \mathfrak{g}$ be the projection induced by the direct sum. 720 The projections π and $\pi_{\mathfrak{g}}$ are related by the following equation:

$$
\begin{equation*}
(\mathrm{d} \pi)_{e}=(\mathrm{d} \pi)_{\left.e\right|_{\mathfrak{g}}} \pi_{\mathfrak{g}} \tag{4.4}
\end{equation*}
$$

723 The differential of the projection π at an arbitrary point \tilde{g} can be expressed using 724 the projection $\pi_{\mathfrak{g}}$ via the following equation:

$$
\begin{equation*}
(\mathrm{d} \pi)_{\tilde{g}}=\left(\mathrm{d}\left(\bar{L}_{\tilde{g}} \circ \pi_{\mid G}\right)\right)_{e} \circ \pi_{\mathfrak{g}} \circ\left(\mathrm{d} L_{\tilde{g}^{-1}}\right)_{\tilde{g}} . \tag{4.5}
\end{equation*}
$$

$$
\begin{aligned}
\left(\mathrm{d}\left(\bar{L}_{\tilde{g}} \circ \pi_{\left.\right|_{G}}\right)\right)_{e} \circ \pi_{\mathfrak{g}} \circ\left(\mathrm{d} L_{\tilde{g}^{-1}}\right)_{\tilde{g}} & =\left(\mathrm{d} \bar{L}_{\tilde{g}}\right)_{[e]} \circ(\mathrm{d} \pi)_{\left.e\right|_{\mathfrak{g}}} \circ \pi_{\mathfrak{g}} \circ\left(\mathrm{d} L_{\tilde{g}^{-1}}\right)_{\tilde{g}} \\
& =\left(\mathrm{d} \bar{L}_{\tilde{g}}\right)_{[e]} \circ(\mathrm{d} \pi)_{e} \circ\left(\mathrm{~d} L_{\tilde{g}^{-1}}\right)_{\tilde{g}} \\
& =\mathrm{d}\left(\bar{L}_{\tilde{g}} \circ \pi \circ\left(L_{\tilde{g}}\right)^{-1}\right)_{\tilde{g}}=(\mathrm{d} \pi)_{\tilde{g}} .
\end{aligned}
$$

6 4.2. Induced contact vector fields. To any vector $X \in T_{e} \tilde{G} \simeq \tilde{\mathfrak{g}}$ we want to 27 associate a contact vector field X^{G} on G. Let X^{R} be the right-invariant vector field 28 on \tilde{G} associated to X. We define X^{G} as the (unique) vector field on G with the 29 property that

$$
\mathrm{d} \pi\left(X^{R}\right)=\mathrm{d} i\left(X^{G}\right)
$$

730 as vector fields on $i(G)$. In other words, we observe that there exists a (unique) vector 731 field \bar{X} on \tilde{G} / H that is π-related to X^{R} and i-related to some (unique) X^{G}. The flow 732 of X^{R} consists of left translations in \tilde{G}, hence they pass to the quotient \tilde{G} / H. Thus $733 \bar{X}$ shall be the vector field on \tilde{G} / H whose flow is

$$
\Phi_{\bar{X}}^{t}(g H)=\pi(\exp (t X) g)=\exp (t X) g H=\bar{L}_{\exp (t X)}(g H)
$$

34 In other words, we define \bar{X} as the vector field on \tilde{G} / H as

$$
\begin{equation*}
\bar{X}_{[p]}:=(\mathrm{d} \pi)\left(X^{R}\right)_{p}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \pi(\exp (t X) p)\right|_{t=0}, \quad \forall p \in \tilde{G} \tag{4.6}
\end{equation*}
$$

735 Definition 4.7. For all $X \in \tilde{\mathfrak{g}}$ and $g \in G$, we set

$$
\left(X^{G}\right)_{g}:=\left(\mathrm{d}\left(\pi_{\mid G}\right)_{g}\right)^{-1}(\mathrm{~d} \pi)_{g}\left(\mathrm{~d} R_{g}\right)_{e} X .
$$

$$
\begin{equation*}
\left(X^{G}\right)_{g}=\mathrm{d}\left(L_{\left.g\right|_{G}}\right)_{e} \pi_{\mathfrak{g}} \operatorname{Ad}_{g^{-1}} X, \quad \forall g \in G \tag{4.8}
\end{equation*}
$$

We remark that if $X \in \mathfrak{g} \subset \tilde{\mathfrak{g}}$ then $X^{G}=X^{R}$, as vector fields in G.
Proposition 4.9. Let X^{G} be the vector field defined above. Then
i) X^{G} has polynomial components when read in exponential coordinates.
ii) X^{G} is a contact vector field, i.e., its flow preserves Δ.

741 Proof. Because the algebra $\tilde{\mathfrak{g}}$ is graded, we have that for every $X \in \mathfrak{g}$ the map ad_{X} 742 is a nilpotent transformation of \mathfrak{g}. Consequently, for all $g \in G$, the map Ad_{g} is a 743 polynomial map of $\tilde{\mathfrak{g}}$. Therefore, in exponential coordinates, $X_{\left.\right|_{G}}^{R}$ is a polynomial 744 vector field and X^{G} is as well.
745 We next show that the vector field in (4.6) is contact, in tother words, each map ${ }_{746} \bar{L}_{p}$ preserves $\bar{\Delta}$. Any vector in $\bar{\Delta}$ is of the form $\mathrm{d} \pi\left(Y_{\tilde{g}}^{L}\right)$ with $Y_{e} \in \mathfrak{h}+V_{1}$ and $\tilde{g} \in \tilde{G}$. 747 We want to show that $\left(\mathrm{d} \bar{L}_{p}\right)_{[\tilde{g}]}(\mathrm{d} \pi)_{\tilde{g}}\left(Y_{\tilde{g}}^{L}\right)$ is in $\bar{\Delta}$. In fact, using (4.2), we have

$$
\begin{aligned}
\left(\mathrm{d} \bar{L}_{p}\right)_{[\tilde{g}]}(\mathrm{d} \pi)_{\tilde{g}}\left(Y_{\tilde{g}}^{L}\right) & =\mathrm{d}\left(\bar{L}_{p} \circ \pi\right)_{\tilde{g}}\left(Y_{\tilde{g}}^{L}\right) \\
& =\mathrm{d}\left(\pi \circ L_{p}\right)_{\tilde{g}}\left(Y_{\tilde{g}}^{L}\right) \\
& =\mathrm{d} \pi_{p \tilde{g}}\left(\mathrm{~d} L_{p}\right)_{\tilde{g}}\left(Y_{\tilde{g}}^{L}\right) \\
& =\mathrm{d} \pi_{p \tilde{g}}\left(Y_{p \tilde{g}}^{L}\right) \in \mathrm{d} \pi(\tilde{\Delta}) .
\end{aligned}
$$

748 Now that we know that \bar{X} is a contact vector field of \tilde{G} / H, from Lemma 4.3 we 749 deduce that the vector field X^{G}, which satisfies $\bar{X}=\mathrm{d} i\left(X^{G}\right)$, is a contact vector field 750 on G.
751 For a subspace $W \subseteq \tilde{\mathfrak{g}}$ we use the notation

$$
W^{G}:=\left\{X^{G} \in \operatorname{Vec}(G) \mid X \in W\right\}
$$

752 Corollary 4.10. If \mathcal{S} denotes the space of global contact vector fields on G that vanish 753 at the identity, we have

$$
\mathfrak{h}^{G} \subseteq \mathcal{S}
$$

754 Proof. Let $X \in \mathfrak{h}$. We already proved that X^{G} is a contact vector field on G. We 755 only need to verify that $\left(X^{G}\right)_{e}=0$. Since X^{G} is i-related to \bar{X}, it is equivalent to 756 show that $(\bar{X})_{e}=0$, but

$$
(\bar{X})_{e}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \pi(\exp (t X))\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} H\right|_{t=0}=0
$$

757 as desired.

758 4.3. A criterion for Sard's property. For $g \in G$, denote $\mathcal{S}(g)=\{\xi(g) \mid \xi \in \mathcal{S}\}$. 759 Also, define

$$
\mathcal{E}:=\left\{g \in G \mid\left(R_{g}\right)_{*} V_{1}+\left(L_{g}\right)_{*} V_{1}+\mathcal{S}(g)=T_{g} G\right\} .
$$

760 Given a horizontal curve γ with control u, from Section 2.1 we know that

$$
\left(R_{\gamma(1)}\right)_{*} V_{1}+\left(L_{\gamma(1)}\right)_{*} V_{1}+\mathcal{S}(\gamma(1)) \subset \operatorname{Im}\left({\left.\mathrm{d} \operatorname{End}_{u}\right) \subset T_{\gamma(1)} G .}\right.
$$

761 Therefore, if the set \mathcal{E} is not empty then the abnormal set is a proper subset of G. 762 Moreover, observing that \mathcal{E} is defined by a polynomial relation (see Proposition 4.9), 763 we can deduce that, whenever \mathcal{E} is not empty then G has the (Algebraic) Sard Prop764 erty.

765 Proposition 4.11. Let G be a Carnot group and let \tilde{G} and H as in the beginning of 766 Section 4.1. Let $\mathfrak{g}, \tilde{\mathfrak{g}}$ and \mathfrak{h} be the corresponding Lie algebras. Assume that there are $767 p \in \tilde{G}$ and $g \in G$ such that $p H=g H$ and

$$
\mathfrak{h}+V_{1}+\operatorname{Ad}_{p^{-1}}\left(\mathfrak{h}+V_{1}\right)=\tilde{\mathfrak{g}} .
$$

768 Then

$$
\begin{equation*}
\left(L_{g}\right)_{*} V_{1}+\left(R_{g}\right)_{*} V_{1}+\mathfrak{h}^{G}(g)=T_{g} G . \tag{4.12}
\end{equation*}
$$

769 Moreover, the above formula holds for a nonempty Zariski-open set of points in G, 770 and so G has the Algebraic Sard Property.

771 Proof. Project the equation using $\pi_{\mathfrak{g}}: \mathfrak{h} \oplus \mathfrak{g} \rightarrow \mathfrak{g}$ and get

$$
V_{1}+\pi_{\mathfrak{g}} \operatorname{Ad}_{p^{-1}}\left(\mathfrak{h}+V_{1}\right)=\mathfrak{g} .
$$

772 Apply the differential of $\bar{L}_{p} \circ \pi_{\left.\right|_{G}}$, i.e., the map

$$
\mathrm{d}\left(\bar{L}_{p} \circ \pi_{\mid G}\right)_{e}: \mathfrak{g}=T_{e} G \rightarrow T_{[p]}(\tilde{G} / H)
$$

773 and get

$$
\mathrm{d}\left(\bar{L}_{p} \circ \pi_{\mid G}\right)_{e} V_{1}+\mathrm{d}\left(\bar{L}_{p} \circ \pi_{\left.\right|_{G}}\right)_{e} \pi_{\mathfrak{g}} \operatorname{Ad}_{p^{-1}}\left(\mathfrak{h}+V_{1}\right)=T_{[p]}(\tilde{G} / H) .
$$

774 By Equation (4.5), the left hand side is equal to

$$
\begin{aligned}
\mathrm{d}\left(\bar{L}_{p}\right)_{[e]}(\mathrm{d} i)_{e} V_{1}+ & (\mathrm{d} \pi)_{p}\left(\mathrm{~d} R_{p}\right)\left(\mathfrak{h}+V_{1}\right) \\
& =\mathrm{d}\left(\bar{L}_{p}\right)_{[e]}(\mathrm{d} i)_{e} V_{1}+(\mathrm{d} \pi)_{p}\left(\left(\mathfrak{h}+V_{1}\right)^{R}\right)_{p} \\
& =\mathrm{d}\left(\bar{L}_{p}\right)_{[e]}(\mathrm{d} i)_{e} V_{1}+(\mathrm{d} i)_{g}\left(\left(\mathfrak{h}+V_{1}\right)^{G}\right)_{g} \\
& =(\mathrm{d} i)_{g} \mathrm{~d}\left(L_{g}\right)_{e} V_{1}+(\mathrm{d} i)_{g}\left(\mathrm{~d} R_{g}\right)_{e} V_{1}+(\mathrm{d} i)_{g} \mathfrak{h}^{G}(g) .
\end{aligned}
$$

775 Now (4.12) follows because $(\mathrm{d} i)_{g}$ in an isomorphism. Since (4.12) is expressed by 776 polynomial inequations, also the last part of the statement follows.

777 We give an infinitesimal version of the result above.

778 Proposition 4.13. Assume that there exists $\xi \in \tilde{\mathfrak{g}}$ such that

$$
\mathfrak{h}+V_{1}+\operatorname{ad}_{\xi}\left(\mathfrak{h}+V_{1}\right)=\tilde{\mathfrak{g}} .
$$

779 Then there are $p \in \tilde{G}$ and $g \in G$ such that $p H=g H$ and

$$
\mathfrak{h}+V_{1}+\operatorname{Ad}_{p^{-1}}\left(\mathfrak{h}+V_{1}\right)=\tilde{\mathfrak{g}} .
$$

780 Proof. For all $t>0$, let $p_{t}:=\exp (t \xi)$. Take Y_{1}, \ldots, Y_{m} a basis of $\mathfrak{h}+V_{1}$. Let

$$
Y_{i}^{t}:=\operatorname{Ad}_{p_{t}}\left(\frac{1}{t} Y_{i}\right)=\operatorname{ad}_{\xi}\left(Y_{i}\right)+t \sum_{k \geq 1} \frac{t^{k-2}\left(\operatorname{ad}_{\xi}\right)^{k}}{k!}\left(Y_{i}\right) .
$$

781 Notice that $Y_{i}^{t} \rightarrow \operatorname{ad}_{\xi}\left(Y_{i}\right)$, as $t \rightarrow 0$. Then we have

$$
\mathfrak{h}+V_{1}+\operatorname{Ad}_{p_{t}}\left(\mathfrak{h}+V_{1}\right)=\operatorname{span}\left\{Y_{1}, \ldots, Y_{m}, Y_{1}^{t}, \ldots, Y_{m}^{t}\right\} .
$$

782 Since

$$
\operatorname{span}\left\{Y_{1}, \ldots, Y_{m}, Y_{1}^{0}, \ldots, Y_{m}^{0}\right\}=\mathfrak{h}+V_{1}+\operatorname{ad}_{\xi}\left(\mathfrak{h}+V_{1}\right)=\tilde{\mathfrak{g}},
$$

783 then $Y_{1}, \ldots, Y_{m}, Y_{1}^{t}, \ldots, Y_{m}^{t}$ span the whole space $\tilde{\mathfrak{g}}$ for $t>0$ small enough. Moreover, 784 since $p_{t} \rightarrow e \in \tilde{G}$ and hence $\left[p_{t}\right] \rightarrow[e] \in \tilde{G} / H$, for $t>0$ small enough there exists $785 g \in G$ such that $[g]=\left[p_{t}\right]$, because $i: G \rightarrow \tilde{G} / H$ is a local diffeomorphism at $786 e \in G$.

787 Combining Proposition 4.11 and 4.13 we obtain the following.
788 Corollary 4.14. Let G be a Carnot group with Lie algebra \mathfrak{g}. Let $\tilde{\mathfrak{g}}$ and \mathfrak{h} as in the 789 beginning of Section 4.1. Assume that there exists $\xi \in \tilde{\mathfrak{g}}$ such that

$$
\mathfrak{h}+V_{1}+\operatorname{ad}_{\xi}\left(\mathfrak{h}+V_{1}\right)=\tilde{\mathfrak{g}} .
$$

790 Then G has the Algebraic Sard Property.

5. Applications

792 In this section we use the criteria that we established in Section 4 in order to prove 793 items (2) to (4) of Theorem 1.2. The proof of (5) and (6) will be based on (4.1) and 794 Corollary 4.14.
795 The free Lie algebra on r generators is a graded Lie algebra generated freely by an $796 r$-dimensional vector space V. It thus has the form

$$
\mathfrak{f}_{r, \infty}=V \oplus V_{2} \oplus V_{3} \oplus \ldots
$$

797 Being free, the general linear group $G L(V)$ acts on this Lie algebra by strata-preserving 798 automorphisms. In order to form the free k-step rank r Lie algebra $\mathfrak{f}_{r, k}$ we simply 799 quotient $\mathfrak{f}_{r, \infty}$ by the Lie ideal $\oplus_{s>k} V_{s}$. Thus,

$$
\mathfrak{f}_{r, k}=V \oplus V_{2} \oplus \ldots \oplus V_{k} .
$$

800 5.1. Proof of (2) and (3). We consider the free nilpotent Lie group $F_{2,4}$ with 8012 generators and step 4 , and the free nilpotent Lie group $F_{3,3}$ with 3 generators 802 and step 3. Their Lie algebras are stratified, namely $\mathfrak{f}_{2,4}=V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{4}$ and $803 \mathfrak{f}_{3,3}=W_{1} \oplus W_{2} \oplus W_{3}$.
804 The Lie algebra $\mathfrak{f}_{2,4}$ is generated by two vectors, say X_{1}, X_{2}, in V_{1}, which one can 805 complete to a basis with

$$
\begin{array}{rlrl}
X_{21} & =\left[X_{2}, X_{1}\right] & & \\
X_{211} & =\left[X_{21}, X_{1}\right] & X_{212}=\left[X_{21}, X_{2}\right] \\
X_{2111} & =\left[X_{211}, X_{1}\right] & X_{2112}=\left[X_{211}, X_{2}\right]=\left[X_{212}, X_{1}\right] \quad X_{2122}=\left[X_{212}, X_{2}\right] .
\end{array}
$$

806 We apply Corollary 4.14 to verify the Algebraic Sard Property for $F_{2,4}$. We take \mathfrak{h} to 807 be the space of all strata preserving derivations of $\mathfrak{f}_{2,4}$, which in this case are generated 808 by the action of $\mathfrak{g l}(2, \mathbb{R})$ on V_{1}. Choose $\xi=X_{2}+X_{212}+X_{2111}$. Then $\left[\xi, V_{1}\right]$ contains 809 the vectors $X_{21}+X_{2112}$ and X_{2122}. Next, consider the basis $\left\{E_{i j} \mid i, j=1, \ldots, 2\right\}$ 810 of $\mathfrak{g l}(2, \mathbb{R})$, where $E_{i j}$ denotes the matrix that has entry equal to one in the (i, j) 811 position and zero otherwise. We compute the action of the derivation defined by each 812 one of the $E_{i j}$'s on ξ. Abusing of the notation $E_{i j}$ for such derivations, an elementary 813 calculation gives

$$
\begin{array}{cl}
E_{11} \xi=X_{212}+3 X_{2111} & E_{12} \xi=X_{1}+X_{211} \\
E_{22} \xi=X_{2}+2 X_{212}+X_{2111} & E_{21} \xi=2 X_{2112}
\end{array}
$$

814 Since we need to show that $V_{1}+\operatorname{ad}_{\xi} V_{1}=\mathfrak{g}$, it is enough to prove that $V_{2} \oplus V_{3} \oplus V_{4}=$ $815\left(\operatorname{ad}_{\xi} V_{1}\right) \bmod V_{1}$, which follows from direct verification.
816 We consider now the case of the free nilpotent group of rank 3 and step 3 . The 817 Lie algebra of $F_{3,3}$ is bracket generated by three vectors in W_{1}, say X_{1}, X_{2}, X_{3}, which 818 give a basis with

$$
\begin{array}{ccc}
X_{21}=\left[X_{2}, X_{1}\right] & X_{31}=\left[X_{3}, X_{1}\right] & X_{32}=\left[X_{3}, X_{2}\right] \\
X_{211}=\left[X_{21}, X_{1}\right] & X_{212}=\left[X_{21}, X_{2}\right] & X_{213}=\left[X_{21}, X_{3}\right] \\
X_{311}=\left[X_{31}, X_{1}\right] & X_{312}=\left[X_{31}, X_{2}\right] & X_{313}=\left[X_{31}, X_{3}\right] \\
X_{322}=\left[X_{32}, X_{2}\right] & X_{323}=\left[X_{32}, X_{3}\right] . &
\end{array}
$$

819 We have the bracket relation $\left[X_{32}, X_{1}\right]=X_{312}-X_{213}$. We apply Corollary 4.14 820 to verify the Algebraic Sard Property for $F_{3,3}$. We choose $\xi=X_{21}+X_{31}+X_{32}+$ $821 X_{312}+X_{213}$, and we consider the action of \mathfrak{h} on it. In this case $\mathfrak{h}=\mathfrak{g l}(3, \mathbb{R})$. Let $822 E_{i j} \in \mathfrak{g l}(3, \mathbb{R})$ be the matrix that has entry equal to one in the (i, j)-position and zero 823 otherwise. Then the set $\left\{E_{i j} \mid i, j=1, \ldots, 3\right\}$ is a basis of $\mathfrak{g l}(3, \mathbb{R})$. We compute the 824 action of the elements of this basis on ξ. If $i \neq j$ we obtain

$$
\begin{array}{lll}
E_{12} \xi=X_{31}+X_{311} & E_{13} \xi=-X_{21}+X_{211} & E_{23} \xi=X_{21}+2 X_{212} \\
E_{21} \xi=X_{32}+X_{322} & E_{31} \xi=-X_{32}-X_{323} & E_{32} \xi=X_{31}+2 X_{313}
\end{array}
$$

$$
\begin{aligned}
& E_{11} \xi=X_{21}+X_{31}+X_{213}+X_{312} \\
& E_{22} \xi=X_{21}+X_{32}+X_{213}+X_{312} \\
& E_{33} \xi=X_{31}+X_{32}+X_{213}+X_{312}
\end{aligned}
$$

826

 decomposition is given by the vector space direct sum$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}
$$

where \mathfrak{k} and \mathfrak{p} are the eigenspaces relative to the two eigenvalues 1 and -1 of θ. We fix a maximal abelian subspace \mathfrak{a} of \mathfrak{p}, whose dimension will be denoted by r. Let B be the Killing form on \mathfrak{g}; the bilinear form $\langle X, Y\rangle:=-B(X, \theta Y)$ defines a scalar product on \mathfrak{g}, for which the Cartan decomposition is orthogonal and by which \mathfrak{a} can be identified with its dual \mathfrak{a}^{*}. We fix an order on the system $\Sigma \subset \mathfrak{a}^{*}$ of nonzero restricted roots of $(\mathfrak{g}, \mathfrak{a})$. Let $\mathfrak{m}=\{X \in \mathfrak{k} \mid[X, Y]=0 \forall Y \in \mathfrak{a}\}$. The algebra \mathfrak{g} decomposes as $\mathfrak{g}=\mathfrak{m}+\mathfrak{a}+\oplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}$, where \mathfrak{g}_{α} is the root space relative to α. We denote by Σ_{+}the subset of positive roots. The Lie algebra of N, denoted \mathfrak{n}, decomposes as the sum of (positive) restricted root spaces $\mathfrak{n}=\oplus_{\alpha \in \Sigma_{+}} \mathfrak{g}_{\alpha}$.

Proof of (4). Denote by Π_{+}the subset of positive simple roots. The space $V=$ $\oplus_{\delta \in \Pi_{+}} \mathfrak{g}_{\delta}$ provides a stratification of \mathfrak{n}, so that (N, V) is a Carnot group. We prove that (N, V) has the Algebraic Sard Property. Let w be a representative in G of the longest element in the analytic Weyl group. From [Kna02, Theorem 6.5] we have $\operatorname{Ad} w^{-1} \overline{\mathfrak{n}}=\mathfrak{n}$, where $\overline{\mathfrak{n}}=\oplus_{\alpha \in-\Sigma_{+}} \mathfrak{g}_{\alpha}$. The Bruhat decomposition of G shows that N may be identified with the dense open subset $N \bar{P}$ of the homogeneous space

$$
X=\frac{1}{2}(X-\theta X)+\frac{1}{2}(X+\theta X)
$$

84 where $X-\theta X \in \mathfrak{p}$ and $X+\theta X \in \mathfrak{k}$. We obtain

$$
[\xi, X-\theta X]=\alpha(\xi) X-\theta[\theta \xi, X]=\alpha(\xi)(X+\theta X)
$$

The assumption that \mathfrak{g} is split implies in particular that \mathfrak{k} is generated by vectors of the form $X+\theta X$, with X a nonzero vector in a root space. Since ξ is regular, it follows that $\operatorname{ad}_{\xi} \mathfrak{p}=\mathfrak{k}$, which concludes the proof.

We observe that if \mathfrak{g} is not split, then we do not find a vector ξ such that $\mathfrak{p}+\operatorname{ad}_{\xi} \mathfrak{p}=\mathfrak{g}$ and so the same proof does not work. This can be shown, for example, by an explicit calculation on $\mathfrak{g}=\mathfrak{s u}(1,2)$.

Proof of (6). We observe that $\left(G, \oplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}\right)$ is a polarized group. Also in this case we assume that \mathfrak{g} is split. This implies that every root space $\mathfrak{g}_{\alpha}, \alpha \in \Sigma$, is one dimensional, and that $\mathfrak{m}=\{0\}$. We recall that the Killing form B identifies \mathfrak{a} with \mathfrak{a}^{*}. Let $H_{\alpha} \in \mathfrak{a}$ be such that $\alpha(H)=B\left(H_{\alpha}, H\right)$ for every $H \in \mathfrak{a}$. Recall that $\left[X_{\alpha}, \theta X_{\alpha}\right]=B\left(X_{\alpha}, \theta X_{\alpha}\right) H_{\alpha}$ and $B\left(X_{\alpha}, \theta X_{\alpha}\right)<0$. Let $\delta_{1}, \ldots, \delta_{r}$ be a basis of simple roots, and let $X_{\delta_{i}}$ be a basis of $\mathfrak{g}_{\delta_{i}}$ for every $i=1, \ldots, r$. The set of vectors $\left\{H_{\delta_{1}}, \ldots, H_{\delta_{r}}\right\}$ is a basis of \mathfrak{a}. Then the vector

$$
\xi=X_{\delta_{1}}+\cdots+X_{\delta_{r}}
$$

889 satisfies $\left[\xi, \oplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}\right] \supset \mathfrak{a}$, whence $\oplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}+\left[\xi, \oplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}\right]=\mathfrak{g}$. Arguing as in the Proof 890 of (5), we conclude that $\left(G, \oplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}\right)$ has the Analytic Sard Property.

$$
895
$$

$$
\begin{equation*}
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} \psi_{h_{1}}\left(g_{2}\right), h_{1} h_{2}\right) \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\psi_{h}\right)_{*}(V)=V, \quad \text { for all } h \in H \tag{5.4}
\end{equation*}
$$

Hence, if $g(1) \notin \operatorname{Abn}_{G}(e)$, i.e., g is not abnormal, from (2.4), we have

$$
\left.\left.\begin{array}{rl}
\left(\mathrm{d} \mathrm{R}_{\gamma(1)}\right)_{e}^{-1} \operatorname{Im}\left(\mathrm{~d}_{\operatorname{End}}^{u_{\gamma}}\right.
\end{array}\right) \quad=\operatorname{span}\left\{\operatorname{Ad}_{\gamma(t)}(V \oplus \mathfrak{h}) \mid t \in[0,1]\right\},{ }^{2}\right)
$$

906 where we used first that $\left(g, e_{H}\right) \cdot\left(e_{G}, h\right)=(g, h)$ and $\operatorname{Ad}_{\left(e_{G}, h\right)}(v, 0)=\left(\left(\mathrm{d} \psi_{h}\right)_{e} v, 0\right)$;
6. Step-3 Carnot groups

Our first goal in this section is to prove Theorem 1.5 concerning the Sard Property for length minimizers in Carnot groups of step 3. A secondary goal is to motivate

917 918 919 it satisfies the Goh condition; in particular, γ is contained in the algebraic variety

$$
W^{\lambda}=\left\{g \in G: \lambda\left(\operatorname{Ad}_{g} V_{2}\right)=0\right\}
$$

$$
\operatorname{Abn}_{s t r}^{l m}(e) \subseteq \bigcup_{G^{\prime}<G} \operatorname{Abn}_{G^{\prime}}^{n o r}(e)
$$

939 where $\operatorname{Abn}_{G^{\prime}}^{\text {nor }}(e)$ is the union of all curves starting from e that are contained in G^{\prime}, 940 are normal in G^{\prime}, and are abnormal within G.

$$
E x p_{m}=\text { End } \circ \widetilde{\operatorname{Exp}}_{m}
$$

951 Every point in $\bigcup_{G^{\prime}<G} \mathrm{Abn}_{G^{\prime}}^{n o r}(e)$ is a value of some $E x p_{m}$ where the differential of End 952 is not onto. Therefore, it is a singular value of $E x p_{m}$. This constitutes a measure 953 zero sub-analytic subset of G.

5 Remark 6.1. In the free 3-step Carnot group, we are not able to bound the codi6 mension of $\mathrm{Abn}^{l m}(e)$ away from 1. However, the codimension of $\mathrm{Abn}_{s t r}^{l m}(e)$ is at least 957 3. Actually, in the free 3-step rank- r group $\mathbb{F}_{r, 3}$ this codimension is greater or equal 958 than $r^{2}-r+1$. The calculation is similar to the one in Section 3.5. Indeed, by Witt 959 Formula the dimension of $\mathbb{F}_{r, 3}$ is

$$
\begin{equation*}
\operatorname{dim} \mathbb{F}_{r, 3}=r+\frac{r(r-1)}{2}+\frac{r^{3}-r}{3} \tag{6.2}
\end{equation*}
$$

960 In the proof of Theorem 1.5, we showed that each abnormal geodesic from the origin is 961 in a subgroup, which therefore has codimension bounded by $\operatorname{dim} \mathbb{F}_{r-1,3}$, computable 962 via Witt Formula (6.2). The collection of all the subgroups of rank $r-1$ can be 963 parametrized via the Grassmanian $G r(r, r-1)$, which has dimension $r-1$. Therefore, 964 we compute

$$
\operatorname{dim} \mathbb{F}_{r, 3}-\operatorname{dim} \mathbb{F}_{r-1,3}-\operatorname{dim} G r(r, r-1)=r^{2}-r+1
$$

965 Notice that $r^{2}-r+1$ equals 3 if $r=2$, and is strictly greater than 7 if $r \geq 3$.

966 6.2. Investigations in the rank-3 case. As said in Section 5, the group $G L(V)$ acts 967 on each strata V_{j} of the free algebra $\mathfrak{f}_{r, \infty}$. So each summand V_{j} breaks up into $G L(V)$ 968 irreducibles. Also, the k-step rank r Lie algebra decomposes as a representation space

$$
\mathfrak{f}_{r, k}=V \oplus V_{2} \oplus \ldots \oplus V_{k} .
$$

969 The first summand V is the 'birthday representation' of $G L(V)$. The second summand 970 is well-known as a $G L(V)$ representation, and in any case is easy to guess:

$$
V_{2}=\Lambda^{2} V
$$ 977 by V within the full tensor algebra $\mathfrak{T}(V)$. In particular,

$$
V_{r} \subset V^{\otimes r}
$$

Both the symmetric group S_{r} on r letters, and the general linear group $G L(V)$ acts on $979 V^{\otimes r}$. By Schur-Weyl duality, see [FH91, Exercise 6.30 page 87], under the joint action 1016 decomposition led to the specific element ξ defined at the end of Section 5.1.

1017 To get to the equations describing abnormality for $F_{3,3}$, we write its Lie algebra as

$$
\mathfrak{f}_{3,3}=V_{1} \oplus V_{2} \oplus V_{3}=\mathbb{R}^{3} \oplus \mathbb{R}^{3 *} \oplus \mathfrak{s l}(3)
$$

1018 and so an element of the dual Lie algebra can be written out as

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathfrak{f}_{3,3}^{*}=V_{1}^{*} \oplus V_{2}^{*} \oplus V_{3}^{*}=\mathbb{R}^{3 *} \oplus \mathbb{R}^{3} \oplus \mathfrak{s l}(3)^{*}
$$

1019 For this covector to lie along an abnormal extremal it must be $\lambda_{1}=0$.
We partition the abnormal extremals into two classes: those for which $\lambda_{2} \neq 0$, 1021 which we call regular abnormal extremals following Liu-Sussmann, and those for which $1022 \lambda_{2}=0$. The Hamiltonian

$$
H=P_{1} P_{23}+P_{2} P_{31}+P_{3} P_{12}
$$

1023 generates all the regular abnormal extremals. Here

1024

$$
\begin{gathered}
\lambda_{1}=\left(P_{1}, P_{2}, P_{3}\right) \\
\lambda_{2}=\left(P_{23}, P_{31}, P_{12}\right) .
\end{gathered}
$$

1025 and

$$
P_{i}=P_{X_{i}} \quad P_{i j}=P_{X_{i j}}=-P_{j i}
$$

1026 where we are following the notation of (2.20) and (5.1). When we say that H "gener1027 ates" the regular abnormal extremals we mean two things: (A) the Hamiltonian flow 1028 of H preserves the locus $\lambda_{1}=0$, i.e., the locus $\Delta^{\perp}=\left\{P_{1}=P_{2}=P_{3}=0\right\}$ and (B) on 1029 the locus $\lambda_{1}=0, \lambda_{2} \neq 0$, a unique - up to reparameterization - abnormal extremal 1030 passes through every point, with the extremal through $\left(0, \lambda_{2}, \lambda_{3}\right)$ being the solution 1031 to Hamilton's equations for this Hamiltionian H with initial conditions λ.

We follow a Hamiltonian trick that Igor Zelenko kindly showed us for both finding $1033 H$ and for validating claims (A) and (B). Start with the Maximum Principle charac1034 terization of abnormal extremals discussed in Section 2.4. According to this principle, 1035 an abnormal with control $u(t)$ is a solution to Hamilton's equations having the time 1036 dependent Hamiltonian $H_{u}=u_{1} P_{1}+u_{2} P_{2}+u_{3} P_{3}$ and lying in the common level set $1037 P_{1}=0, P_{2}=0, P_{3}=0$. From Hamilton's equations we find that

$$
\begin{aligned}
& \dot{P}_{1}=\left\{P_{1}, H_{u}\right\}=-u_{2} P_{12}-u_{3} P_{13} \\
& \dot{P}_{2}=\left\{P_{2}, H_{u}\right\}=-u_{1} P_{21}-u_{3} P_{23} \\
& \dot{P}_{3}=\left\{P_{3}, H_{u}\right\}=-u_{1} P_{31}-u_{2} P_{32}
\end{aligned}
$$

1040 But we must have that $\dot{P}_{i}=0$. Consequently $\left(u_{1}, u_{2}, u_{3}\right)$ must lie in the kernel of the 1041 skew-symmetric matrix whose entries are $P_{i j}$. As long as this matrix is not identically 1042 zero, its kernel is one-dimensional and is spanned by $\left(P_{23}, P_{31}, P_{12}\right)$. It follows that:

$$
\left(u_{1}, u_{2}, u_{3}\right)=f\left(P_{23}, P_{31}, P_{12}\right), f \neq 0
$$

1043 Since the parameterization of the abnormal is immaterial, we may take $f=1$. Plug1044 ging our expression for u back in to H_{u} yields the form of H above.
1045 We can write down the ODEs governing the regular abnormal extremals, using this 1046 H. We have just seen that

$$
u=\lambda_{2}=\left(P_{23}, P_{31}, P_{12}\right)
$$

1047 describes the controls, i.e., the moving element of V. This control evolves according 1048 to

$$
\dot{u}=A u
$$

1049 where A is a constant matrix in $S L(3)$. These are to be supplemented by the under1050 standing of what the resulting abnormal extremal is

$$
\lambda_{1}=0, \lambda_{2}=u, \lambda_{3}=A .
$$

1051 We want to establish Hamilton's equations, using this H. For doing so, we compute $1052 \dot{P}_{i j}=\left\{P_{i j}, H\right\}$ and $\dot{P}_{i j k}=\left\{P_{i j k}, H\right\}=0$ where $P_{i j k}=P_{X_{i j k}}$. The first equation 1053 results in a bilinear pairing between $P_{i j}$ and $P_{i j k}$ which, when the $P_{i j k}$ are properly 1054 interpreted as an element $A \in S L(3)$, is matrix multiplication.

1055 6.3. Computation of abnormals not lying in any subgroup. Take a diagonal1056 izable A with distinct nonzero eigenvalues $a, b, c, a+b+c=0$. For simplicity, let 1057 it be $\operatorname{diag}(a, b, c)$ relative to our choice of coordinates for V. Then u evolves accord1058 ing to $u(t)=\left(A e^{a t}, B e^{b t}, C e^{c t}\right)$. We may suppose that none of A, B, C are zero by 1059 assuming that no components of $\lambda_{2}=u(0)$ are zero. The corresponding curve in G 1060 passing through $e=0$, projected onto the first level is the curve $x_{1}=\frac{1}{a}\left(A\left(e^{a t}-1\right)\right.$, $1061 x_{2}=\frac{1}{b}\left(B\left(e^{b t}-1\right), x_{3}=\frac{1}{c}\left(C\left(e^{c t}-1\right)\right.\right.$. Since the functions $1, e^{a t}, e^{b t}, e^{c t}$ are linearly 1062 independent, the curve projected to the first level cannot lie in any proper subspace 1063 of V, which in turn implies that the entire abnormal curve cannot lie in any proper 1064 subgroup of G.
1065 Alternatively, one can directly use Corollary 2.14. In fact, with the notation of 1066 Section 5, one can take $\lambda=e_{21}^{*}-e_{31}^{*}+e_{32}^{*}-c e_{213}^{*}+b e_{312}^{*}$ to prove that the curve with 1067 control $u(t)=\left(e^{(-b-c) t}, e^{b t}, e^{c t}\right)$ is abnormal.

The characteristic viewpoint. We put forth one further perspective on abnormal ex1069 tremals which makes the computation just done more transparent. Take any po1070 larized manifold (Q, Δ). Take the annihilator bundle of Δ, denoted $\Delta^{\perp} \subset T^{*} Q$. 1071 Restrict the canonical symplectic form ω of $T^{*} Q$ to Δ^{\perp}. Call this restriction ω_{Δ}. 1072 Then the abnormal extremals are precisely the (absolutely continuous) character1073 istics for ω_{Δ}, that is the curves in Δ^{\perp} whose tangents are a.e. in $\operatorname{Ker}\left(\omega_{\Delta}\right)$. Let $1074 \pi: \Delta^{\perp} \rightarrow Q$ be the canonical projection. Then a linear algebra computation shows 1075 that $d \pi_{(q, \lambda)}$ projects $\operatorname{Ker}\left(\omega_{\Delta}\right)(q, \lambda)$ linearly isomorphically onto $\operatorname{Ker}\left(w_{q}(\lambda)\right) \subset \Delta_{q}$ 1076 where $\lambda \in \Delta_{q}^{\perp} \mapsto w_{q}(\lambda) \in \Lambda^{2} \Delta_{q}^{*}$ is the operator called the "dual curvature" in 1077 [Mon02]. In the case of a polarized group $(Q, \Delta)=(G, V)$ we have that $w_{q}(\lambda)$ is the 1078 two-form of Equation (2.15) for $\lambda=\eta \in V^{\perp}$.
1079 In our situation V has dimension 3 so that $w(\lambda)$ has either rank 2 or 0 and thus its 1080 kernel has dimension 1 or 3 . The kernel has dimension 1 exactly when $\lambda_{2} \neq 0$, and 1081 rank 3 exactly when $\lambda_{2}=0$. Along the points where $\lambda_{2} \neq 0$ the kernel of ω_{Δ} is a line 1082 field, and the Hamiltonian vector field X_{H} for H above rectifies this line field. Note 1083 that X_{H} vanishes exactly along the variety $\lambda_{2}=0$. algebraic.

7. Open problems

Is $\operatorname{Abn}(e)$, the set of endpoints of abnormal extremals leaving the identity, a closed analytic variety in G when G is a simply connected polarized Lie group? In all examples computed, the answer is 'yes'. However, even the following more basic questions are still open.
Is $\operatorname{Abn}(e)$ closed?
Can $\operatorname{Abn}(e)$ be the entire group G ?
Concerning the importance of the adjective "simply connected" above, consider the torus. Any integrable distribution V whose corank is 1 or greater on any space G has its $\operatorname{Abn}(e)$ the leaf through e. Consequently an irrationally oriented polarization V on the torus has for its $\operatorname{Abn}(e)$ a set that is neither closed nor analytic.

We also wonder wether statements 5 and 6 of Theorem 1.2 can be upgraded to

Can one unify (6) and (7) having the result for all semisimple groups?
If G and H are polarized Lie groups having the Sard Property, does any semidirect product $G \rtimes H$ have the Sard Property?
Finally, in the particular case of rank 2 Carnot groups, what is the minimal codimension of $\operatorname{Abn}(e)$?
[Arn71] V. I. Arnol'd, Matrices depending on parameters, Uspehi Mat. Nauk 26 (1971), no. 2(158), 101-114.
[AS96] A. A. Agrachev and A. V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 6, 635-690.
[AS04] Andrei A. Agrachev and Yuri L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, vol. 87, Springer-Verlag, Berlin, 2004, Control Theory and Optimization, II.
[BCR98] Jacek Bochnak, Michel Coste, and Marie-Francoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998, Translated from the 1987 French original, Revised by the authors.
[FH91] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics.
[GK95] Chr. Golé and R. Karidi, A note on Carnot geodesics in nilpotent Lie groups, J. Dynam. Control Systems 1 (1995), no. 4, 535-549. Mikhail Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79-323.
\qquad

1150 (Vittone) Università di Padova, Dipartimento di Matematica Pura ed Applicata, 1151 via Trieste 63, 35121 Padova, Italy \& Universität Zürich, Institut für Mathematik, 7 (1994), no. 3, 217-234.
[Mon02] \qquad , A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002.
[RT05] L. Rifford and E. Trélat, Morse-Sard type results in sub-Riemannian geometry, Math. Ann. 332 (2005), no. 1, 145-159.
[TY13] Kanghai Tan and Xiaoping Yang, Subriemannian geodesics of Carnot groups of step 3, ESAIM Control Optim. Calc. Var. 19 (2013), no. 1, 274-287.
(Le Donne) Department of Mathematics and Statistics, University of Jyväskylä, 40014 Jyväskylä, Finland
E-mail address: enrico.ledonne@jyu.fi
(Montgomery) Mathematics Department, University of California, 4111 Mchenry Santa Cruz, CA 95064, USA

E-mail address: rmont@ucsc.edu
(Ottazzi) Università di Trento, Trento 38123 Italy \& University of New South Wales, NSW 2052 Australia.
E-mail address: alessandro.ottazzi@gmail.com
(Pansu) Université Paris-Sud Bâtiment 425, 91405 Orsay, France
E-mail address: Pierre.Pansu@math.u-psud.fr Winterthurerstrasse 190, 8057 ZÜrich, Switzerland

E-mail address: vittone@math.unipd.it
[Kna02] Anthony W. Knapp, Lie groups beyond an introduction, second ed., Progress in Mathematics, vol. 140, Birkhäuser Boston Inc., Boston, MA, 2002.
[LDLMV13] Enrico Le Donne, Gian Paolo Leonardi, Roberto Monti, and Davide Vittone, Extremal curves in nilpotent Lie groups, Geom. Funct. Anal. 23 (2013), no. 4, 1371-1401.
, Extremal polynomials in stratified groups, Preprint, submitted (2014).
[Mon94] Richard Montgomery, Singular extremals on Lie groups, Math. Control Signals Systems

