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Abstract. In Carnot-Carathéodory or sub-Riemannian geometry, one of the ma-
jor open problems is whether the conclusions of Sard’s theorem holds for the end-
point map, a canonical map from an infinite-dimensional path space to the under-
lying finite-dimensional manifold. The set of critical values for the endpoint map
is also known as abnormal set, being the set of endpoints of abnormal extremals
leaving the base point. We prove that a strong version of Sard’s property holds
for all step-2 Carnot groups and several other classes of Lie groups endowed with
left-invariant distributions. Namely, we prove that the abnormal set lies in a proper
analytic subvariety. In doing so we examine several characterizations of the abnor-
mal set in the case of Lie groups.
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1. Introduction39

Let G be a connected Lie group with Lie algebra g. Let V ⊆ g be a subspace.40

Following Gromov [Gro96, Sec. 0.1], we shall call the pair (G, V ) a polarized group.41

Carnot groups are examples of polarized groups where V is the first layer of their42

stratification. To any polarized group (G, V ) one associates the endpoint map:43

End : L2([0, 1], V ) → G

u 7→ γu(1),

where γu is the curve on G leaving from the origin e ∈ G with derivative (dLγ(t))eu(t).44

The abnormal set of (G, V ) is the subset Abn(e) ⊂ G of all singular values of45

the endpoint map. Equivalently, Abn(e) is the union of all abnormal curves passing46

through the origin (see Section 2.3). If the abnormal set has measure 0, then (G, V ) is47

said to satisfy the Sard Property. Proving the Sard Property in the general context of48

polarized manifolds is one of the major open problems in sub-Riemannian geometry,49

see the questions in [Mon02, Sec. 10.2] and Problem III in [Agr13]. In this paper,50
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we will focus on the following stronger versions of Sard’s property in the context of51

groups.52

Definition 1.1 (Algebraic and Analytic Sard Property). We say that a polarized53

group (G, V ) satisfies the Algebraic (respectively, Analytic) Sard Property if its ab-54

normal set Abn(e) is contained in a proper real algebraic (respectively, analytic)55

subvariety of G.56

Our main results are summarized by:57

Theorem 1.2. The following Carnot groups satisfy the Algebraic Sard Property:58

(1) Carnot groups of step 2;59

(2) The free-nilpotent group of rank 3 and step 3;60

(3) The free-nilpotent group of rank 2 and step 4;61

(4) The nilpotent part of the Iwasawa decomposition of any semisimple Lie group62

equipped with the distribution defined by the sum of the simple root spaces.63

The following polarized groups satisfy the Analytic Sard Property:64

(5) Split semisimple Lie groups equipped with the distribution given by the subspace65

of the Cartan decomposition with negative eigenvalue.66

(6) Split semisimple Lie groups equipped with the distribution defined by the sum67

of the nonzero root spaces.68

Earlier work [Mon94] allows us69

(7) compact semisimple Lie groups equipped with the distribution defined by the70

sum of the nonzero root spaces, (i.e., the orthogonal to the maximal torus71

relative to a bi-invariant metric).72

Case (1) will be proved reducing the problem to the case of a smooth map between73

finite-dimensional manifolds and applying the classical Sard Theorem to this map.74

The proof will crucially use the fact that in a Carnot group of step 2 each abnormal75

curve is contained in a proper subgroup. This latter property may fail for step 3,76

see Section 6.3. However, a similar strategy together with the notion of abnormal77

varieties, see (2.21), might yield a proof of Sard Property for general Carnot groups.78

The proof of cases (2)-(6) is based on the observation that, if X is a family of
contact vector fields (meaning infinitesimal symmetries of the distribution) vanishing
at the identity, then for any horizontal curve γ leaving from the origin with control u
we have

(Rγ(1))∗V + (Lγ(1))∗V + X (γ(1)) ⊂ Im(d Endu) ⊂ Tγ(1)G.

Therefore if g ∈ G is such that79

(1.3) (Rg)∗V + (Lg)∗V + X (g) = TgG,

then g is not a singular value of the endpoint map. In fact, if (1.3) is describable as80

a non-trivial system of polynomial inequations for g, then (G, V ) has the Algebraic81
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Sard Property. Case (3) was already proved in [LDLMV14] by using an equivalent82

technique.83

Equation (1.3) does not have solutions in the following cases: free-nilpotent groups84

of rank 2 and step ≥ 5, free-nilpotent groups of rank 3 and step ≥ 4, free-nilpotent85

groups of rank ≥ 4 and step ≥ 3. Here Sard’s property remains an open problem.86

We further provide a more quantitative version of Sard’s property for free-nilpotent87

groups of step 2.88

Theorem 1.4. In any free-nilpotent group of step 2 the abnormal set is contained in89

an affine algebraic subvariety of codimension 3.90

Agrachev, Lerario, and Gentile previously proved that in a generic Carnot group of91

step 2 the generic point in the second layer is not in the abnormal set, see [AGL13,92

Theorem 9].93

There are several papers that give a bound on the size of the set of all those94

points End(u) where u is a critical point with the extra property that γu is length95

minimizing for a fixed sub-Riemannian structure. A very general result [Agr09] by96

Agrachev based on techniques of Rifford and Trélat [RT05] states that this set is97

contained in a closed nowhere dense set, for general sub-Riemannian manifolds.98

In this direction, in step 3 Carnot groups equipped with a sub-Riemannian structure99

on the first layer, we bound the size of the set Abnlm(e) of points connected to the100

origin by locally length minimizing abnormal curves. Our result uses ideas of Tan and101

Yang [TY13] and the fact that in an arbitrary polarized Lie group the Sard Property102

holds for normal-abnormal curves, see Lemma 2.32.103

Theorem 1.5. Let G be a sub-Riemannian Carnot group of step 3. The Sub-analytic104

Sard Property holds for locally length minimizing abnormal curves. Namely, the set105

Abnlm(e) is contained in a sub-analytic set of codimension at least 1.106

New!New! 107

The paper is organized as follows. Section 2 is a preliminary section. First we108

remind the definition of the endpoint map and we give a characterization of the im-109

age of its differential in Proposition 2.3, in the case of polarized groups. Secondly,110

we review Carnot groups, abnormal curves, and give interpretations of the abnormal111

equations using left-invariant forms and right-invariant forms. In Section 2.5, we ex-112

amine the notion of abnormal varieties. In Section 2.7 we review normal curves, and113

in Section 2.8 the Goh condition. In Section 3 we consider step-2 Carnot groups.114

We first prove the Algebraic Sard Property for general Carnot groups of step 2 and115

then we prove Theorem 1.4 for free step-2 groups. For the latter, we also give precise116

characterizations of the abnormal set. In Section 4 we discuss sufficient conditions117

for Sard’s property to hold. In particular, we discuss the role of contact vector fields118

and that of the equation (1.3). The most important criteria are Proposition 4.11119

and Corollary 4.14, which will be used in Section 5 to prove the remaining part of120
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Theorem 1.2. In Section 5.3 we discuss Sard Property for a large class of semidirect121

product of polarized groups. In particular, we provide examples of groups with expo-122

nential growth having the Analytic Sard Property (semisimple Lie groups) and the123

Algebraic Sard Property (solvable Lie groups). See Proposition 5.5 and Remark 5.6.124

Section 6 is devoted to Carnot groups of step 3. First we prove Sard Property for125

abnormal length minimizers, i.e., Theorem 1.5. Second, we investigate the example126

of the free 3-step rank-3 Carnot group, showing that the argument used in step-2127

Carnot groups finds an obstruction: there are abnormal curves not contained in any128

proper subgroup. We conclude the article with Section 7, where we discuss the open129

problems.130

Acknowledgments Most of the work in this paper was developed while the authors131

were guests of the program Geometry, Analysis and Dynamics on Sub-Riemannian132

Manifolds at the Institut Henri Poincaré in the Fall 2014. The authors are very133

grateful to the program organizers A. Agrachev, D. Barilari, U. Boscain, Y. Chitour,134

F. Jean, L. Rifford, and M. Sigalotti, as well to IHP for its support.135

2. Preliminaries136

Let G be a connected Lie group with Lie algebra g, viewed as the tangent space of137

G at the identity element e. For all g ∈ G, denote by Lg and Rg the left and right138

multiplication by g, respectively. Also, Adg := d(Lg ◦Rg−1)e.139

Fix a linear subspace V ⊆ g. Let u be an element of L2([0, 1], V ). Denote by γu140

the curve in G that solves the ODE:141

(2.1)
d γ

d t
(t) =

Ä
dLγ(t)

ä
e
u(t),

with initial condition γ(0) = e. Viceversa, if γ : [0, 1]→ G is an absolutely continuous142

curve that solves (2.1) for some u ∈ L2([0, 1], V ), then we say that γ is horizontal143

with respect to V and that u = uγ is its control. In other words, the derivatives of γ144

lie in the left-invariant subbundle, denoted by ∆, that coincides with V at e.145

The endpoint map starting at e with controls in V is the map146

End : L2([0, 1], V ) → G

u 7→ γu(1).

2.1. Differential of the endpoint map. The following result is standard and a147

proof of it can be found (in the more general context of Carnot-Carathéodory mani-148

folds) in [Mon02, Proposition 5.2.5, see also Appendix E].149

Theorem 2.2 (Differential of End). The endpoint map End is a smooth map between150

the Hilbert space L2([0, 1], V ) and G. If γ is a horizontal curve leaving from the origin151
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with control u, then the differential of End at u, which is a map from L2([0, 1], V ) to152

the tangent space of G at γ(1), is given by153

d Endu v = (dRγ(1))e

∫ 1

0
Adγ(t) v(t) d t, ∀v ∈ L2([0, 1], V ).

Sketch of the proof. The proof of a more general result can be found in [Mon02]. We154

sketch here the simple proof of the formula in the case when G ⊂ GLn(R), where we155

can interpret the Lie product as a matrix product and work in the matrix coordinates.156

Let γu+εv be the curve with the control u + εv and σ(t) be the derivative of γu+εv(t)157

with respect to ε at ε = 0. Then σ satisfies the following ODE (which is the derivation158

with respect to ε of (2.1) for γu+εv)159

dσ

d t
= γ(t) · v(t) + σ · u(t).

Now it is easy to see that
∫ t
0 Adγ(s)(v(s)) d s · γ(t) satisfies the above equation with160

the same initial condition as σ, hence is equal to σ. �161

Proposition 2.3 (Image of d End). If γ : [0, 1] → G is a horizontal curve leaving162

from the origin with control u, then163

Im(d Endu) = (dRγ(1))e(span{Adγ(t) V : t ∈ [0, 1]}).(2.4)

Proof. A glance at the formula of Theorem 2.2 combined with the fact that (dRγ(1))e164

is a linear isomorphism from g to Tγ(1)G shows that it suffices to prove that165 ®∫ 1

0
Adγ(t) v(t) d t : v ∈ L2([0, 1], V )

´
= span{Adγ(t) V : t ∈ [0, 1]}.

⊂: Any linear combination of terms Adγ(ti) vi is in the right hand set. Now an166

integral is a limit of finite sums and the right hand side is closed. Hence the right167

hand side contains the left hand side.168

⊃: It suffices to show that any element of the form ξ = Adγ(t1) v1 lies in the left hand169

side. Let ψn(t) be a delta-function family centered at t1, that is, a smooth family170

of continuous functions for which the limit as a distribution as n → ∞ of ψn(t) is171

δ(t − t1). Then limn→∞
∫ 1

0 Adγ(t) ψn(t)v1 d t = Adγ(t1) v1 = ξ and since the left hand172

side is a closed subspace, ξ lies in the set in the left hand side. �173

Remark 2.5. Evaluating (2.4) at t = 0 and t = 1 yields174

(2.6) (dRγ(1))eV + (dLγ(1))eV ⊂ Im(d Endu).

Remark 2.7. Proposition 2.3 implies immediately that for strongly bracket generating175

distributions, the endpoint map is a submersion at every u 6= 0. We recall that a176

polarized group (G, V ) is strongly bracket generating if for every X ∈ V \ {0}, one177

has V + [X, V ] = g.178
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Remark 2.8 (Goh’s condition is automatic in rank 2). Assume that dimV = 2. We179

claim that if γ is horizontal leaving from the origin with control u, then for all t ∈ [0, 1]180

we have181

(2.9) (dRγ(1))e Adγ(t)[V, V ] ⊆ Im(d Endu).

Indeed, we may assume that γ is parametrized by arc length and that t is a point of182

differentiability. Hence, γ(t)−1γ(t + ε) = exp(u(t)ε + o(ε)). Notice that since u(t) ∈183

V \{0} and dimV = 2, it follows that [u(t), V ] = [V, V ]. Therefore Ad−1
γ(t) Adγ(t+ε) V =184

eadu(t)ε+o(ε)V. Hence, for all Y ∈ V185

ε[u(t), Y ] + o(ε) ∈ V + Ad−1
γ(t) Adγ(t+ε) V.

Therefore, Proposition 2.3 implies that Adγ(t)[u(t), Y ] ∈ (dRγ(1))
−1
e Im(d Endu), which186

proves the claim.187

By (2.35) below, formula (2.9) implies that, whenever γ is an abnormal curve (see188

Section 2.3) in a polarized group (G, V ) of rank 2, then γ satisfies the Goh condition189

(see Section 2.8).190

Remark 2.10 (Action of contact maps). We associate to the subspace V ⊆ g a left-191

invariant subbundle ∆ of TG such that ∆e = V . A vector field ξ ∈ Vec(G) is said to192

be contact if its flow Φs
ξ preserves ∆. Denote by193

S := {ξ ∈ Vec(G) | ξ contact, ξe = 0}
the space of global contact vector fields on G that vanish at the identity. We claim194

that, for every horizontal curve γ leaving from the origin,195

(2.11) S(γ(1)) ⊂ Im(d Endu).

Indeed, let ξ ∈ S and let φsξ be the corresponding flow at time s. Since ξe = 0, we196

have that φsξ(e) = e. Consider the curve γs := φsξ ◦ γ. Notice that γs(e) = e and that197

γs is horizontal, because ξ is a contact vector field. Therefore,198

End(us) = γs(1) = Φs
ξ(γ(1)),

where us is the control of γs. Differentiating at s = 0, we conclude that ξ(γ(1)),199

which is an arbitrary point in S(γ(1)), belongs to Im(d Endu).200

2.2. Carnot groups. Among the polarized groups, Carnot groups are the most dis-201

tinguished. A Carnot group is a simply connected, polarized Lie group (G, V ) whose202

Lie algebra g admits a direct sum decomposition in nontrivial vector subspaces203

g = V1 ⊕ V2 ⊕ . . .⊕ Vs such that [Vi, Vj] = Vi+j

where Vk = {0}, k > s and V1 = V . We refer to the ith summand Vi as the ith layer.204

The above decomposition is also called the stratification of g and Carnot groups205

are often referred to in the analysis literature as stratified groups. The step of a206

Carnot group is the total number s of layers and equals the degree of nilpotency of207
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g: all Lie brackets of length greater than s vanish. Every Carnot group admits at208

least a canonical outer automorphism, the ‘scaling’ δλ which on g is equal to the209

multiplication by λi on the ith layer.210

Since G is simply connected and nilpotent, the exponential map exp : g → G is a211

diffeomorphism. We write log for the inverse of exp. When we use log to identify g212

with G the group law on G becomes a polynomial map g× g→ g with 0 ∈ g playing213

the role of the identity element e ∈ G.214

2.3. Abnormal curves.215

Definition 2.12 (Abnormal curve). Let (G, V ) be a polarized group. Let γ : [0, 1]→216

G be a horizontal curve leaving from the origin with control u. If Im(d Endu) ( Tγ(1)G,217

we say that γ is abnormal.218

In other words, γ is abnormal if and only if γ(1) is a critical value of End. We219

define the abnormal set of (G, V ) as220

(2.13) Abn(e) := {γ(1) | γ abnormal , γ(0) = e} = {critical values of End}.
The Sard Problem in sub-Riemannian geometry is the study of the above abnormal221

set. More information can be found in [Mon02, page 182].222

Interpretation of abnormal equations via right-invariant forms. Proposition 2.3 gives223

an interpretation for a curve to be abnormal, which, to the best of our knowledge, is224

not in the literature.225

Corollary 2.14. Let (G, V ) be a polarized group and let γ : [0, 1]→ G be a horizontal226

curve. Then the following are equivalent:227

(1) γ is abnormal;228

(2) there exists λ ∈ g∗ \ {0} such that λ(Adγ(t) V ) = {0} for every t ∈ [0, 1];229

(3) there exists a right-invariant 1-form α on G such that α(∆γ(t)) = {0} for230

every t ∈ [0, 1], where ∆ is the left-invariant distribution induced by V .231

Proof. (2) and (3) are obviously equivalent. By Proposition 2.3, γ is abnormal if and232

only if there is a proper subspace of g that contains Adγ(t) V for all t. �233

Interpretation of abnormal equations via left-invariant adjoint equations. The pre-234

vious section characterized singular curves for a left-invariant distribution on a Lie235

group G in terms of right-invariant one-forms. This section characterizes the same236

curves in terms of left-invariant one-forms. This left-invariant characterization is the237

one used in [Mon94, Equations (12), (13) and (14)] and [GK95, equations in Sec-238

tion 2.3]. We establish the equivalence of the two characterizations directly using239

Lie theory. Then we take a second, Hamiltonian, perspective on the equivalence of240

characterizations. In this perspective, the right-invariant characterization is simply241

the momentum map applied to the Hamiltonian provided by the Maximum Principle.242
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We shall also introduce the notation243

(2.15) w(η)(X, Y ) := η([X, Y ]), for η ∈ V ⊥ ⊂ g∗, X, Y ∈ V.

Proposition 2.16. Let (G, V ) be a polarized group and let γ : [0, 1] → G be a244

horizontal curve with control u. Then the following are equivalent:245

(1) γ is abnormal;246

(2) there exists a curve η : [0, 1] → g∗, with η(t)|V = 0 and η(t) 6= 0, for all
t ∈ [0, 1], representing a curve of left-invariant one-forms, such that®

d η
d t

(t) = (adu(t))
∗η(t)

u(t) ∈ Ker(w(η(t))).

Remark 2.17. There is a sign difference between the first equation of (2) above,247

namely d η
d t

(t) = (adu(t))
∗η(t), and the analogous equation in [Mon94, Sec. 4] that248

reads d η
d t

(t) = − ad∗u(t) η(t). The equations coincide if we set ad∗u = −(adu)
∗. To249

understand this minus sign, we first observe that in the equation above (adu)
∗ is the250

operator (adu)
∗ : g∗ → g∗ dual to the adjoint operator, so that251

((adu)
∗λ)(X) = λ(adu(X)) = λ([u,X]).

In the equation of [Mon94, Sec. 4] the operator ad∗u is the differential of the co-adjoint252

action Ad∗ : G→ gl(g∗) taken at g = e in the direction u ∈ g. The minus sign arises253

out of the inverse needed to make the action a left action: Ad∗(g) = (Adg−1)∗.254

Golé and Karidi made good use of the coordinate version of the previous propo-255

sition. See [GK95, page 540], following [Mon94, Sec. 4]. See also [LDLMV13,256

LDLMV14]. To describe their version, fix a basis X1, . . . , Xn of g such that X1, . . . , Xr257

is a basis of V . Let ckij be the structure constant of g with respect to this basis, seen258

as left-invariant vector fields. Let (u1, . . . , ur) ∈ V be controls relative to this basis.259

Let ηi = η(Xi) denote the linear coordinates of a covector η ∈ g∗ relative to this basis.260

Proposition 2.18. Let (G, V ) be a polarized group. Let γ : [0, 1]→ G be a horizontal261

curve with control
∑r
i=1 ui(t)Xi. Under the above coordinate conventions, the following262

are equivalent:263

(1) γ is abnormal;264

(2) there exists a vector function (0, 0, . . . , 0, ηr+1, . . . , ηn) : [0, 1] → Rn, never
vanishing, such that® d ηi

d t
(t) +

∑r
j=1

∑n
k=r+1 c

k
ijuj(t)ηk(t) = 0, for all i = r + 1, . . . , n,∑r

j=1

∑n
k=r+1 c

k
ijuj(t)ηk(t) = 0, for all i = 1, . . . , r.

Both Corollary 2.14 and Proposition 2.16 lead to a one-form λ(t) ∈ T ∗γ(t)G along265

the curve γ in G. The key to the equivalence of the right and left perspectives of these266

two propositions is that these one-forms along γ are equal. For the right-invariant267

version, Corollary 2.14 provides first the constant covector λR ∈ g∗ = T ∗eG, and then268
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its right-invariant extension. Finally we evaluate this extension along γ. For the269

left-invariant version, following Proposition 2.16, we take the curve of covectors η(t),270

consider their left-invariant extensions, say η(t)L (leading to a curve of left-invariant271

one-forms) and finally we evaluate η(t)L at γ(t). The following lemma establishes272

that the forms obtained in these two different ways coincide along γ.273

Lemma 2.19. Let γ(t) be the curve in G starting at e and having control u(t). Let274

λ(t) be a one-form defined along γ. Let λR(t) = (Rγ(t))
∗λ(t) ∈ g∗ be this one-form275

viewed by right-trivializing T ∗G. Let η(t) = (Lγ(t))
∗λ(t) ∈ g∗ be this same one-form276

viewed by left-trivializing T ∗G. Then λR(t) is constant if and only if η(t) solves the277

time-dependent linear differential equation dη/dt = (adu(t))
∗η(t) with initial condition278

η(0) = λ(0).279

Proof. Suppose that λR(t) is constant: λR(t) ≡ λR. Set g = γ(t). Then λ(t) =280

(R−1
g )∗λR and consequently η(t) = (Lg)

∗(R−1
g )∗λR = (Adg)

∗λR. For small ∆t we write281

γ(t + ∆t) = γ(t)(γ(t)−1γ(t + ∆t)) = gh with h = h(∆t) = γ(t)−1γ(t + ∆t) and use282

(Adgh)
∗ = (Adh)

∗(Adg)
∗ to establish the identity for the difference quotient:283

1

∆t
(η(t+ ∆t)− η(t)) =

1

∆t
((Adh(∆t))

∗ − Id)η(t).

Now we use that the derivative of the adjoint representation h 7→ Adh evaluated at284

the identity, is the standard adjoint representation g → gl(g) , X → adX = [X, ·].285

Taking duals, we see that the difference quotient 1
∆t

((Adh(∆t))
∗ − Id) limits to the286

linear operator (adu(t))
∗ on g∗.287

The steps just taken are reversed with little pain, showing the equivalence. �288

2.4. Hamiltonian formalism and reduction. We describe the Hamiltonian per-289

spective on Corollary 2.14, Proposition 2.16 and the relation between them.290

We continue with the basis Xi of left-invariant vector fields on G, labelled so that291

the first r form a basis of V . Write Pi : T ∗Q→ R for the same fields, but viewed as292

fiber-linear functions on the cotangent bundle of G:293

(2.20) Pi : T ∗G→ R;Pi(g, p) = p(Xi(g)).

Given a choice of controls ua(t), a = 1, 2 . . . , r not all identically zero, form the294

Hamiltonian295

Hu(g, p; t) =
r∑
i=1

ua(t)Pa(g, p).

The Maximum Principle [AS04, Theorem 12.1] asserts that a curve γ in G is singular296

for V if and only if when we take its control u, and form the Hamiltonian Hu, then297

the corresponding Hamilton’s equations have a nonzero solution ζ(t) = (q(t), p(t))298

that lies on the variety Pa = 0, a = 1, 2, . . . , r. Here ‘Nonzero’ means that p(t) 6= 0,299

for all t. The conditions Pa = 0 mean that the solution lies in the annihilator of300

the distribution defined by V . The first of Hamilton’s equations, implies that γ has301
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control u, so that the solution ζ does project onto γ via the cotangent projection302

π : T ∗G→ G.303

The following two facts regarding symplectic geometry and Hamilton’s equations304

allow us to immediately derive the Golé-Karidi form of the equations as expressed305

in Proposition 2.18. Fact 1. Hamilton’s equations are equivalent to their ‘Poisson306

form’ ḟ = {f,H}. Here f is an arbitrary smooth function on phase space, ḟ =307

df(XH) is the derivative of f along the Hamiltonian vector field XH for H, and308

{f, g} is the Poisson bracket associated to the canonical symplectic form ω, so that309

{f, g} = ω(Xf , Xg). Fact 2. If X is any vector field on G (invariant or not), and310

if PX : T ∗Q → R denotes the corresponding fiber-linear function defined by X as311

above, then {PX , PY } = −P[X,Y ].312

Proof of Proposition 2.18 from the Maximum Principle. Take the f = Pi313

and use, from Fact 2, that {Pi, Pj} = −∑ ckijPk. The Pi are equal to the ηi of the314

proposition.315

Proposition 2.18 is just the coordinate form of Proposition 2.16, so we have also316

proved Proposition 2.16.317

Proof of Corollary 2.14 from the Maximum principle.318

Let γ(t) be a singular extremal leaving the identity with control u = (u1, . . . , ur).319

Let Hu be the time-dependent Hamiltonian generating the one-form ζ(t) along γ as320

per the Maximum Principle. Since each of the Pi are left-invariant, so is Hu. Now321

any left-invariant Hamiltonian Hu on the cotangent bundle of a Lie group admits n =322

dim(G) ‘constants’ of motion – these being the n components of the momentum map323

J : T ∗G→ g∗ for the action of G on itself by left translation. Recall that a ‘constant of324

the motion’ is a vector function that is constant along all the solutions to Hamilton’s325

equations. Different solutions may have different constants. The momentum map in326

this situation is well-known to equal right-trivialization: T ∗G → G × g∗ composed327

with projection onto the second factor. In other words, if ζ(t) is any solution for328

Hu, then J(ζ(t)) = λ = const and also J(ζ(t)) = dR∗γ(t)ζ(t). Now, our p(t) must329

annihilate Vγ(t). The fact that p(t) equals λ, right-translated along γ, and that ∆γ(t)330

equals to V = ∆e, left-translated along γ implies that λ(Adγ(t) V ) = 0. We have331

established the claim. �332

2.5. Abnormal varieties and connection with extremal polynomials. The333

opportunity of considering the right-invariant trivialization of T ∗G, hence arriv-334

ing to Corollary 2.14, was suggested by the results of the two papers [LDLMV13,335

LDLMV14], where abnormal curves were characterized as those horizontal curves336

lying in specific algebraic varieties.337

Given λ ∈ g∗ \ {0} we set338

Zλ := {g ∈ G : ((Adg)
∗λ)|V = 0}.(2.21)
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In every Lie group the set Zλ is a proper real analytic variety. If G is a nilpotent339

group, then Zλ is a proper real algebraic variety, which we call abnormal variety.340

Proposition 2.22 (Restatement of Corollary 2.14). A horizontal curve γ is abnormal341

if and only if γ is contained in Zλ for some nonzero λ ∈ g∗.342

We now prove that, in the context of Carnot groups, the algebraic varieties Zλ
343

coincide with the varieties introduced in the papers [LDLMV13, LDLMV14]. This344

will follow from Proposition 2.23 below.345

Let e1, . . . , en be a basis of g such that e1, . . . , er is a basis of V . Let Xi denote the346

extension of ei as a left-invariant vector field on G. Let ckij be the structure constants347

of g in this basis, i.e.,348

[Xi, Xj] =
∑
k

ckijXk.

For λ ∈ g∗, set349

P λ
i (g) := ((Adg)

∗λ)(ei).

Thus Zλ is the set of common zeros of the functions P λ
i , i = 1, . . . , r. When G is350

nilpotent, these functions are polynomials.351

Proposition 2.23. Let Ym denote the extension of em as a right-invariant vector352

field on G. Let e∗1, . . . , e
∗
n denote the basis vectors of g∗ dual to e1, . . . , en. For all353

i, j = 1, . . . , n, we have354

(2.24) Xi =
∑
m

P
e∗m
i Ym.

Moreover, the functions P λ
j satisfy P λ

j (e) = λ(ej) and355

(2.25) XiP
λ
j =

n∑
k=1

ckijP
λ
k , ∀ i, j = 1, . . . , n, λ ∈ g∗.

In particular, in the setting of Carnot groups the functions P λ
j coincide with the356

extremal polynomials introduced in [LDLMV13, LDLMV14].357

Proof. We verify (2.24) by358 ∑
m

P
e∗m
i (g)Ym(g) =

∑
m

(Adg)
∗(e∗m)(ei)(Rg)∗em =

∑
m

e∗m(Adg(ei))(Rg)∗em

359

= (Rg)∗
∑
m

e∗m(Adg(ei))em = (Rg)∗Adg(ei) = (Lg)∗ei = Xi(g).

Next, on the one hand, since [Xi, Yj] = 0,360

[Xi, Xj] =
∑
m

(XiP
e∗m
j )Ym.
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On the other hand, from (2.24)361

[Xi, Xj] =
∑
k

ckijXk =
∑
m

(
∑
k

ckijP
e∗m
k )Ym.

Thus362

XiP
e∗m
j =

∑
k

ckijP
e∗m
k , ∀ i, j,m = 1, . . . , n.

Formula (2.25) follows because, by definition, the functions P λ
j are linear in λ.363

The extremal polynomials (P v
j )v∈R

n

j=1,...,n were introduced in [LDLMV13, LDLMV14] in364

the setting of Carnot groups; they were explicitly defined in a system of exponential365

coordinates of the second type associated to a basis of g that is adapted to the366

stratification of g, see Section 2.2. Here, adapted simply means that the fixed basis367

e1, . . . , en of g consists of an (ordered) enumeration of a basis of the first layer V1,368

followed by a basis of the second layer V2, etc. It was proved in [LDLMV14] that the369

extremal polynomials satisfy370

P v
j (e) = vj and XiP

v
j =

n∑
k=1

ckijP
v
k ∀ i, j = 1, . . . , n, ∀ v ∈ Rn.

We need to check that, for any fixed v ∈ Rn, the equality P v
j = P λ

j holds for λ :=371 ∑
m vme

∗
m. Indeed, the differences Qj := P v

j − P λ
j satisfy372

Qj(e) = 0 and XiQj =
n∑
k=1

ckijQk ∀ i, j = 1, . . . , n.

In particular, XiQn = 0 for any i because, by the stratification assumption, ckin = 0373

for any i, k. This implies that Qn is constant, i.e., that Qn ≡ 0. We can then reason374

by reverse induction on j and assume that Qk ≡ 0 for any k ≥ j + 1; then, using the375

fact that ckij = 0 whenever k ≤ j (because the basis is adapted to the stratification),376

we have377

Qj(e) = 0 and XiQj =
n∑

k=j+1

ckijQk = 0 ∀ i = 1, . . . , n.

Hence also Qj ≡ 0. This proves that P v
j = P λ

j , as desired. �378

Remark 2.26. In the study of Carnot groups of step 2 and step 3, it will be used379

that the varieties W λ defined below (which coincide with the abnormal varieties in380

the step-2 case) are subgroups. Namely, if G is a Carnot group of step s and highest381

layer Vs, and λ ∈ g∗, then the variety382

(2.27) W λ := {g ∈ G : ((Adg)
∗λ)|Vs−1 = 0}

is a subgroup, whenever it contains the origin. Indeed, if X ∈ g and Y ∈ Vs−1, then383

(Adexp(X))
∗λ(Y ) = (eadX )∗λ(Y ) = λ(Y + [X, Y ]).
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Hence, in exponential coordinates the set W λ is384

{X ∈ g : λ(Y + [X, Y ]) = 0, ∀Y ∈ Vs−1}
and, if it contains the origin, it is385

{X ∈ g : λ([X, Y ]) = 0,∀Y ∈ Vs−1}.
Since the condition λ([X, Y ]) = 0, for all Y ∈ Vs−1, is linear in X, we conclude that386

W λ is a subgroup.387

2.6. Lifts of abnormal curves.388

Proposition 2.28 (Lifts of abnormal is abnormal). Let γ : [0, 1]→ G be a horizontal389

curve with respect to V ⊂ g. If there exists a Lie group H and a surjective homomor-390

phism π : G → H for which π ◦ γ is abnormal with respect to some W ⊇ d πe(V ),391

then γ is abnormal.392

Proof. Let EndV and EndW be the respective endpoint maps, as in the diagram below.393

For u ∈ L2([0, 1], V ) let π∗u := dπe ◦ u, which is an element in L2([0, 1],W ), because394

d πe(V ) ⊆ W . Since π is a group homomorphism, one can easily check that the395

following diagram commutes:396

L2([0, 1], V )
EndV //

π∗
��

G

π

��
L2([0, 1],W )

EndW // H.

By assumption π is surjective and so is dπg, for all g ∈ G. We conclude that d EndWπ∗u397

is surjective, whenever d EndVu is surjective. �398

Example 2.29 (Abnormal curves in a product). Let G and H be two Lie groups.399

Let V ⊂ Lie(G) and W ⊂ Lie(H). Assume that W 6= Lie(H). Let γ : [0, 1]→ G×H400

be a curve. If γ = (γ1(t), e) with γ1 : [0, 1]→ G horizontal with respect to V , then γ401

is abnormal with respect to V ×W . Indeed, this fact is an immediate consequence402

of Proposition 2.28 using the projection G×H → H and the fact that the constant403

curve in H is abnormal with respect to the proper subspace W .404

Remark 2.30. Let G and H be two Lie groups. If γ1 : [0, 1] → G is not abnormal405

with respect to some V ⊂ Lie(G) and γ2 : [0, 1] → H is not abnormal with respect406

to some W ⊂ Lie(H), then (γ1, γ2) : [0, 1]→ G×H is not abnormal with respect to407

V ×W .408

Example 2.31 (H ×H). Let H be the Heisenberg group equipped with its contact409

structure. By Example 2.29 and Remark 2.30, the abnormal curves leaving from the410

origin in H ×H are the curves of the form (γ(t), e) or (e, γ(t)), where γ : [0, 1]→ H411

is any horizontal curve. In particular, Abn(e) = H × {e} ∪ {e} × H, which has412

codimension 3.413
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2.7. Normal curves. Let (G, V ) be a polarized group such that V is bracket generat-414

ing. Equipping V with a scalar product ‖ · ‖2, we get a left-invariant sub-Riemannian415

structure on G. Recall that from Pontrjagin Maximum Principle any curve that416

is length minimizing with respect to the sub-Riemannian distance is either abnor-417

mal, or normal (in the sense that we now recall), or both normal and abnormal. A418

curve γ with control u is normal if there exist λ0 6= 0 and λ1 ∈ T ∗γ(1)G such that419

(λ0, λ1) vanishes on the image of the differential at u of the extended endpoint map420 fiEnd : L2([0, 1], V ) → R × G, v 7→ (‖v‖2,End(v)). Let Abnnor(e) denote the set of421

points connected to the origin by curves which are both normal and abnormal. Let422

Abnlm(e) denote the set of points connected to the origin by abnormal curves that423

are locally length minimizing with respect to the sub-Riemannian distance.424

Lemma 2.32. Let G be a polarized Lie group. The Sard Property holds for normal425

abnormals. Namely, the set Abnnor(e) is contained in a sub-analytic set of codimen-426

sion at least 1.427

Proof. We will make use of the sub-Riemannian exponential map, see []. Namely,428

normal curves starting from e have cotangent lifts which satisfy a Hamiltonian equa-429

tion. Solving this equation with initial datum ξ ∈ T ∗eG defines a control flExp(ξ) ∈430

L2([0, 1], V ). Composing with the endpoint map, one gets the sub-Riemannian expo-431

nential map Exp : T ∗eG→ G,432

Exp = End ◦flExp.
Points in Abnnor(e) are values of Exp where the differential of End is not onto.433

Therefore, they are singular values of Exp. Since Exp is analytic, the set of its434

singular points is analytic, thus the set of its singular values is a sub-analytic subset435

of G. By Sard’s theorem, it has measure zero, therefore its codimension is at least436

1. �437

2.8. The Goh condition. Let (G, V ) be a polarized group as in Section 2.7. We438

introduce the well-known Goh condition by using the formalism of Corollary 2.14.439

Definition 2.33. We say that an abnormal curve γ : [0, 1] → G leaving from the440

origin e satisfies the Goh condition if there exists λ ∈ g∗ \ {0} such that441

(2.34) λ(Adγ(t)(V + [V, V ])) = 0 for every t ∈ [0, 1].

Equivalently, γ satisfies the Goh condition if and only if there exists a right-invariant442

1-form α on G such that α(∆2
γ(t)) = {0} for every t ∈ [0, 1], where ∆2 is the left-443

invariant distribution induced by V +[V, V ]. Equivalently, denoting by u the controls444

associated with γ and recalling Proposition 2.3, if and only if the space445

(2.35)
⋃

t∈[0,1]

Adγ(t)(V + [V, V ]) = dR−1
γ(1)(Im(d Endu)) +

⋃
t∈[0,1]

Adγ(t)([V, V ])
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is a proper subspace of g = TeG, which a posteriori is contained in ker λ, for λ as in446

(2.34).447

Remark 2.36. Clearly, any λ such that (2.34) holds is in the annihilator of V + [V, V ],448

just by considering t = 0 in (2.34).449

The importance of the Goh condition stems from the following well-known fact: if450

γ is a strictly abnormal length minimizer (i.e., a length minimizer that is abnormal451

but not also normal), then it satisfies Goh condition for some λ ∈ g∗ \ {0}. See452

[AS04, Chapter 20] and also [AS96]. Notice that not necessarily all the λ’s as in (2)453

of Corollary 2.14 will satisfy (2.34), but at least one will. On the contrary, in the454

particular case dim V = 2, every abnormal curve satisfies the Goh condition for every455

λ as in Corollary 2.14 (2); see Remark 2.8 and (2.9) in particular.456

3. Step-2 Carnot groups457

3.1. Facts about abnormal curves in two-step Carnot groups. We want to458

study the abnormal set Abn(e) defined in (2.13) with the use of the abnormal varieties459

defined in (2.21). In fact, by Proposition 2.22 we have the inclusion460

Abn(e) ⊆
⋃

λ∈g∗\{0} s.t. e∈Zλ
Zλ.

In this section we will consider the case when the polarized group (G, V ) is a Carnot461

group of step 2. Namely, the Lie algebra of G admits the decomposition g = V1 ⊕ V2462

with V = V1, [V1, V1] = V2, and [g, V2] = 0. Fix an element λ ∈ g∗. Since g∗ = V ∗1 ⊕V ∗2 ,463

we can write λ = λ1 + λ2 with λi ∈ V ∗i . As noticed in Remark 2.26, since G has step464

2, if X ∈ g and Y ∈ V1, then465

(Adexp(X))
∗λ(Y ) = (eadX )∗λ(Y ) = λ1(Y ) + λ2([X, Y ]).

Notice that, if e = exp(0) ∈ Zλ, then λ1(Y ) = 0 for all Y ∈ V1. Thus λ1 = 0.466

Therefore, any variety Zλ containing the identity is of the form467

Zλ = Zλ2 = exp{X ∈ g : λ2([X, Y ]) = 0 ∀ Y ∈ V1}.
The condition468

λ2([X, Y ]) = 0, ∀ Y ∈ V1,

is linear in X, hence the set469

zλ := log(Zλ) = {X ∈ g : λ2([X, Y ]) = 0 ∀Y ∈ V1}
is a vector subspace. One can easily check that exp(V2) ⊂ Zλ, hence V2 ⊂ zλ. In470

particular, zλ is an ideal and Zλ = exp(zλ) is a normal subgroup of G. Actually,471

one has zλ = (zλ ∩ V1) ⊕ V2. The space zλ ∩ V1 is by definition the kernel of the472

skew-symmetric form on V1, which we already encountered in (2.15), defined by473

w(λ) : (X, Y ) 7→ λ2([X, Y ]).
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If now γ is a horizontal curve contained in Zλ (and hence abnormal) with γ(0) = 0,474

then γ is contained in the subgroup Hλ generated by zλ ∩ V1, i.e.,475

(3.1) Hλ := exp((zλ ∩ V1)⊕ [zλ ∩ V1, z
λ ∩ V1]).

This implies that476

Abn(e) ⊆
⋃

λ∈g∗\{0}
λ1=0

Hλ.

It is interesting to notice that also the reverse inclusion holds: indeed, for any λ ∈477

g∗ \ {0} with λ1 = 0 and any point p ∈ Hλ, there exists an horizontal curve γ from478

the origin to p that is entirely contained in Hλ; γ is then contained in Zλ and hence479

it is abnormal by Proposition 2.22. We deduce that480

(3.2) Abn(e) =
⋃

λ∈g∗\{0}
λ1=0

Hλ.

We are now ready to prove a key fact in the setting of two-step Carnot groups:481

every abnormal curve is not abnormal in some subgroup. We first recall that a482

Carnot subgroup in a Carnot group is a Lie subgroup generated by a subspace of the483

first layer.484

Lemma 3.3. Let G be a 2-step Carnot group. For each abnormal curve γ in G, there485

exists a proper Carnot subgroup G′ of G containing γ, in which γ is a non-abnormal486

horizontal curve.487

Proof. Let γ be an abnormal curve in G. Then there exists λ ∈ g∗ \ {0}, with λ1 = 0,488

such that γ ⊂ Hλ, where Hλ is the subgroup defined in (3.1). By construction Hλ is489

a Carnot subgroup. Since λ 6= 0 then Hλ is a proper subgroup (of step ≤ 2).490

If γ is again abnormal in Hλ, then we iterate this process. Since dimension de-491

creases, after finitely many steps one reaches a proper Carnot subgroup G′ in which492

γ is not abnormal. �493

3.2. Parametrizing abnormal varieties within free two-step Carnot groups.494

Let G be a free-nilpotent 2-step Carnot group. Let m ≤ r := dim(V1). Fix a m-495

dimensional vector subspace W ′
m ⊂ V1. Denote by Gm the subgroup generated by496

W ′
m, and Xm = GL(r,R) × Gm, equipped with the left-invariant distribution given497

at the origin by Wm := {0} ⊕ W ′
m. Observe that GL(r,R) acts on G by graded498

automorphisms. Let499

Φm : Xm → G, (g, h) 7→ g(h).

In a polarized group (X, V ), given a submanifold Y ⊂ X, the endpoint map relative500

to Y is EndY : Y × L2([0, 1], V )→ X, (y, u) 7→ γ(y)
u (1), where γ(y)

u satisfies (2.1) with501

γ(y)
u (0) = y. We say that a horizontal curve γ with control u is non-singular relative502

to Y if the differential at (γ(0), u) of the endpoint map relative to Y is onto.503
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Lemma 3.4. Let G be a free 2-step Carnot group. For every abnormal curve γ in G,504

there exists an integer m < r and a horizontal curve σ in Xm such that Φm(σ) = γ,505

and σ is non-singular relative to Φ−1
m (e).506

Proof. Let γ be an abnormal curve in G starting at e, with control u. By Lemma 3.3,507

γ is contained in the Carnot subgroup G′ of G generated by some subspace V ′1 ⊂ V1508

and is not abnormal in G′. Let m = dim(V ′1). Then there exists g ∈ GL(r,R)509

such that V ′1 = g(W ′
m), and thus G′ = g(Gm). Let σ = (g, g−1(γ)). This is a510

horizontal curve in Xm. Consider the endpoint map on Xm relative to the submanifold511

Φ−1
m (e) = GL(r,R)×{e}. Since γ is not abnormal in G′, the image I of the differential512

at ((g, e), g−1(u)) of the endpoint map contains {0} ⊕ Tg−1(γ(1))Gm. Every curve of513

the form t 7→ (k, g−1(γ(t))) with fixed k ∈ GL(r,R) is horizontal, so I contains514

Tg(GL(r,R))⊕{0}. One concludes that I = T(g,γ(1))Xm, i.e., σ is non-singular relative515

to Φ−1
m (e). By construction, Φm(σ) = γ. �516

3.3. Application to general 2-step Carnot groups.517

Proposition 3.5. Let G be a 2-step Carnot group. There exists a proper algebraic518

set Σ ⊂ G that contains all abnormal curves leaving from the origin.519

Proof. Let f : G̃→ G be a surjective homomorphism from a free 2-step Carnot group520

of the same rank as G. Let γ be an abnormal curve leaving from the origin in G. It521

has a (unique) horizontal lift γ̃ in G̃ leaving from the origin. According to Lemma 3.4,522

there exists an integer m and a non-singular (relative to Φ−1
m (e)) horizontal curve σ523

in Xm such that Φm(σ) = γ̃, i.e., f ◦ Φm(σ) = γ. Namely, there exists g ∈ GL(m,R)524

such that σ(t) = (g, g−1γ̃(t)). Consider the endpoint map EndY on Xm relative to525

the submanifold Y := Φ−1
m (e). Let us explain informally the idea of the conclusion of526

the proof. The composition f ◦ Φm ◦ EndY is an endpoint map for G, with starting527

point at the identity e. Hence, since the differential of EndY at the control of σ is528

onto, but the differential of f ◦Φm ◦EndY is not, the point γ(1) is a singular value of529

f ◦ Φm. Hence, we will conclude using Sard’s theorem.530

Let us now give a more formal proof of the last claims. Consider the map φm :531

Y × L2([0, 1],Wm) → L2([0, 1], V1), defined as (φm(g, u))(t) := g(u(t)) ∈ V1 ⊆ TeG̃,532

for t ∈ [0, 1]. We then point out the equality533

(3.6) f ◦ Φm ◦ EndY = End ◦ f∗ ◦ ψm,
where End : L2([0, 1], V1) → G is the endpoint map of G and f∗ : L2([0, 1], V1) →534

L2([0, 1], V1) is the map535

(f∗(u))(t) = (d f)e(u(t)) ∈ V1 ⊆ TeG.

Since σ is abnormal, i.e., the differential d Enduγ is not surjective, and the differential536

of EndY at the point (g, uσ) = (f∗ ◦ ψm)uγ is surjective, from (3.6) we deduce that537

γ(1) = EndY (g, uσ) is a singular value for f ◦Φm. By the classical Sard Theorem, the538
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set Σm of singular values of f ◦Φm has measure 0 in G. So has the union Σ̃ := ∪r−1
m=1Σm539

of these sets. By Tarski-Seidenberg’s theorem [BCR98, Proposition 2.2.7], Σ̃ is a semi-540

algebraic set, since the map f ◦ Φm is algebraic and the set of critical points of an541

algebraic map is an algebraic set. Moreover, from [BCR98, Proposition 2.8.2] we have542

that this semi-algebraic set is contained in an algebraic set Σ of the same dimension.543

Since Σ̃ has measure zero, the set Σ is a proper algebraic set. �544

Example 3.7 (Abnormal curves not lying in any proper subgroup). Key to our proof545

was the property, encoded in Equation (3.1), that every abnormal curve is contained in546

a proper subgroup of G. This property typically fails for Carnot groups of step greater547

than 2. Golé and Karidi [GK95] constructed a Carnot group of step 4 and rank 2 for548

which this property fails: namely, there is an abnormal curve that is not contained in549

any proper subgroup of their group. Further on in this paper (Section 6.3) we show550

that this property fails for the free 3-step rank-3 Carnot group.551

3.4. Codimension bounds on free 2-step Carnot groups. In this section we552

prove Theorem 1.4; we will make extensive use of the result and notation of Sec-553

tion 3.1. In the sequel, we denote by G a fixed free Carnot group of step 2 and by554

r = dimV1 its rank.555

We identify G with its Lie algebra, which has the form V ⊕Λ2V for V = V1
∼= Rr a556

real vector space of dimension r. The Lie bracket is [(v, ξ), (w, η)] = (0, v∧w). When557

we use the exponential map to identify the group with its Lie algebra, the equation558

for a curve (x(t), ξ(t)) to be horizontal reads559

ẋ = u, ξ̇ = x ∧ u.
IfW ⊂ V is a subspace, then the group it generates has the formW⊕Λ2W ⊂ V⊕Λ2V .560

3.5. Proof that Abn(e) is contained in a set of codimension ≥ 3. We use the561

view point discussed in Section 3.1 where we defined the sets zλ and Hλ. We first562

claim that563

(3.8) dim zλ ∩ V = dim {X ∈ V : λ2([X, Y ]) = 0 ∀ Y ∈ V } ≤ r − 2,

for any λ ∈ g∗ \ {0} such that λ1 = 0. Indeed, since λ2 6= 0, the alternating 2-form564

w(λ) : (X, Y ) 7→ λ2([X, Y ]) has rank at least 2.565

Then, by (3.8), each zλ ∩ V is contained in some W ⊂ V with dim(W ) = r − 2,566

hence Hλ ⊆ W ⊕ Λ2W and, by (3.2),567

Abn(e) =
⋃

λ∈g∗\{0}
λ1=0

Hλ ⊆
⋃

W∈Gr(r,r−2)

W ⊕ Λ2W.

In fact, the equality568

(3.9) Abn(e) =
⋃

W∈Gr(r,r−2)

W ⊕ Λ2W.
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holds: this is because every codimension 2 subspace W ⊂ V is the kernel of a rank 2569

skew-symmetric 2-form (the pull-back of a nonzero form on the 2-dimensional space570

V/W ), and every such skew-symmetric form corresponds to a covector λ2 ∈ V ∗2 =571

Λ2V ∗.572

We now notice that the Grassmannian Gr(r, r− 2) of (r− 2)-dimensional planes in573

V has dimension 2(r − 2) and that each W ⊕ Λ2W is (isomorphic to) the free group574

Fm,2 of rank m = r − 2 and step 2, i.e.,575

dim(W ⊕ Λ2W ) = m+
m(m− 1)

2
=

(r − 1)(r − 2)

2
.

It follows that the set ∪W∈Gr(r,r−2)W ⊕ Λ2W can be parametrized with a number of576

parameters not greater than577

dimFm,2 + dimGr(r,m) =
r(r + 1)

2
− 3.

Since dim G = r(r+ 1)/2, the codimension 3 stated in Theorem 1.4 now follows from578

(3.9). �579

3.6. Proof that Abn(e) is a semialgebraic set of codimension ≥ 3. Let k =580

b(r − 2)/2c and let W be a codimension 2 vector subspace of V1. Every pair (ξ, η) ∈581

W ⊕ Λ2W can be written as582

ξ =
r−2∑
j=1

xjξj, η =
k∑
i=1

ziξ2i−1 ∧ ξ2i,

for some (r − 2)-uple of vectors (e.g., a basis) (ξj)1≤j≤r−2 of W . Conversely, every583

pair (ξ, η) ∈ g = V ⊕ Λ2V of this form belongs to W ⊕ Λ2W for some codimension 2584

subspace W of V1. Therefore585 ⋃
W∈Gr(r,r−2)

W ⊕ Λ2W

is the projection on the first factor of the algebraic subset586

{(ξ, η, ξ1, . . . , ξr−2, x1, . . . , xr−2, z1, . . . , zk) : ξ =
r−2∑
j=1

xjξj, η =
k∑
i=1

ziξ2i−1 ∧ ξ2i}

of g × V r−2 × Rr−2 × Rk. Since the exponential map is an algebraic isomorphism,587

Abn(e) =
⋃
W∈Gr(r,r−2) W ⊕Λ2W is semi-algebraic, and it is contained in an algebraic588

set of the same codimension (see [BCR98, Proposition 2.8.2]). �589

In the rest of this section we proceed with the more precise description of the set590

Abn(e), as described in Theorem 1.4.591

Each ξ ∈ Λ2V can be viewed, by contraction, as a linear skew symmetric map592

ξ : V ∗ → V . For example, if ξ = v∧w, then this map sends α ∈ V ∗ to α(v)w−α(w)v.593
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Definition 3.10. For ξ ∈ Λ2V let supp(ξ) ⊂ V denote the image of ξ, when ξ is594

viewed as a linear map V ∗ → V . For (v, ξ) ∈ V ⊕Λ2V set supp(v, ξ) = Rv+ supp(ξ).595

Finally, set rank(v, ξ) = dim(supp(v, ξ)).596

Proposition 3.11. If G is the free 2-step nilpotent group on r generators then597

Abn(e) = {(v, ξ) : rank(v, ξ) ≤ r − 2}.

Proof. From (3.9) we can directly derive the new characterization. Suppose that W ⊂598

V is any subspace and (w, ξ) ∈ W ⊕Λ2W . Then clearly supp(w, ξ) ⊂ W . Conversely,599

if (w, ξ) has support a subspace of W , then one easily checks that (w, ξ) ∈ W ⊕Λ2W .600

Taking W an arbitrary subspace of rank r − 2 the result follows. �601

By combining Proposition 3.11 with some linear algebra we will conclude the proof602

of Theorem 1.4. This proof is independent of Sections 3.5 and 3.6 and yields a different603

perspective on the abnormal set.604

Proof of Theorem 1.4. Let G be the free-nilpotent 2-step group on r generators. First,605

we write the polynomials defining Abn(e), then we compute dimensions. It is simpler606

to divide up into the case of even and odd rank r. We will consider the case of even607

rank in detail and leave most of the odd rank case up to the reader.608

The linear algebraic Darboux theorem will prove useful for computations. All609

bivectors have even rank. This theorem asserts that the bivector ξ ∈ Λ2V has rank610

2m if and only if there exists 2m linearly independent vectors e1, f1, e2, f2, . . . em, fm611

in V such that ξ = Σm
i=1ei ∧ fi.612

Let us now specialize to the case where r = dim(V ) is even. Write613

r = 2s.

Using Darboux one checks that rank(0, ξ) ≤ r − 2 if and only if ξs = 0 (written614

out in components, ξ is a skew-symmetric 2r × 2r matrix and the vanishing of ξs615

is exactly the vanishing of the Pfaffian of this matrix). Now, if rank(0, ξ) = r − 2616

and rank(v, ξ) ≤ r − 2, it must be the case that v ∈ supp(ξ); equivalently, in the617

Darboux basis, v = Σm
i=1aiei + Σm

i=1bifi. It follows in this case that v ∈ supp(ξ) if618

and only if v ∧ ξs−1 = 0. Now, if rank(0, ξ) < r − 2 then rank(0, ξ) ≤ r − 4 and so619

rank(v, ξ) ≤ r − 3 for any v ∈ V . But rank(0, ξ) < r − 2 if and only if ξs−1 = 0 in620

which case automatically v ∧ ξs−1 = 0.621

We have proven that in the case r = 2s, the equations for Abn(e) are the polynomial622

equations ξs = 0 and v ∧ ξs−1 = 0.623

To compute dimension, we stratify Abn(e) according to the rank of its elements.624

The dimensions of the strata are easily checked to decrease with decreasing rank, so625

that the dimension of Abn(e) equals the dimension of the largest stratum, the stratum626

consisting of the (v, ξ) of even rank r − 2. (The Darboux theorem and a bit of work627

yields that the stratum having rank k with k odd consists of exactly one Gl(V ) orbit628
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while the stratum having rank k with k even consists of exactly two Gl(V ) orbits). A629

point (v, ξ) is in this stratum if and only if ξs = 0 while ξs−1 6= 0 and v ∈ supp(ξ). Let630

us put the condition on v aside for the moment. The first condition on ξ is the Pfaffian631

equation which defines an algebraic hypersurface in Λ2V , the zero locus of the Pfaffian632

of ξ. The second equation for ξ defines the smooth locus of the Pfaffian. Thus, the633

set of ξ’s satisfying the first two equations has dimension 1 less than that of Λ2V , so634

its dimension is
Ä
r
2

ä
− 1. Now, on this smooth locus {Pf = 0}smooth ⊂ {Pf = 0} we635

have a well-defined algebraic map F : {Pf = 0}smooth → Gr(r, r−2) which sends ξ to636

F (ξ) = supp(ξ). Let U → Gr(r, r− 2) denote the canonical rank r− 2 vector bundle637

over the Grassmannian. Thus U ⊂ Rr×Gr(r, r−2) consists of pairs (v, P ) such that638

v ∈ P . Then F ∗U is a rank r−2 vector bundle over {Pf = 0}smooth consisting of pairs639

(v, ξ) ∈ R2 × Λ2V such that v ∈ supp(ξ) and ξ has rank r − 2. In other words, the640

additional condition v ∈ supp(ξ) says exactly that (v, ξ) ∈ F ∗U . It follows that the641

dimension of this principle stratum is dim(F ∗U) = (
Ä
r
2

ä
− 1) + (r− 2) = dim(G)− 3.642

Regarding the odd rank case643

r = 2s+ 1

the same logic shows that the equations defining Abn(e) are ξs = 0 and involves no644

condition on v. A well-known matrix computation [Arn71] shows that the subvariety645

{ξs = 0} in the odd rank case has codimension 3. Since the map V ⊕ Λ2V → Λ2V646

is a projection, and since Abn(e) is the inverse image of {ξs = 0} ⊂ Λ2V under this647

projection, its image remains codimension 3. �648

Recall that the rank of ξ ∈ Λ2V is the (even) dimension d of its support. For an649

open dense subset of elements of Λ2V , the rank is as large as possible: r if r is even650

and r − 1 if r is odd. We call singular the elements ξ ∈ Λ2V whose rank is less than651

the maximum and we write (Λ2V )sing to denote the set of singular elements. From652

Proposition 3.11 we easily deduce the following.653

Proposition 3.12. The projection of Abn(e) onto Λ2V coincides with the singular654

elements (Λ2V )sing ⊂ Λ2V .655

Remark 3.13. A consequence of the previous result is the fact that elements of the656

form (0, ξ) where rank(ξ) is maximal can never be reached by abnormal curves. Notice657

that such elements are in the center of the group.658

To be more precise about Abn(e) we must divide into two cases according to the659

parity of r.660

Theorem 3.14. If G = V ⊕ Λ2V is a free Carnot group with odd rank r, then661

Abn(e) = V ⊕ (Λ2V )sing.662

The previous result, as well as the following one, easily follows from Proposi-663

tion 3.11. To describe the situation for r even, let us write (Λ2V )d for those elements664
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of Λ2V whose rank is exactly d and (Λ2V )<d for those elements whose rank is strictly665

less than d.666

Theorem 3.15. If G = V ⊕ Λ2V is a free Carnot group with even rank r, then667

Abn(e) is the union Y ∪ Y1 of the two quasiprojective subvarieties668

Y = {(v, ξ) ∈ V ⊕ Λ2V : v ∈ supp(ξ), ξ ∈ (Λ2V )r−2}
Y1 = V × (Λ2V )<r−2.

In particular, Abn(e) is a singular algebraic variety of codimension 3.669

We observe that Y1 = Ȳ \ Y .670

Remark 3.16. Given any g = (v, ξ) ∈ G we can define its singular rank to be the671

minimum of the dimensions of the image of the differential of the endpoint map672

d End(γ), where the minimum is taken over all γ that connect 0 to g. Thus, the673

singular rank of g = 0 is r and is realized by the constant curve, while if ξ is generic674

then the singular rank of g = (0, ξ) is dim(G), which means that every horizontal675

curve connecting 0 to g is not abnormal.676

It can be easily proved that, if r is even and v ∈ supp(ξ), then the singular rank of677

g is just rank(ξ). In this case we take a λ with ker(λ) = supp(ξ) and realize g by any678

horizontal curve lying inside G(λ).679

4. Sufficient condition for Sard’s property680

In Section 2.1 we observed that, given a polarized group (G, V ) and a horizontal681

curve γ such that γ(0) = e and with control u, the space (dRγ(1))eV + (dLγ(1))eV +682

S(γ(1)) is a subset of Im(d Endu) ⊂ Tγ(1)G. Therefore, if g ∈ G is such that683

(4.1) Adg−1 V + V + (dLg)
−1X (g) = g,

for some subset X of S, then g is not a singular value of the endpoint map. Here we684

denoted with X (g) the space of vector fields in X evaluated at g. In particular, if the685

equation above is of polynomial type (resp. analytic), then (G, V ) has the Algebraic686

(resp. Analytic) Sard Property.687

In the following we embed both sides of (4.1) in a larger Lie algebra g̃, and we find688

conditions on g̃ that are sufficient for (4.1) to hold. The idea is to consider a group G̃689

that acts, locally, on G via contact mappings, that is, diffeomorphisms that preserve690

the left-invariant subbundle ∆. It turns out that the Lie algebra g̃ of G̃, viewed as691

algebra of left-invariant vector fields on G̃, represents a space of contact vector fields692

of G.693
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4.1. Algebraic prolongation. Let G̃ be a Lie group and G and H two subgroups.694

Denote by g̃, g, and h the respective Lie algebras seen as tangent spaces at the identity695

elements. We shall assume that H is closed. Suppose that g̃ = h⊕ g and that we are696

given the decompositions in vector space direct sum697

h = V−h ⊕ · · · ⊕ V0

and698

g = V1 ⊕ · · · ⊕ Vs
in such a way that g̃ is graded, namely [Vi, Vj] ⊆ Vi+j, for i, j = −h, . . . , s, and g is699

stratified, i.e., [V1, Vj] = Vj+1 for j > 0. In other words, g̃ is a (finite-dimensional)700

prolongation of the Carnot algebra g.701

We have a local embedding of G within the quotient space G̃/H := {gH : g ∈ G}702

via the restriction to G of the projection703

π : G̃ → G̃/H

p 7→ π(p) := [p] := pH.

The group G̃ acts on G̃/H on the left:704

L̄g̃ : G̃/H → G̃/H

gH 7→ L̄g̃(gH) := g̃gH.

We will repeatedly use the identity705

(4.2) L̄g̃ ◦ π = π ◦ Lg̃.

On the groups G̃ and G we consider the two left-invariant subbundles ∆̃ and ∆706

that, respectively, are defined by707

∆̃e := h + V1,

∆e := V1.

Notice that both subbundles are bracket generating g̃ and g, respectively. Moreover,708

∆̃ is adh-invariant, hence it passes to the quotient as a G̃-invariant subbundle ∆̄ on709

G̃/H. Namely, there exists a subbundle ∆̄ of the tangent bundle of G̃/H such that710

∆̄ = dπ(∆̃).

Lemma 4.3. The map711

i := π|G : (G,∆) → (G̃/H, ∆̄)

g 7→ gH

is a local diffeomorphism and preserves the subbundles, i.e., it is locally a contacto-712

morphism.713
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Proof. Since g is a complementary subspace of h in g̃, the differential (di)e is an714

isomorphism between g and T[e]G̃/H. Since by Equation (4.2) the map π is G-715

equivariant, then (di)g is an isomorphism for any arbitrary g ∈ G. Hence, the map i716

is a local diffeomorphism. If X is a left-invariant section of ∆ then717

(di)gXg =
d

dt
[g exp(tXe)]

∣∣∣∣∣
t=0

∈ ∆̄[g],

since Xe ∈ V1. �718

Let πg : g̃ = V−h ⊕ · · · ⊕ V0 ⊕ g → g be the projection induced by the direct sum.719

The projections π and πg are related by the following equation:720

(4.4) (dπ)e = (dπ)e|gπg.

Indeed, if Y ∈ g, then the formula trivially holds; if Y ∈ h , then (dπ)eY =721

d
d t

exp(tY )H
∣∣∣
t=0

= d
d t
H
∣∣∣
t=0

= 0.722

The differential of the projection π at an arbitrary point g̃ can be expressed using723

the projection πg via the following equation:724

(4.5) (dπ)g̃ = (d(L̄g̃ ◦ π|G))e ◦ πg ◦ (dLg̃−1)g̃.

Indeed, first notice that (dπ|G)e = (dπ)e|g , then from (4.4) and (4.2) we get725

(d(L̄g̃ ◦ π|G))e ◦ πg ◦ (dLg̃−1)g̃ = (dL̄g̃)[e] ◦ (dπ)e|g ◦ πg ◦ (dLg̃−1)g̃

= (dL̄g̃)[e] ◦ (dπ)e ◦ (dLg̃−1)g̃

= d(L̄g̃ ◦ π ◦ (Lg̃)
−1)g̃ = (dπ)g̃.

4.2. Induced contact vector fields. To any vector X ∈ TeG̃ ' g̃ we want to726

associate a contact vector field XG on G. Let XR be the right-invariant vector field727

on G̃ associated to X. We define XG as the (unique) vector field on G with the728

property that729

dπ(XR) = di(XG),

as vector fields on i(G). In other words, we observe that there exists a (unique) vector730

field X̄ on G̃/H that is π-related to XR and i-related to some (unique) XG. The flow731

of XR consists of left translations in G̃, hence they pass to the quotient G̃/H. Thus732

X̄ shall be the vector field on G̃/H whose flow is733

Φt
X̄(gH) = π(exp(tX)g) = exp(tX)gH = L̄exp(tX)(gH).

In other words, we define X̄ as the vector field on G̃/H as734

(4.6) X̄[p] := (dπ)(XR)p =
d

d t
π(exp(tX)p)

∣∣∣∣∣
t=0

, ∀p ∈ G̃.
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Definition 4.7. For all X ∈ g̃ and g ∈ G, we set735

(XG)g := (d(π|G)g)
−1(dπ)g(dRg)eX.

From (4.5), the vector field XG satisfies736

(4.8) (XG)g = d(Lg |G)eπg Adg−1 X, ∀g ∈ G,

We remark that if X ∈ g ⊂ g̃ then XG = XR, as vector fields in G.737

Proposition 4.9. Let XG be the vector field defined above. Then738

i) XG has polynomial components when read in exponential coordinates.739

ii) XG is a contact vector field, i.e., its flow preserves ∆.740

Proof. Because the algebra g̃ is graded, we have that for every X ∈ g the map adX741

is a nilpotent transformation of g̃. Consequently, for all g ∈ G, the map Adg is a742

polynomial map of g̃. Therefore, in exponential coordinates, XR
|G is a polynomial743

vector field and XG is as well.744

We next show that the vector field in (4.6) is contact, in tother words, each map745

L̄p preserves ∆̄. Any vector in ∆̄ is of the form dπ(Y L
g̃ ) with Ye ∈ h + V1 and g̃ ∈ G̃.746

We want to show that (dL̄p)[g̃](dπ)g̃(Y
L
g̃ ) is in ∆̄. In fact, using (4.2), we have747

(dL̄p)[g̃](dπ)g̃(Y
L
g̃ ) = d(L̄p ◦ π)g̃(Y

L
g̃ )

= d(π ◦ Lp)g̃(Y L
g̃ )

= dπpg̃(dLp)g̃(Y
L
g̃ )

= dπpg̃(Y
L
pg̃) ∈ dπ(∆̃).

Now that we know that X̄ is a contact vector field of G̃/H, from Lemma 4.3 we748

deduce that the vector field XG, which satisfies X̄ = di(XG), is a contact vector field749

on G. �750

For a subspace W ⊆ g̃ we use the notation751

WG := {XG ∈ Vec(G) | X ∈ W}.

Corollary 4.10. If S denotes the space of global contact vector fields on G that vanish752

at the identity, we have753

hG ⊆ S.

Proof. Let X ∈ h. We already proved that XG is a contact vector field on G. We754

only need to verify that (XG)e = 0. Since XG is i-related to X̄, it is equivalent to755

show that (X̄)e = 0, but756

(X̄)e =
d

d t
π(exp(tX))

∣∣∣∣∣
t=0

=
d

d t
H

∣∣∣∣∣
t=0

= 0,

as desired. �757
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4.3. A criterion for Sard’s property. For g ∈ G, denote S(g) = {ξ(g) | ξ ∈ S}.758

Also, define759

E := {g ∈ G | (Rg)∗V1 + (Lg)∗V1 + S(g) = TgG}.

Given a horizontal curve γ with control u, from Section 2.1 we know that760

(Rγ(1))∗V1 + (Lγ(1))∗V1 + S(γ(1)) ⊂ Im(d Endu) ⊂ Tγ(1)G.

Therefore, if the set E is not empty then the abnormal set is a proper subset of G.761

Moreover, observing that E is defined by a polynomial relation (see Proposition 4.9),762

we can deduce that, whenever E is not empty then G has the (Algebraic) Sard Prop-763

erty.764

Proposition 4.11. Let G be a Carnot group and let G̃ and H as in the beginning of765

Section 4.1. Let g, g̃ and h be the corresponding Lie algebras. Assume that there are766

p ∈ G̃ and g ∈ G such that pH = gH and767

h + V1 + Adp−1(h + V1) = g̃.

Then768

(4.12) (Lg)∗V1 + (Rg)∗V1 + hG(g) = TgG.

Moreover, the above formula holds for a nonempty Zariski-open set of points in G,769

and so G has the Algebraic Sard Property.770

Proof. Project the equation using πg : h⊕ g→ g and get771

V1 + πg Adp−1(h + V1) = g.

Apply the differential of L̄p ◦ π|G , i.e., the map772

d(L̄p ◦ π|G)e : g = TeG→ T[p](G̃/H)

and get773

d(L̄p ◦ π|G)eV1 + d(L̄p ◦ π|G)eπg Adp−1(h + V1) = T[p](G̃/H).

By Equation (4.5), the left hand side is equal to774

d(L̄p)[e](di)eV1 + (dπ)p(dRp)(h + V1)

= d(L̄p)[e](di)eV1 + (dπ)p((h + V1)R)p

= d(L̄p)[e](di)eV1 + (di)g((h + V1)G)g

= (di)gd(Lg)eV1 + (di)g(dRg)eV1 + (di)gh
G(g).

Now (4.12) follows because (di)g in an isomorphism. Since (4.12) is expressed by775

polynomial inequations, also the last part of the statement follows. �776

We give an infinitesimal version of the result above.777
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Proposition 4.13. Assume that there exists ξ ∈ g̃ such that778

h + V1 + adξ(h + V1) = g̃.

Then there are p ∈ G̃ and g ∈ G such that pH = gH and779

h + V1 + Adp−1(h + V1) = g̃.

Proof. For all t > 0, let pt := exp(tξ). Take Y1, . . . , Ym a basis of h + V1. Let780

Y t
i := Adpt(

1

t
Yi) = adξ(Yi) + t

∑
k≥1

tk−2(adξ)
k

k!
(Yi).

Notice that Y t
i → adξ(Yi), as t→ 0. Then we have781

h + V1 + Adpt(h + V1) = span{Y1, . . . , Ym, Y
t

1 , . . . , Y
t
m}.

Since782

span{Y1, . . . , Ym, Y
0

1 , . . . , Y
0
m} = h + V1 + adξ(h + V1) = g̃,

then Y1, . . . , Ym, Y
t

1 , . . . , Y
t
m span the whole space g̃ for t > 0 small enough. Moreover,783

since pt → e ∈ G̃ and hence [pt] → [e] ∈ G̃/H, for t > 0 small enough there exists784

g ∈ G such that [g] = [pt], because i : G → G̃/H is a local diffeomorphism at785

e ∈ G. �786

Combining Proposition 4.11 and 4.13 we obtain the following.787

Corollary 4.14. Let G be a Carnot group with Lie algebra g. Let g̃ and h as in the788

beginning of Section 4.1. Assume that there exists ξ ∈ g̃ such that789

h + V1 + adξ(h + V1) = g̃.

Then G has the Algebraic Sard Property.790

5. Applications791

In this section we use the criteria that we established in Section 4 in order to prove792

items (2) to (4) of Theorem 1.2. The proof of (5) and (6) will be based on (4.1) and793

Corollary 4.14.794

The free Lie algebra on r generators is a graded Lie algebra generated freely by an795

r-dimensional vector space V . It thus has the form796

fr,∞ = V ⊕ V2 ⊕ V3 ⊕ . . .
Being free, the general linear groupGL(V ) acts on this Lie algebra by strata-preserving797

automorphisms. In order to form the free k-step rank r Lie algebra fr,k we simply798

quotient fr,∞ by the Lie ideal ⊕s>kVs. Thus,799

fr,k = V ⊕ V2 ⊕ . . .⊕ Vk.
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5.1. Proof of (2) and (3). We consider the free nilpotent Lie group F2,4 with800

2 generators and step 4, and the free nilpotent Lie group F3,3 with 3 generators801

and step 3. Their Lie algebras are stratified, namely f2,4 = V1 ⊕ V2 ⊕ V3 ⊕ V4 and802

f3,3 = W1 ⊕W2 ⊕W3.803

The Lie algebra f2,4 is generated by two vectors, say X1, X2, in V1, which one can804

complete to a basis with805

X21 = [X2, X1]

X211 = [X21, X1] X212 = [X21, X2]

X2111 = [X211, X1] X2112 = [X211, X2] = [X212, X1] X2122 = [X212, X2].

We apply Corollary 4.14 to verify the Algebraic Sard Property for F2,4. We take h to806

be the space of all strata preserving derivations of f2,4, which in this case are generated807

by the action of gl(2,R) on V1. Choose ξ = X2 +X212 +X2111. Then [ξ, V1] contains808

the vectors X21 + X2112 and X2122. Next, consider the basis {Eij | i, j = 1, . . . , 2}809

of gl(2,R), where Eij denotes the matrix that has entry equal to one in the (i, j)-810

position and zero otherwise. We compute the action of the derivation defined by each811

one of the Eij’s on ξ. Abusing of the notation Eij for such derivations, an elementary812

calculation gives813

E11ξ = X212 + 3X2111 E12ξ = X1 +X211

E22ξ = X2 + 2X212 +X2111 E21ξ = 2X2112.

Since we need to show that V1 + adξ V1 = g, it is enough to prove that V2⊕V3⊕V4 =814

(adξ V1) modV1, which follows from direct verification.815

We consider now the case of the free nilpotent group of rank 3 and step 3. The816

Lie algebra of F3,3 is bracket generated by three vectors in W1, say X1, X2, X3, which817

give a basis with818

X21 = [X2, X1] X31 = [X3, X1] X32 = [X3, X2]

X211 = [X21, X1] X212 = [X21, X2] X213 = [X21, X3](5.1)

X311 = [X31, X1] X312 = [X31, X2] X313 = [X31, X3]

X322 = [X32, X2] X323 = [X32, X3].

We have the bracket relation [X32, X1] = X312 − X213. We apply Corollary 4.14819

to verify the Algebraic Sard Property for F3,3. We choose ξ = X21 + X31 + X32 +820

X312 + X213, and we consider the action of h on it. In this case h = gl(3,R). Let821

Eij ∈ gl(3,R) be the matrix that has entry equal to one in the (i, j)-position and zero822

otherwise. Then the set {Eij | i, j = 1, . . . , 3} is a basis of gl(3,R). We compute the823

action of the elements of this basis on ξ. If i 6= j we obtain824

E12ξ = X31 +X311 E13ξ = −X21 +X211 E23ξ = X21 + 2X212

E21ξ = X32 +X322 E31ξ = −X32 −X323 E32ξ = X31 + 2X313
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whereas if i = j825

E11ξ = X21 +X31 +X213 +X312

E22ξ = X21 +X32 +X213 +X312

E33ξ = X31 +X32 +X213 +X312.

Next, we consider [ξ, V1] and notice that it contains the vectors v = X212 +X312 +X322826

and w = X213 + X313 + X323. It is now elementary to verify that the eleven vectors827

{Eijξ | i, j = 1, 2, 3}, v and w are linearly independent and therefore are a basis of828

W2 ⊕W3. In conclusion, ξ satisfies the hypothesis of Corollary 4.14.829

Remark 5.2. In the above proof, we had to chose the element ξ properly. This was830

done considering how GL(3) acts on F3,3. Actually, SL(3) acts by graded automor-831

phisms on f3,3. As a consequence each layer, W1,W2 and W3, form SL(3) representa-832

tions. We will see in Section 6.2 that the third layer W3 is isomorphic to sl(3) with833

the adjoint representation of SL(3). This observation allowed us to find the element834

ξ.835

5.2. Semisimple Lie groups and associated polarized groups. We complete836

here the proof of Theorem 1.2. We first recall some standard facts in the theory of837

semisimple Lie groups. For the details we refer the reader to [Kna02]. To be consis-838

tent with the standard notation, only in this section we write G for a noncompact839

semisimple Lie group and N (rather than G) for the nilpotent part of a parabolic840

subgroup.841

If θ is a Cartan involution of the semisimple Lie algebra g of G, then the Cartan842

decomposition is given by the vector space direct sum843

g = k⊕ p,

where k and p are the eigenspaces relative to the two eigenvalues 1 and −1 of θ. We844

fix a maximal abelian subspace a of p, whose dimension will be denoted by r. Let845

B be the Killing form on g; the bilinear form 〈X, Y 〉 := −B(X, θY ) defines a scalar846

product on g, for which the Cartan decomposition is orthogonal and by which a can be847

identified with its dual a∗. We fix an order on the system Σ ⊂ a∗ of nonzero restricted848

roots of (g, a). Let m = {X ∈ k | [X, Y ] = 0 ∀Y ∈ a}. The algebra g decomposes as849

g = m + a +⊕α∈Σgα, where gα is the root space relative to α. We denote by Σ+ the850

subset of positive roots. The Lie algebra of N , denoted n, decomposes as the sum of851

(positive) restricted root spaces n = ⊕α∈Σ+gα.852

Proof of (4). Denote by Π+ the subset of positive simple roots. The space V =853

⊕δ∈Π+gδ provides a stratification of n, so that (N, V ) is a Carnot group. We prove854

that (N, V ) has the Algebraic Sard Property. Let w be a representative in G of855

the longest element in the analytic Weyl group. From [Kna02, Theorem 6.5] we856

have Adw−1n̄ = n, where n̄ = ⊕α∈−Σ+gα. The Bruhat decomposition of G shows857

that N may be identified with the dense open subset NP̄ of the homogeneous space858
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G/P̄ , where P̄ denotes the minimal parabolic subgroup of G containing N̄ . Here we859

wrote N̄ for the connected nilpotent Lie group whose Lie algebra is n̄. Now we apply860

Proposition 4.11 to h = m+a+n̄. From our discussion it follows that h+Adw−1h = g.861

This equality holds true in a small neighborhood of w, so by density we can find p862

in G such that [p] = [n] for some n ∈ N and for which h + Ad p−1h = g. Then by863

Proposition 4.11 we conclude that the desired Sard’s property for N follows.864

Proof of (5). From the properties of the Cartan decomposition it follows that [p, p] =865

k. Then (G, p) is a polarized group. We restrict to the case where g is the split866

real form of a complex semisimple Lie algebra. In order to show that (G, p) has the867

Analytic Sard Property, we show that there is ξ ∈ a such that adξ p = k. If this holds,868

then by a similar argument of that in the proof of Proposition 4.13 we also have869

p + Adg p = g for some g ∈ G, from which we deduce the Analytic Sard Property.870

Let then ξ be a regular element in a. This implies in particular that ξ is such that871

α(ξ) 6= 0 for every root α. Next, observe that for every α ∈ Σ and X ∈ gα, we may872

write873

X =
1

2
(X − θX) +

1

2
(X + θX),

where X − θX ∈ p and X + θX ∈ k. We obtain874

[ξ,X − θX] = α(ξ)X − θ[θξ,X] = α(ξ)(X + θX).

The assumption that g is split implies in particular that k is generated by vectors of875

the form X + θX, with X a nonzero vector in a root space. Since ξ is regular, it876

follows that adξ p = k, which concludes the proof.877

878

We observe that if g is not split, then we do not find a vector ξ such that p+adξ p = g879

and so the same proof does not work. This can be shown, for example, by an explicit880

calculation on g = su(1, 2).881

Proof of (6). We observe that (G,⊕α∈Σgα) is a polarized group. Also in this case882

we assume that g is split. This implies that every root space gα, α ∈ Σ, is one883

dimensional, and that m = {0}. We recall that the Killing form B identifies a884

with a∗. Let Hα ∈ a be such that α(H) = B(Hα, H) for every H ∈ a. Recall885

that [Xα, θXα] = B(Xα, θXα)Hα and B(Xα, θXα) < 0. Let δ1, . . . , δr be a basis of886

simple roots, and let Xδi be a basis of gδi for every i = 1, . . . , r. The set of vectors887

{Hδ1 , . . . , Hδr} is a basis of a. Then the vector888

ξ = Xδ1 + · · ·+Xδr

satisfies [ξ,⊕α∈Σgα] ⊃ a, whence ⊕α∈Σgα + [ξ,⊕α∈Σgα] = g. Arguing as in the Proof889

of (5), we conclude that (G,⊕α∈Σgα) has the Analytic Sard Property.890
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5.3. Sard Property for some semidirect products. In this section we construct891

polarized groups that are not nilpotent and yet have the Algebraic Sard Property.892

These examples are constructed as semidirect products.893

Let ψ : H → Aut(G) be an action of a Lie group H on a Lie group G, i.e., ψ is a894

continuous homomorphism from H to the group of automorphisms of G. Write ψh895

for ψ(h), for h ∈ H. The semidirect product Goψ H has product896

(5.3) (g1, h1) · (g2, h2) = (g1ψh1(g2), h1h2).

Let V ⊆ g be a polarization for G. Assume that897

(5.4) (ψh)∗(V ) = V, for all h ∈ H.

We consider the group Goψ H endowed with the polarization V ⊕ h, where h is the898

Lie algebra of H.899

Proposition 5.5. Assume that G
ψy H is an action satisfying (5.4). If (G, V ) has900

the Algebraic Sard Property, so does (Goψ H,V ⊕ h).901

Proof. We show that AbnGoψH(e) is contained in AbnG(e) · H. It is a consequence902

of (5.4) that a curve γ(t) = (g(t), h(t)) in G̃ := Goψ H is horizontal with respect to903

V + h if and only if g(t) is horizontal in G and h(t) is horizontal in H.904

Hence, if g(1) /∈ AbnG(e), i.e., g is not abnormal, from (2.4), we have905

(d Rγ(1))
−1
e Im(d Enduγ ) = span{Adγ(t)(V ⊕ h) | t ∈ [0, 1]}

⊇ V + h + span{Adγ(t)V | t ∈ (0, 1]}
= V + h + span{Ad(g(t),0) Ad(0,h(t)) V | t ∈ (0, 1]}
= V + h + span{Ad(g(t),0)V | t ∈ (0, 1]}
= g + h,

where we used first that (g, eH) · (eG, h) = (g, h) and Ad(eG,h)(v, 0) = ((dψh)ev, 0);906

then we used the assumption (5.4) and the fact Ad(g,eH)(v, 0) = (Adg v, 0). �907

Remark 5.6. If (G, V ) is a free nilpotent Lie group for which the Algebraic Sard908

Property holds, we may take H to be any subgroup of GL(n, V ) and apply the909

proposition above to G o H. If (N, V ) is a Carnot group as we defined in the first910

part of Section 5.2, then h may be chosen to be any subalgebra of m⊕a. In particular,911

the Algebraic Sard Property holds for exponential growth Lie groups NA if N has912

step 2.913

6. Step-3 Carnot groups914

Our first goal in this section is to prove Theorem 1.5 concerning the Sard Property915

for length minimizers in Carnot groups of step 3. A secondary goal is to motivate916
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the claim made in Example 3.7 that the typical abnormal curve in F3,3, the free 3-917

step rank-3 Carnot group, does not lie in any proper subgroup. To this purpose we918

illustrate the beautiful structure of the abnormal equations in this case.919

6.1. Sard Property for abnormal length minimizers. In [TY13] Tan and Yang920

proved that in sub-Riemannian step-3 Carnot groups all length minimizing curves are921

smooth. They also claim that in this setting all abnormal length minimizing curves922

are normal. Hence, Theorem 1.5 would immediately follow from Lemma 2.32. Being923

unable to follow some of the proofs in [TY13], we prefer to provide here an independent924

proof of Theorem 1.5, which relies on the weaker claim that every length-minimizing925

curve is normal in some Carnot subgroup.926

Proof of Theorem 1.5. By Lemma 2.32, it is enough to estimate the set Abnlmstr(e) of927

points connected to e by strictly abnormal length minimizers. Let γ be such a curve928

starting from the origin e of a Carnot group G of step 3. Since γ is not normal, then929

it satisfies the Goh condition; in particular, γ is contained in the algebraic variety930

W λ = {g ∈ G : λ(Adg V2) = 0}
for some λ ∈ g∗ \ {0}. We now use Remark 2.36, Remark 2.26, and the fact that G is931

of step-3 to deduce that λ ∈ V ∗3 \ {0} and that W λ is a proper subgroup of G. Hence932

also the accessible set Hλ in W λ is a proper Carnot subgroup of G.933

Since γ is still length minimizing in Hλ, either γ is normal in Hλ, and we stop, or,934

being length minimizing, it is strictly abnormal (i.e., abnormal but not normal) in935

Hλ, and we iterate. Eventually, we obtain that γ is normal within a Carnot subgroup.936

We remark that in this subgroup γ may be abnormal or not abnormal. We do not937

need divide the two cases. We decompose938

Abnlmstr(e) ⊆
⋃

G′<G

AbnnorG′ (e),

where AbnnorG′ (e) is the union of all curves starting from e that are contained in G′,939

are normal in G′, and are abnormal within G.940

The idea is now to adapt the argument of Lemma 2.32 for the union of the sets941

AbnnorG′ (e). Carnot subgroups of G are parametrized by the Grassmannian of linear942

subspaces of V1. The dimension of the subgroup is a semi-algebraic function on the943

Grassmannian. On each of its level sets Ym, all relevant data (e.g., coefficients of the944

Hamiltonian equation satisfied by normal length minimizing curves) are real analytic.945

The dual Lie algebras g′∗ form an analytic vector bundle over Ym. Denote by τm the946

total space of this bundle. It is a semi-analytic subset of T ∗eG. The time 1 solutions947

of the Hamiltonian equations with inital data in τm give rise to real analytic maps948 flExpm : τm → L2([0, 1], V ). Each subgroup has its own geodesic exponential map,949

giving rise to an analytic map Expm : τm → G. Again,950

Expm = End ◦flExpm.
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Every point in
⋃
G′<G AbnnorG′ (e) is a value of some Expm where the differential of End951

is not onto. Therefore, it is a singular value of Expm. This constitutes a measure952

zero sub-analytic subset of G.953

�954

Remark 6.1. In the free 3-step Carnot group, we are not able to bound the codi-New! Keep or
remove?
New! Keep or
remove?

955

mension of Abnlm(e) away from 1. However, the codimension of Abnlmstr(e) is at least956

3. Actually, in the free 3-step rank-r group Fr,3 this codimension is greater or equal957

than r2− r+ 1. The calculation is similar to the one in Section 3.5. Indeed, by Witt958

Formula the dimension of Fr,3 is959

(6.2) dimFr,3 = r +
r(r − 1)

2
+
r3 − r

3
.

In the proof of Theorem 1.5, we showed that each abnormal geodesic from the origin is960

in a subgroup, which therefore has codimension bounded by dimFr−1,3, computable961

via Witt Formula (6.2). The collection of all the subgroups of rank r − 1 can be962

parametrized via the Grassmanian Gr(r, r−1), which has dimension r−1. Therefore,963

we compute964

dimFr,3 − dimFr−1,3 − dimGr(r, r − 1) = r2 − r + 1.

Notice that r2 − r + 1 equals 3 if r = 2, and is strictly greater than 7 if r ≥ 3.965

6.2. Investigations in the rank-3 case. As said in Section 5, the group GL(V ) acts966

on each strata Vj of the free algebra fr,∞. So each summand Vj breaks up into GL(V )967

irreducibles. Also, the k-step rank r Lie algebra decomposes as a representation space968

fr,k = V ⊕ V2 ⊕ . . .⊕ Vk.
The first summand V is the ‘birthday representation’ ofGL(V ). The second summand969

is well-known as a GL(V ) representation, and in any case is easy to guess:970

V2 = Λ2V

with the Lie bracket V × V → Λ2V being [v, w] = v ∧ w. The third summand is971

less well-known and will be treated momentarily. First a few more generalities. Any972

algebra becomes a Lie algebra when we define the Lie bracket between two elements to973

be their commutator. So the full tensor algebra T(V ) = V ⊕V ⊗2⊕V ⊗3⊕ . . . inherits974

a Lie algebra structure. Under this bracket we have [v, w] = v ⊗ w − w ⊗ v = v ∧ w975

for v, w ∈ V . The free Lie algebra over V is the Lie subalgebra that is Lie-generated976

by V within the full tensor algebra T(V ). In particular,977

Vr ⊂ V ⊗r.

Both the symmetric group Sr on r letters, and the general linear group GL(V ) acts on978

V ⊗r. By Schur-Weyl duality, see [FH91, Exercise 6.30 page 87], under the joint action979
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of GL(V )×Sr the space V ⊗r breaks up completely into irreducibles and this represen-980

tation is “multiplicity free”: each irreducible occurs at most once. The irreducibles981

themselves are written in the form Sλ(V )⊗ Specht(λ). Here λ is a partition of r and982

is represented by a Young Tableaux with blank boxes. Then Sλ(V ) is the irreducible983

representation of GL(V ) corresponding to λ, whereas Specht(λ) is the irreducible984

representation of Sr corresponding to this λ. If we are only interested in decomposing985

V ⊗r into GL(V )-irreducibles, what this means is that each irreducible Sλ(V ) occurs986

dim(Specht(λ)) times. For example, the representation Sr(V ) of symmetric powers987

of V corresponds to the partition r = 1 + 1 + 1 + . . .+ 1. The representation Λr(V )988

corresponds to the partition r = r.989

To the case at hand, V3 ⊂ V ⊗3 corresponds to the partition 3 = 2 + 1. This990

representation is dealt with in fine detail in [FH91, pages 75-76]. We summarize the991

results within our context. The bracket map V ⊗ Λ2V → V3 which sends v ⊗ ω →992

[v, ω] = v ⊗ ω − ω ⊗ v is onto, but as soon as dim(V ) > 2 it is not injective due to993

the Jacobi identity. We want to describe the image V3 of the bracket map. There994

is a canonical inclusion i : V ⊗ Λ2V → V ⊗3, namely the identity v ⊗ ω 7→ v ⊗ ω,995

whose image contains V3. To cut V ⊗ Λ2V ⊂ V ⊗3 down to V3 we must add linear996

conditions which encode the Jacobi identity. Consider the canonical projection map997

β : V ⊗3 → Λ3V which sends v1 ⊗ v2 ⊗ v3 to v1 ∧ v2 ∧ v3. Then the Jacobi identity is998

β = 0, so that V3 = im(i) ∩ ker(β).999

Let us now go to the specific case of dim(V ) = 3. Here dim(V ⊗Λ2V ) = 3× 3 = 9,1000

whereas dim(V3) = 8. In this case the Jacobi identity is ‘one-dimensional’. We1001

show how to identify V3 with sl(3) by fixing a volume form on V . Write coordinates1002

x, y, z = x1, x2, x3 on V and take as the resulting volume form µ = dx1 ∧ dx2 ∧ dx3.1003

The choice of form both singles out SL(3) ⊂ GL(3) = GL(V ) and yields a canonical1004

identification Λ2V ∼= V ∗ by sending v∧w to the one-form µ(v, w, ·). Thus V ⊗Λ2V ∼=1005

V ⊗ V ∗ = gl(V ) as an SL(3) representation space, with SL(3) = SL(V ) acting by1006

conjugation on gl(V ). For example, ∂j ⊗ (∂1 ∧ ∂2) is sent to the element ∂j ⊗ dx31007

under this identification. One verifies that the kernel of β is equal to the span of the1008

identity element I = ∂1 ⊗ dx1 + ∂2 ⊗ dx2 + ∂3 ⊗ dx3 under this identification. Thus1009

V3
∼= gl(V )/RI. Next, observe that as an SL(V ) (or GL(V )) representation space we1010

have: V ⊗ V ∗ = sl(V ) ⊕ RI where sl(V ) consists of those matrices with trace zero.1011

Thus V3 = gl(V )/RI = sl(V ), as SL(V ) representation spaces. Notice that as GL(V )1012

representation spaces this equality does not hold since the element λI ∈ GL(V )1013

acts on V3 by λ3I, while under conjugation the same element acts on sl(V ) as the1014

identity. An investigation of what adξ looks like in relation to this SL(3)-equivariant1015

decomposition led to the specific element ξ defined at the end of Section 5.1.1016

To get to the equations describing abnormality for F3,3, we write its Lie algebra as1017

f3,3 = V1 ⊕ V2 ⊕ V3 = R3 ⊕ R3∗ ⊕ sl(3)
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and so an element of the dual Lie algebra can be written out as1018

λ = (λ1, λ2, λ3) ∈ f∗3,3 = V ∗1 ⊕ V ∗2 ⊕ V ∗3 = R3∗ ⊕ R3 ⊕ sl(3)∗.

For this covector to lie along an abnormal extremal it must be λ1 = 0.1019

We partition the abnormal extremals into two classes: those for which λ2 6= 0,1020

which we call regular abnormal extremals following Liu-Sussmann, and those for which1021

λ2 = 0. The Hamiltonian1022

H = P1P23 + P2P31 + P3P12

generates all the regular abnormal extremals. Here1023

λ1 = (P1, P2, P3)
1024

λ2 = (P23, P31, P12).

and1025

Pi = PXi Pij = PXij = −Pji
where we are following the notation of (2.20) and (5.1). When we say that H “gener-1026

ates” the regular abnormal extremals we mean two things: (A) the Hamiltonian flow1027

of H preserves the locus λ1 = 0, i.e., the locus ∆⊥ = {P1 = P2 = P3 = 0} and (B) on1028

the locus λ1 = 0, λ2 6= 0, a unique - up to reparameterization - abnormal extremal1029

passes through every point, with the extremal through (0, λ2, λ3) being the solution1030

to Hamilton’s equations for this Hamiltionian H with initial conditions λ.1031

We follow a Hamiltonian trick that Igor Zelenko kindly showed us for both finding1032

H and for validating claims (A) and (B). Start with the Maximum Principle charac-1033

terization of abnormal extremals discussed in Section 2.4. According to this principle,1034

an abnormal with control u(t) is a solution to Hamilton’s equations having the time1035

dependent Hamiltonian Hu = u1P1 + u2P2 + u3P3 and lying in the common level set1036

P1 = 0, P2 = 0, P3 = 0. From Hamilton’s equations we find that1037

Ṗ1 = {P1, Hu} = −u2P12 − u3P13
1038

Ṗ2 = {P2, Hu} = −u1P21 − u3P23
1039

Ṗ3 = {P3, Hu} = −u1P31 − u2P32

But we must have that Ṗi = 0. Consequently (u1, u2, u3) must lie in the kernel of the1040

skew-symmetric matrix whose entries are Pij. As long as this matrix is not identically1041

zero, its kernel is one-dimensional and is spanned by (P23, P31, P12). It follows that:1042

(u1, u2, u3) = f(P23, P31, P12), f 6= 0.

Since the parameterization of the abnormal is immaterial, we may take f = 1. Plug-1043

ging our expression for u back in to Hu yields the form of H above.1044

We can write down the ODEs governing the regular abnormal extremals, using this1045

H. We have just seen that1046

u = λ2 = (P23, P31, P12)
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describes the controls, i.e., the moving element of V . This control evolves according1047

to1048

u̇ = Au

where A is a constant matrix in SL(3). These are to be supplemented by the under-1049

standing of what the resulting abnormal extremal is1050

λ1 = 0, λ2 = u, λ3 = A.

We want to establish Hamilton’s equations, using this H. For doing so, we compute1051

Ṗij = {Pij, H} and Ṗijk = {Pijk, H} = 0 where Pijk = PXijk . The first equation1052

results in a bilinear pairing between Pij and Pijk which, when the Pijk are properly1053

interpreted as an element A ∈ SL(3), is matrix multiplication.1054

6.3. Computation of abnormals not lying in any subgroup. Take a diagonal-1055

izable A with distinct nonzero eigenvalues a, b, c, a + b + c = 0. For simplicity, let1056

it be diag(a, b, c) relative to our choice of coordinates for V . Then u evolves accord-1057

ing to u(t) = (Aeat, Bebt, Cect). We may suppose that none of A,B,C are zero by1058

assuming that no components of λ2 = u(0) are zero. The corresponding curve in G1059

passing through e = 0, projected onto the first level is the curve x1 = 1
a
(A(eat − 1),1060

x2 = 1
b
(B(ebt − 1), x3 = 1

c
(C(ect − 1). Since the functions 1, eat, ebt, ect are linearly1061

independent , the curve projected to the first level cannot lie in any proper subspace1062

of V , which in turn implies that the entire abnormal curve cannot lie in any proper1063

subgroup of G.1064

Alternatively, one can directly use Corollary 2.14. In fact, with the notation of1065

Section 5, one can take λ = e∗21− e∗31 + e∗32− ce∗213 + be∗312 to prove that the curve with1066

control u(t) = (e(−b−c)t, ebt, ect) is abnormal.1067

The characteristic viewpoint. We put forth one further perspective on abnormal ex-1068

tremals which makes the computation just done more transparent. Take any po-1069

larized manifold (Q,∆). Take the annihilator bundle of ∆, denoted ∆⊥ ⊂ T ∗Q.1070

Restrict the canonical symplectic form ω of T ∗Q to ∆⊥. Call this restriction ω∆.1071

Then the abnormal extremals are precisely the (absolutely continuous) character-1072

istics for ω∆, that is the curves in ∆⊥ whose tangents are a.e. in Ker(ω∆). Let1073

π : ∆⊥ → Q be the canonical projection. Then a linear algebra computation shows1074

that dπ(q,λ) projects Ker(ω∆)(q, λ) linearly isomorphically onto Ker(wq(λ)) ⊂ ∆q1075

where λ ∈ ∆⊥q 7→ wq(λ) ∈ Λ2∆∗q is the operator called the “dual curvature” in1076

[Mon02]. In the case of a polarized group (Q,∆) = (G, V ) we have that wq(λ) is the1077

two-form of Equation (2.15) for λ = η ∈ V ⊥.1078

In our situation V has dimension 3 so that w(λ) has either rank 2 or 0 and thus its1079

kernel has dimension 1 or 3. The kernel has dimension 1 exactly when λ2 6= 0, and1080

rank 3 exactly when λ2 = 0. Along the points where λ2 6= 0 the kernel of ω∆ is a line1081

field, and the Hamiltonian vector field XH for H above rectifies this line field. Note1082

that XH vanishes exactly along the variety λ2 = 0.1083
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7. Open problems1084

Is Abn(e) , the set of endpoints of abnormal extremals leaving the identity, a closed1085

analytic variety in G when G is a simply connected polarized Lie group? In all1086

examples computed, the answer is ‘yes’. However, even the following more basic1087

questions are still open.1088

Is Abn(e) closed?1089

Can Abn(e) be the entire group G?1090

Concerning the importance of the adjective “simply connected” above, consider the1091

torus. Any integrable distribution V whose corank is 1 or greater on any space G has1092

its Abn(e) the leaf through e. Consequently an irrationally oriented polarization V1093

on the torus has for its Abn(e) a set that is neither closed nor analytic.1094

We also wonder wether statements 5 and 6 of Theorem 1.2 can be upgraded to1095

algebraic.1096

Can one unify (6) and (7) having the result for all semisimple groups?1097

If G and H are polarized Lie groups having the Sard Property, does any semidirect1098

product GoH have the Sard Property?1099

Finally, in the particular case of rank 2 Carnot groups, what is the minimal codi-1100

mension of Abn(e)?1101
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