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Abstract

We give a mechanical example concerning the fact that some reg-
ularity is necessary in KAM theory. We consider the model given by
the vertical bouncing motion of a ball on a periodically moving plate.
Denoting with f the motion of the plate, some variants of Moser in-
variant curve theorem apply if ḟ is small in norm C5 and every motion
has bounded velocity. This is not possible if the function f is only C1.
Indeed we construct a function f ∈ C1 with arbitrary small derivative
in norm C0 for which a motion with unbounded velocity exists.

1 Introduction

Moser invariant curve theorem [6] is of fundamental importance to study the
stability of the solutions of Hamiltonian systems [7, 11]. It deals with the
existence of invariant curves for some diffeomorphisms of the cylinder that
are ”close” enough to an integrable twist map. More precisely, the map

(1)

{
θ1 = θ0 + α(r0) +R1(θ0, r0)
r1 = r0 +R2(θ0, r0)

with α′ > 0 has invariant curves if it possesses the intersection property and

(2) ||R1||C333(C) + ||R2||C333(C) < ε
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for ε sufficiently small. The assumption on the regularity of the map was
very strong. The question of how crucial was this regularity appeared very
soon. Takens [12] gave a first counterexample in class C1 and successively
Herman [2] improved it giving another counterexample in class C3−ε where ε
is a small positive constant. Recently, Wang [13] proved a related result for
a Hamiltonian system with d degrees of freedom. The examples by Takens
and Herman were constructed as perturbations of the integrable map in the
class of symplectic diffeomorphisms.

Our purpose is different, indeed we are going to construct an example
in class C0 that comes from a mechanical model. The model describes the
vertical motion of a bouncing ball on a moving plate. The plate is moving
in the vertical direction as a 1-periodic function f and the gravity force is
acting on the ball. Moreover we suppose that the bounces are elastic and do
not affect the movement of the plate. This is a very simple mechanical model
with interesting dynamics and has been considered by several authors. See
[4, 1, 10, 3] and references therein for more information. The motion of the
ball can be described by an exact symplectic twist map that is close to the
integrable twist map if the velocity is small [5]. Hence a direct application of
Moser’s theorem shows that if the velocity of the plate ḟ is small in norm C333

then invariant curves exist. It means that the velocity of the ball is always
bounded. The smallness of ḟ is essential for the boundedness of the velocity.
Indeed Pustyl’nikov [9] proved that if ḟ is sufficiently large then motions of
the ball with unbounded velocity exist. We are going to prove that some
regularity is needed as well. Precisely given δ arbitrary small, we are going
to construct a concrete function f ∈ C1(R/Z) with sup |ḟ | ≤ δ such that the
corresponding model admits a motion of the ball with unbounded velocity.
Thus invariant curves cannot exist and Moser’s theorem cannot hold in this
context. With some care it is possible to adapt our construction so that
the function f belongs to a smooth class Ck(R/Z) with k ≥ 2 and still it
produces unbounded motions. At first sight this could seem contradictory
with Moser’s theorem but it must be noticed that the Ck norm of this function
will be large. An interesting open problem is to determine the optimal k for
which all motions have bounded velocity when ||f ||Ck is sufficiently small.
On this line we refer to the work of Zharnitsky [14] to see a similar result on
the Fermi-Ulam ping-pong model. Our idea of constructing the function is
different to Zharnitsky’s idea: we start from the result of Pustyl’nikov on the
unbounded motion. He constructed an orbit that in the torus R/Z × R/Z
becomes a fixed point. Our idea will be to look at N -cycles in the same
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torus. This approach will give weaker conditions to generate unbounded
orbits. After some technical work, it will allow us to construct the function
f and the corresponding unbounded orbit.

2 Statement of the problem

We are concerned with the problem of the motion of a bouncing ball on
a vertically moving plate. We assume that the impacts do not affect the
motion of the plate that is supposed to move like a function f ∈ C1(R/Z).
The linear momentum and the energy are preserved between the bounces,
thus the motion is described by the following map

(3) Pf :

{
t1 = t0 + 2

g
v0 − 2

g
f [t1, t0]

v1 = v0 + 2ḟ(t1)− 2f [t1, t0]

where

f [t1, t0] =
f(t1)− f(t0)

t1 − t0
.

Here the coordinate t represents the impact time. The coordinate v represents
the velocity of the ball immediately after the impact. This is the formulation
considered by Pustil’nikov in [9]. Another approach based on differential
equations was considered by Kunze and Ortega [4] and leads to a map that
is equivalent to (3), see [5]. The map is implicit and is well defined for v > v̄
for some v̄ sufficiently large. Moreover, by the periodicity of the function f ,
the coordinate t can be seen as an angle. Hence the map Pf is defined on
the half cylinder T× (v̄,+∞), where T = R/Z.
If f ∈ C6, consider the strip Σa = T× [a, a+ k] with a > v̄ and k sufficiently
large. A simple application of Moser invariant curve theorem [6] in the form
[8] gives the existence of an invariant curve of Pf in Σa if

(4) ||ḟ ||C5[0,1] ≤ δ

for some δ sufficiently small. Invariant curves act as barriers so that repeating
the argument for a → +∞ one can prove that if condition (4) is satisfied
then every orbit (t∗n, v

∗
n) of Pf is such that

sup
n∈Z

v∗n <∞.

This result depends on the regularity of f . More precisely we shall prove the
following result
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Theorem 1. For every 0 < δ < g
4

there exists f ∈ C1(R/Z) and an initial
condition (t∗0, v

∗
0) such that:

1. ||ḟ ||C0[0,1] ≤ δ,

2. the orbit of Pf with initial condition (t∗0, v
∗
0) satisfies

t∗n+N = t∗n + σn, σn ∈ N

v∗n+N = v∗n +
g

2
V for some V ∈ N \ {0}

for every n ∈ N and for some N sufficiently large of order 1/δ.

Throughout the paper N is the set of non-negative integer numbers (in-
cluding 0).

3 Unbounded orbits

In this section we are going to construct unbounded orbits for the map Pf .
We will obtain some intricate conditions that generalize Pustil’nikov’s result.
The fundamental observation is that the map Pf shares some orbits with a
generalized standard map. More precisely, if (t∗n, v

∗
n)n∈Z is a complete orbit

satisfying

(5) f(t∗n) = f(t∗0) for every n ∈ Z

then f [t∗n, t
∗
n−1] = 0 for every n ∈ Z and (t∗n, v

∗
n)n∈Z becomes a complete orbit

for the generalized standard map

(6) GS :

{
t1 = t0 + 2

g
v0

v1 = v0 + 2ḟ(t1).

The converse is also true: if (t∗n, v
∗
n)n∈Z is a complete orbit of GS with vn > v̄

for every n and satisfying condition (5) then it is also an orbit for Pf . This
fact will be crucial in the following. We start constructing unbounded orbits
for GS.

Lemma 1. Let t∗0 < t∗1 be real numbers and let (t∗n, v
∗
n)n∈Z be the orbit of the

map GS with initial conditions t0 = t∗0, v0 = v∗0 = g(t∗1 − t∗0)/2. Suppose that
there exist three positive integers N,W, V such that
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1. N(t∗1 − t∗0) + 4
g

∑N−1
k=1 (N − k)ḟ(t∗k) = W ,

2. 4
g

∑N−1
k=0 ḟ(t∗k) = V .

Then
t∗n+N = t∗n + σn, σn ∈ N

v∗n+N = v∗n +
g

2
V.

Moreover, there exists T > 0 such that if t∗1 − t∗0 > T then v∗n > v̄ for every
n ≥ 0.

Proof. We start noting that from (6) we obtain the following expression for
the n-th iterate:

(7) vn = v0 + 2
n∑

k=1

ḟ(tk)

(8) tn = t0 +
2

g
nv0 +

4

g

n−1∑
k=1

(n− k)ḟ(tk).

We claim that for every j ∈ N, there exists σj ∈ N such that

(9) t∗N+j = t∗j + σj.

Let us prove it by induction on j. The fact that v∗0 = g(t∗1 − t∗0)/2 and the
hypothesis, together with (8) give the first step for j = 0 with σ0 = W . Note
that by periodicity we also have ḟ(t∗N) = ḟ(t∗0).
Now suppose that t∗N+i = t∗i + σi for every i < j. Using (6) we have

t∗N+j = t∗N+j−1 +
2

g
v∗N+j−1 = t∗j−1 + σj−1 +

2

g
[v∗j−1 + 2

N−1∑
k=0

ḟ(t∗k+j)] =

(t∗j−1 +
2

g
v∗j−1) + σj−1 +

4

g

N−1∑
k=0

ḟ(t∗k+j) = t∗j + σj−1 +
4

g

N−1∑
k=0

ḟ(t∗k+j).

(10)

We just need to prove that the last term is an integer. We have that for
every k, there exist d ∈ N and r ∈ {0, . . . , N − 1} such that k + j = Nd+ r.
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Moreover, the fact that k ∈ {0, . . . , N − 1} implies that N(d − 1) + r < j.
This allows to use the inductive hypothesis several times and get

t∗k+j = t∗Nd+r = t∗N+N(d−1)+r = t∗N(d−1)+r + σN(d−1)+r = · · · = t∗r + σ,

where σ ∈ N. Moreover, from the definition, we have that r takes all the
values in {0, . . . , N − 1} as k goes from 0 to N − 1. Finally we have

4

g

N−1∑
k=0

ḟ(t∗k+j) =
4

g

N−1∑
r=0

ḟ(t∗r) = V

and we conclude using the hypothesis.
Therefore, from (7), we have

v∗N+n = v∗n + 2
n+N∑
k=n+1

ḟ(t∗k) = v∗n + 2
N−1∑
k=0

ḟ(t∗k) = v∗n +
g

2
V.

Finally, once more from (7) we have the last assertion remembering that
v∗0 = g(t∗1 − t∗0)/2 and ḟ is bounded.

Remark 1. This result has a well-known geometrical interpretation. The
map GS satisfies

GS(t0 + 1, v0) = GS(t0, v0) + (1, 0)

GS(t0, v0 +
g

2
) = GS(t0, v0) + (1,

g

2
).

It means that GS induces a map on the torus R/Z × R/g
2
Z and the orbit

(t∗n, v
∗
n)n∈Z becomes an N-cycle on this torus.

We shall use this lemma in the following proposition to find unbounded
orbits for the original map Pf .

Proposition 1. Consider a function f ∈ C1(R/Z) and a sequence (t∗n)n∈N.
Suppose that there exist three positive integers N,W, V such that

1. t∗N − t∗0 = W ,

2. 4
g
ḟ(t∗0) + (t∗N − t∗N−1)− (t∗1 − t∗0) = V ,

3. f(t∗0) = f(t∗1) = · · · = f(t∗N−1),
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4. ḟ(t∗k) = g
4
(t∗k+1 − 2t∗k + t∗k−1) for 1 ≤ k ≤ N − 1.

Then if we define v∗n+1 = v∗n + 2ḟ(t∗n+1) and v∗0 =
g(t∗1−t∗0)

2
we have that there

exists an orbit (τ ∗n, ν
∗
n)n∈N of Pf such that (τ ∗n, ν

∗
n) = (t∗n, v

∗
n) for 0 ≤ n ≤ N

and
τ ∗n+N = τ ∗n + σn, σn ∈ N

ν∗n+N = ν∗n +
g

2
V.

Moreover, there exists T > 0 such that if t∗1 − t∗0 > T then v∗n > v̄ for every
n ≥ 0.

Proof. First of all it is not difficult to prove that conditions 3. and 4. imply
that (t∗n, v

∗
n) is a partial orbit of Pf for 0 ≤ n ≤ N . Note that we get the case

n = N using condition 1 and the periodicity of f .
Hence, to prove our result, it is sufficient to prove that hypothesis 1,2 and
4 allow to apply Lemma 1. Indeed the sequence (tn) coming from Lemma 1
satisfies condition (9). Using hypothesis 3 we have that condition (5) holds
and we can repeat the discussion of the beginning of this section.

Let us prove that from hypothesis 2 and 4 we can recover condition 2 in
Lemma 1. We just have to verify that

(t∗N − t∗N−1)− (t∗1 − t∗0) =
4

g

N−1∑
k=1

ḟ(t∗k)

and, remembering hypothesis 4, it is sufficient to prove that

(11) (t∗N − t∗N−1)− (t∗1 − t∗0) =
N−1∑
k=1

Tk.

Here, we denote

(12) Tk = t∗k+1 − 2t∗k + t∗k−1.

Let us prove (11) by induction on N . The base case N = 1 can be easily
verified. Now suppose as inductive hypothesis (11) to be true. Using it we
have

(13)
N∑
k=1

Tk =
N−1∑
k=1

Tk + t∗N+1 − 2t∗N + t∗N−1 = (t∗N+1 − t∗N)− (t∗1 − t∗0)
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that proves our claim. To get condition 1 of Lemma 1 we note that, from
hypothesis 1 we have

W = t∗N − t∗0 = t∗N − t∗0 +N(t∗1 − t∗0)−N(t∗1 − t∗0)

= N(t∗1 − t∗0) + (N − 1)t∗0 −Nt∗1 + t∗N .
(14)

Once again using hypothesis 4 we just have to prove that

(15) (N − 1)t∗0 −Nt∗1 + t∗N =
N−1∑
k=1

[Tk(N − k)]

where Tk is defined by (12). Let us prove it by induction on N . The base
case N = 1 can be easily verified. Now suppose as inductive hypothesis (15)
to be true. Simple computations give

N∑
k=1

[Tk(N + 1− k)] =
N−1∑
k=1

[Tk(N + 1− k)] + TN

=
N−1∑
k=1

[Tk(N − k)] +
N−1∑
k=1

Tk + TN .

(16)

Using the inductive hypothesis and the definition of TN we get

N∑
k=1

[Tk(N + 1− k)] = (N − 1)t∗0 −Nt∗1 − t∗N + t∗N+1 + t∗N−1 +
N−1∑
k=1

Tk.

Now we can use (11) and get

N∑
k=1

[Tk(N + 1− k)] = Nt∗0 − (N + 1)t∗1 + t∗N+1.

So we can recover also condition 1 in Lemma 1 and conclude the proof.

4 Proof of Theorem 1

Proposition 1 gives conditions to decide whether a finite sequence (tn)0≤n<N

”generates” an unbounded orbit of Pf . In this section we are going to con-
struct a sequence (tn) and a function f in such a way that Proposition 1 is
applicable. The next lemma deals with the construction of the sequence.
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Lemma 2. For every δ ∈ (0, g
4
) there exist three positive integers N,W, V

and an increasing sequence (tn)0≤n≤N satisfying the following conditions.

1. tN − t0 = W ,

2. 4
g
η + (tN − tN−1)− (t1 − t0) = V for some 0 < η ≤ δ,

3. g
4
(tn+1 − 2tn + tn−1) = δ for 1 ≤ n ≤ N − 1.

Proof. We construct the sequence (tn) for 0 ≤ n ≤ N for some N to be fixed
later. Fix t0 = 0 and consider t1 positive to be fixed later. Define, for every
0 ≤ n ≤ N − 1 the increasing sequence

(17) tn+1 =
4

g
δ + 2tn − tn−1

so that condition 3. is satisfied. Now let us adjust the constants t1, N,W, V
and η in order to satisfy conditions 1. and 2. Let us start by noticing that
letting t0 = 0, the formula

(18) tn =
n(n− 1)

2

4

g
δ + nt1

holds for every n ≥ 0 and t1 > 0. We use it to rewrite condition 1. as

(19) Nt1 +N(N − 1)
2δ

g
= W

and condition 2. as

(20)
4

g
η + (N − 1)

4

g
δ = V

Now we just have to find N, V,W ∈ N \ {0}, t1 > 0 and 0 < η ≤ δ such that
(19) and (20) are satisfied. First consider (20). Fix V = 1 so that (20) is
equivalent to

(21) η =
g

4
− (N − 1)δ.

Imposing 0 < g
4
− (N − 1)δ ≤ δ we get the condition

g

4δ
≤ N <

g

4δ
+ 1
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that is satisfied by some N > 1. Using such N we can define η through (21).
Now we can consider (19). We have

t1 =
W

N
−N(N − 1)

2δ

g
.

If we chose W = N2(N − 1) we can conclude noting that

t1 = N(N − 1)(1− 2δ

g
) > 0.

The following proposition is concerned with the construction of the func-
tion f .

Proposition 2. Consider a pair of sequences (tk)0≤k≤N and (Dk)0≤k≤N such
that tk ≤ tk+1 and 0 ≤ Dk ≤ δ for some δ > 0. Suppose that tN − t0 = W
for some W ∈ N and D0 = DN . Then there exists f ∈ C1(R/Z) such that

1. f(t0) = f(t1) = · · · = f(tN−1)

2. ḟ(tk) = Dk for 1 ≤ k ≤ N

3. ||ḟ ||C0[0,1] ≤ δ

Proof. To fix the ideas, suppose that t0 = 0. Consider the sequence (tk)0≤k≤N
modulo 1 given by {

tk 7→ tk − [tk] for 0 ≤ k ≤ N − 1
tN 7→ 1

where [x] represents the integer part of x. We can rearrange the sequence sup-
posing it to be monotone non-decreasing. To be consistent we will rearrange
also the sequence (Dk) following the permutation made on the sequence (tk).
Now for t ∈ [0, 1] consider the function ζ(t) being piecewise linear defined for
tk ≤ t < tk+1, 0 ≤ k < N as in Figure 4. With reference to the figure, the
points Ak and Bk are determined by the positive quantity Lk <

tk+1−tk
2

and
the constant Ck is such that 0 < Ck < δ. If we were able to get the signed
area between tk and tk+1 to be zero, we would get the thesis extending ζ(t)
to the whole R by periodicity and letting

f(t) =

∫ t

0

ζ(s)ds.
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tBk tk+1Ak

−Ck

tk

Lk

Dk+1

Dk

Lk

Figure 1: The function ζ(t) for tk ≤ t < tk+1

We will prove that it is possible to construct such a function ζ finding suit-
able Ck and Lk. Instead of giving cumbersome computations, let us think
geometrically referring to the figure. The signed area between tk and tk+1 is
given by

Lk(Dk +Dk+1)− Ck(tk+1 − tk − 2Lk)

2
.

As we want it to be zero we get that

Ck =
Lk(Dk +Dk+1)

tk+1 − tk − 2Lk

> 0.

Remembering that we need Ck < δ, we can conclude choosing Lk such that

Lk <
δ(tk+1 − tk)

Dk+1 +Dk + 2δ
.
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Remark 2. The function f is of the type f(t) = δ2F (t/δ) for some oscilla-
tory function F . More precisely, the function F satisfies Proposition 2 with
δ = 1. Therefore, if a smooth modification of f were possible, the higher
derivatives would be large.

We are ready for the

Proof of theorem 1. Given δ, consider the sequence (t∗k) coming from Lemma
2 and the corresponding constants η and N . It comes from the proof that
we have t0 = 0 and tN = W ∈ N \ {0}. Now consider the corresponding
sequence (Dk) defined as

Dk =
g

4
(t∗k+1 − 2t∗k + t∗k−1) for 1 ≤ k ≤ N − 1

DN =D0 = η.
(22)

From condition 2 and 3 in Lemma 2 we have

0 ≤ Dk ≤ δ

for every 0 ≤ k ≤ N − 1. Thus we can apply Proposition 2 to the sequences
(t∗k)0≤k≤N−1 and (Dk)0≤k≤N to get the corresponding function f̄ . Now con-
sider the corresponding map Pf̄

(23)

{
t1 = t0 + 2

g
v0 − 2

g
f̄ [t1, t0]

v1 = v0 + 2 ˙̄f(t1)− 2f̄ [t1, t0].

Let (τ ∗k , ν
∗
k) the orbit with initial condition

(t0, v0) = (t∗0,
g(t∗1 − t∗0)

2
).

Remembering conditions 1 and 2 of proposition 2 we have that (τk) = (t∗k) and
the corresponding sequence (t∗k, v

∗
k) is an orbit of Pf̄ satisfying the hypothesis

of Proposition 1. Condition 3 of Lemma 2 concludes the proof.
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