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Abstract. We consider the long term dynamics of the restricted N-body problem, modeling in a statistical
sense the motion of an asteroid in the gravitational field of the Sun and the solar system planets.
We deal with the case of a mean motion resonance with one planet and assume that the osculating
trajectory of the asteroid crosses the one of some planet, possibly different from the resonant one,
during the evolution. Such crossings produce singularities in the differential equations for the motion
of the asteroid, obtained by standard perturbation theory. In this work we prove that the vector
field of these equations can be extended to two locally Lipschitz-continuous vector fields on both
sides of a set of crossing conditions. This allows us to define generalized solutions, continuous but
not differentiable, going beyond these singularities. Moreover, we prove that the long term evolution
of the “signed” orbit distance [G. F. Gronchi and G. Tommei, Discrete Contin. Dyn. Syst. Ser. B,
7 (2007), pp. 755-778] between the asteroid and the planet is differentiable in a neighborhood of
the crossing times. In case of crossings with the resonant planet we recover the known dynamical
protection mechanism against collisions. We conclude with a numerical comparison between the long
term and the full evolutions in the case of asteroids belonging to the “Alinda” and “Toro” classes
[A. Milani et al., Icarus, 78 (1989), pp. 212-269]. This work extends the results in [G. F. Gronchi
and C. Tardioli, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), pp. 1323-1344] to the relevant case
of asteroids in mean motion resonance with a planet.
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1. Introduction. It is well known that for NV > 3 the N-body problem is not integrable,
even in the restricted case. In particular, the evolutions of near-Earth asteroids (NEAs) have
short Lyapunov times, beyond which the orbit computed by numerical techniques and the true
orbit are completely uncorrelated [14]. However, we can obtain statistical information on the
long term evolution by considering a normal form of the Hamiltonian of the problem, where
we try to filter out the short periodic oscillations. More precisely, we would like to eliminate

*Received by the editors November 7, 2017; accepted for publication (in revised form) by D. Scheeres April 11,
2018; published electronically June 19, 2018.

http://www.siam.org/journals/siads/17-2/M115570.html

Funding: This work was supported by the Marie Curie Initial Training Network Stardust, FP7-PEOPLE-2012-
ITN, grant agreement 317185. The first author's research was supported by the Spanish Ministry of Economy and
Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0554),
the project “Geometric and numerical analysis of dynamical systems and applications to mathematical physics”
(MTM2016-76702-P), and the “Juan de la Cierva-Formacién” Programme (FJCI-2015-24917). The second author's
research was partially supported by the University of Pisa via grant PRA-2017 “Sistemi dinamici in analisi, geometria,
logica e meccanica celeste.”

fInstituto de Ciencias Matemiticas (CSIC-UAM-UC3M-UCM), C/Nicolds Cabrera 13-15, 28049 Madrid, Spain,
and Dipartimento di Matematica, Universita di Pisa, 56127 Pisa, Italy (stefano.maro@icmat.es).

Dipartimento di Matematica, Universita di Pisa, 56127 Pisa, Italy (giovanni.federico.gronchi@unipi.it).

1786

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://www.siam.org/journals/siads/17-2/M115570.html
mailto:stefano.maro@icmat.es
mailto:giovanni.federico.gronchi@unipi.it

Downloaded 07/16/18 to 150.244.222.130. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

LONG TERM EVOLUTION OF RESONANT CROSSING ORBITS 1787

the dependence on the fast angles from the first order part of the Hamiltonian [1]. Outside
of mean motion resonances this program can be successfully completed and corresponds to
averaging Hamilton’s equations over the mean anomalies of the asteroid and the planets. In
the case of mean motion resonances, the resonant combination of the mean anomalies is a
slow angle and must be retained in the normal form.

In both cases, the elimination of the fast angles is usually obtained through a canonical
transformation, in the spirit of classical perturbation theory. However, the intersections be-
tween the trajectories of the asteroid and the planets introduce singularities in the standard
procedure. Actually, even the coefficients of the Fourier series expansion of the generating
function are not defined in a neighborhood of crossings. On the other hand, since the trajec-
tory of an NEA is likely to cross the trajectory of the Earth, we cannot avoid dealing with
these problems. Note that the minimal distance between the trajectories of an asteroid and
a planet is crucial in the study of possible Earth impactors. Actually, a small value of this
quantity, which we denote by dyin, is a necessary condition for an impact. An orbit crossing
singularity occurs whenever d;, = 0.

After the preliminary study by Lidov and Ziglin [8], in the case of orbits uniformly close
to a circular one, the problem of averaging over crossing orbits was studied in [5]. Here
the authors assumed the orbits of the planets to be circular and coplanar, and excluded
mean motion resonances and close approaches with them. In [4] the results were extended
to the case of nonzero eccentricities and inclinations. In these works, the main singular term
was computed through a Taylor expansion centered at the mutual nodes of the osculating
orbits. These results were improved in [6], where the main singular term was expanded at
the minimum distance points (see section 4) and where it was proved that the averaged
vector field admits two different Lipschitz-continuous extensions in a neighborhood of almost
every crossing configuration. The latter property allows us to define a generalized solution,
representing the secular evolution of the asteroid, that is continuous but not differentiable at
crossings. Moreover, one can suitably choose the sign of d.;, and obtain a map dmin that is
differentiable in a neighborhood of almost all crossing configurations [7]. The secular evolution
of Jmin along the generalized solutions turns out to be differentiable in a neighborhood of the
singularity.

The basic model considered in these works comes from the averaging principle. Therefore,
it is assumed that the dynamics is not affected by mean motion resonances. However, the pop-
ulation of resonant NEAs is not negligible. Moreover, mean motion resonances are considered
responsible for a relatively fast change in the orbital elements leading some asteroids to cross
the planet trajectories [15]. Hence it is important to extend the analysis to such asteroids,
which is the purpose of this paper.

For the resonant case, the averaging process suffers the presence of small divisors. Hence
the dependence on the mean anomalies cannot be completely eliminated, and the terms cor-
responding to their resonant combination still appear in the resonant normal form; see (7).
We observe that in this relation the averaged Hamiltonian considered in [6] is still present.
However, a new term appears in the form of a Fourier series, which we truncate to some order
Nmax- Lhis term, denoted by Hlmax  is singular at orbit crossings and needs to be studied.
Another difference with the nonresonant case is that the semimajor axis of the asteroid orbit
is not constant, and the number of state variables to consider in the equations is six.
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We will prove that, despite these differences, the vector field of the resonant normal form
computed outside the singularities admits two different locally Lipschitz-continuous extensions
on both sides of a set of crossing conditions, as in [6]. We can also define generalized solutions,
continuous but not differentiable, going beyond the crossing singularities, and the long term
evolution of the map dmin along these solutions is differentiable in a neighborhood of crossings.

The analysis of the singularity is performed in two different ways, depending on whether
or not the crossed planet is the one in mean motion resonance with the asteroid. In case of
crossings with the resonant planet we show that, in the limit for n., — 0o, we recover the
known dynamical protection mechanism against collisions between the asteroid and the planet
[9].

This paper is organized as follows. In section 2 we derive the equations of the long term
dynamics outside the crossing singularities for a given mean motion resonance. In section 3 we
recall the definition of the signed orbit distance szin- The main results are stated and proved
in section 4. In section 5 we define the generalized solutions and prove the regularity of the
evolution of dmin. In section 6 we show the relation between the resonant normal form that we
use and the averaged Hamiltonian used in the literature, recovering the dynamical mechanism
that protects from collisions. We conclude with some numerical examples in section 7, showing
the agreement between the long term evolution and the full evolution in a statistical sense.

2. The equations for the long term evolution. We consider the differential equations

'S T
1 k2_ k2 J
M) o Z’“‘J<|r-—r|3 B

where r describes, in heliocentric coordinates, the motion of a massless asteroid under the
gravitational attraction of the Sun and N — 2 planets. The heliocentric motions of the planets
r; = 7;j(t) are known functions of the time ¢ that never vanish; that is, we exclude collisions
between a planet and the Sun. Moreover, k = y/Gmg is Gauss’s constant, and p; = m;/mo,
with mg the mass of the Sun and m; the mass of the jth planet. Equation (1) can be written
in Hamiltonian form as

oM . OH

P2 T

=D,
with Hamiltonian

lpl> ¥ o pe _reri(t)
@ Hpr D) =5~ Z ( ) |rj<t>|3>‘

=1

In (2), dj = |r; — r| stands for the distance between the asteroid and the jth planet. We use
Delaunay’s elements (L, G, Z,¢, g, z) defined by

G =kv/a(l —€?), g=w,
Z =ky/a(l —e?)cos|, 2=Q,
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where a,e, I, w,ty represent the semimajor axis, eccentricity, inclination, longitude of the
ascending node, argument of perihelion, and epoch of passage at perihelion. For the definition
of ¢ we use the mean motion

l

ﬁ.

In these coordinates, the Hamiltonian (2) can be written as

n=

H = Ho + €M,
with € = us,
4
Ho —;ﬁ,
and
= 0 (”) otj (L 717
®) D DL S :‘kﬁ<d_j‘|rj|3>’

j=1
and r; = r;(t). Note that in (3)
Hi :HI(L7G727€797’277§)'

To eliminate the dependence on time in H; we overextend the phase space. We assume that
the planets move on quasi-periodic orbits with three independent frequencies nj, g;, s;.

This is the case considered by Laplace (see, for example, [11]), where the mean semimajor
axis a; is constant and the mean value of the mean anomaly ¢; grows linearly with time, i.e.,
up to a phase, ¢; = n;t. Here n; is the mean motion of planet j. Moreover, every planet is
characterized by two more frequencies gj, s;, describing the slow motions of the other mean
orbital elements. We introduce the angles

G =5t +£;(0), g;=gt+g;(0), 2z =s;t+2(0)

and their conjugate variables L;, G}, Z;.
We use the following notation:

L= (Evgl---ag]\/)v g = (9791 -'-7gN)7 z = (zvzl---yzN)v
ej = (£7£j)7 g; = (gvg])7 zZj = (Z,Zj),
and analogously we define L,G, Z, L;, G}, Z;.

The dynamics in this overextended phase space is determined by the autonomous Hamil-
tonian

~ k4 N2 ~
H=—om+ ) (L +gGj+s;Z) + Hi(L.G . Z,L.g,2),
j=1
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where
—2 .
~ < (9) 77 (3) oty (1 r-r;
Hi = Hi, H = —k"— | = — — ;
; ! s (dj |rj|3>
with .
7 =70, 95,2), dj=|r; -7l

Here we are assuming that r; evolves according to Laplace’s solution for the planetary motions,
and we write it as a function of its frequencies, denoted by 7;. Hereafter we shall omit the
“tilde” to simplify the notation.

The frequencies g; and s; are of order € [11]. In order to study the secular dynamics we
would like to eliminate all the frequencies corresponding to the fast angles £. In case of a
mean motion resonance with a planet this is not possible.

In the following we shall assume that there is only one mean motion resonance with a
planet and no close approaches occur. To expose our result we shall consider a |hf| : |h¥|
mean motion resonance with Jupiter given by

(4) h*n+ hins =0 for some (h*,h}) € Z2.
A mean motion resonance with another planet can be treated in a similar way. We denote by
p=(£92), @¢=4,92)
the vectors of the angles and by
I1=(L,G,2), I, =(L;,G;,Z;)

the corresponding vectors of the actions.
We use the Lie method [11] to search for a suitable canonical transformation close to the
identity; that is, we search for a function x = x (I, ¢’) such that the inverse transformation is

(T, ¢") = (L),

where <I>§< is the Hamiltonian flow associated to x. The function y is selected so that the
transformed Hamiltonian H' = H o P, depends, at least at first order, on the least fast
angular variables as possible. Using a formal expansion in € we have

H =MHo®, =H+e{H,x}+O(?) =Ho+ e(Ha + {Ho, x}) + O(?).
In the resonant case we search for a solution x of the equation
(5) Hi+{Ho,x} = f
for some function f = f(I',h*¢' + hilL,g',2"). To solve (5) we restrict ourselves to the case

where no orbit crossings with the planets occur. We shall see in the next sections how we can
deal with the case of crossings.
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We develop
N—
DR
in Fourier’s series of the fast angles:

7_[(] Z 7_[( i(htthits)

(h,h;)€Z2

Here

(6) Hgi),hj) = ,th)h (L, G, Z, g5, 2j) = B2 Joo H e R gy,

are the Fourier coefficients. We observe that ﬁgl)h  are defined also in case of orbit crossings,
since the integral in (6) converges (see, e.g., [6]).
Moreover, we can write x as

N-2 '
X9, XD =\, &, 7 8, g), 2))
j=1
and search for the coefficients
’\(]) ’\(]) (L/ G/ Zl / /)
X(hh) X(hh) bl ) 7gj7zj
in the Fourier series development

Inserting these Fourier developments into (5) we obtain

N—-2 .
) OHo oxY)

Hy + {Ho, x} = HU) :
; ! oI Oy

where

() Mo oxV . ~() i(he +hs 0
7‘[1] - W (p 2): [ (h,h;) z(hn—l—hjnj)x(il’hj)}e( +thy J).

This expression suggests choosing the function f in (5) in the following form:

N-2
f=> 1

=1

.
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where f5 = f5(I5, h*0'+hil5, g5, z5) and f; = f;(I}, g;, 2;) for j # 5. This can be accomplished
by choosing

77(5)
e (1)
(h h; ) (hIl + hjnj)
when the denominator does not vanish. Hence we exclude the case (h,h;) = (0,0) and the

resonant case (h,hs) = n(h*, ht) for some n € Z* = Z \ {0}, for which we assume that the
corresponding Fourier coefficient of y vanishes. With this choice we have

(5 oin(h* 0 +h5ey)
(oo ZH(h*h* e,
nez*

j .
fi= (0 0) for j # 5.
We truncate the Fourier series to some order nn.x and consider

(7) H;

Mmax

= Ho + e(H1 + Hyme>)

as the resonant normal form of the Hamiltonian, where

N—-2 )
7. nv
=2 Mooy
j=0
and
Mmax
max _ 77(5) h*/+hiel) 77(5) h* ' +-hiLL
Him = D Hpge e = 2R <Z e gy J) :
1S|n‘gnmax n:l

with $(z) the real part of z € C, where we used ﬁgi)hs) = 7:[\E5_)h h)” For simplicity, we shall

write 7, H,es in place of 77, Hrmax It is easy to see that, for every j,

max ?

S L D oaprp k%/ 1 rr
Moo = e Jou ™0 = i Jou G~ o) 245

2:“’]
=~ /T2dd€d£],

the average of the indirect perturbation being null (see [3]). We observe that in the Fourier

coefficient ’H( ()h* ht) the term corresponding to the indirect perturbation does not vanish. We
can write

N—-2
H, = Z z / —dede;,
j=0 7T ']T2

205 & * * s,m . * *
Hyes = 2n)? nzz:l [I" cosn(h* 0 + hils) + I sinn(h* + hils)],

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/16/18 to 150.244.222.130. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

LONG TERM EVOLUTION OF RESONANT CROSSING ORBITS 1793

where
o - Fu_ Km;
! s ms
on 1 7R . .
" = — — h*0 + hils)dédl
5 /]1'2 <d5 ’T5‘3>COSTL( + 5 5) 59

s,m 1 r-T5 *
D" = /11‘2 <d5 e ) sinn(h*€ + hils)dldls,

with I2", I>" depending on L, G, Z, g5, 25.
Moreover since the new Hamiltonian does not depend on /¢; for j # 5, we have

4 N—-2
HQ(L,L5,G1,...,GN,21,...,ZN): 2L2+H5L5+Z g]G +S] )
7j=1

We now introduce the resonant angle o through the canonical transformation

(7)=20) ()= (%)

[ h" b —r _( 1/p* 0
A= (0 ok )= (BE ).
We chose the matrix A so that L does not depend on S5. For this reason we could not use a

unimodular matrix. However, this will not affect our analysis.
We shall still denote by

with

the resonant normal form of the Hamiltonian in these new variables, with

4 N-2

HO(S7 557G17"'7GN7217"'7ZN) = (h*S) +n5(h55+55/h* Z(gJGJ + SJZJ)7
j=1
205 Mmax en on
Hres(S,G,Z,O',g5,Z5):Wn 1(15 cosno + I." sinno),
N-2

H Z
Hi(S,G. Z,9,2 ; % LT M)dw

Since the Hamiltonian does not depend on o5, the value of S5 will remain constant and we
will treat it as a parameter. Using Y = (S,G, Z,0,¢g,2) we consider the equations for the
motion of the asteroid given by

9) YV =I3VyH#,
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0o -1
J3=< I 0>

is the symplectic identity of order 6. In components, system (9) is written as

where

G_ 0 M
oo oo '’
'—% WK + nshf +e<8HT€S+@>
T 9S8 T (hrs)3 T s 08

Y OHres  OHa
G:_a—g:_e< dg +0—g>
Y Mypes 4
el :€< oG +W>
Y OMypes 4
ZZ‘EZ‘G( 92 +E>
3= % — ¢ (87-[7”68 @)

07 0z oz

where H,.s and H; are functions of (S,G, Z,0,gs,25) and (S,G, Z, g, z), respectively. Since
€Cj = —k*u;, we get

Mmax

27r2 2us E I2" cosno — I sinno)

h*k?

n:
(h*S) el

ey o™

{ s Z ( cosno + 35 smna) Z 1 85/ —dtdl; }
G= % cosno + GE sinno Z / —dldl;

2ps dg 1 a9 :
. iy oIs™ ) 1
g= { s Z ( cosno + (’“)i? smna) + Z ,uj% /1‘2 d—jdﬁdﬁj},
. k2 QIS o™
Z = W{Qut—, Z ( 9% cosno + 9% smna) Z i 82/ _dfdﬂ }

n=1
. k2 Mmax aIc,n 815,71
z= —W{Z% nzl ( 97 cosno + 27 smna) Z MJ(?Z/ dédé }

The derivatives of H,es and H; are not defined at orbit crossings with the planets. In the
following sections we shall discuss how we can define generalized solutions of system (9) in
case of orbit crossings.
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3. The orbit distance. We recall here some facts and notations from [7], [6]. Let (E,v),
(E',v") be two sets of orbital elements, where E, E’ describe the trajectories of the asteroid
and one planet, and v,v" describe the position of these bodies along them. Denote by p’
the ratio of the mass of this planet to the mass of the Sun. We also introduce the notation
& = (E, E') for the two-orbit configuration and V' = (v,v") for the vector of parameters along
the orbits. We denote by X = X(F,v) and X’ = X'(E’,v’) the Cartesian coordinates of the
asteroid and the planet, respectively. For each given &, Vj,(€) represents a local minimum
point of the function

Vi d2(E,V) = |X(E,v) — X'(E' )2

We introduce the local minimum maps
E— dh(g) = d(g, Vh)

and the orbit distance
E— dm'm(g) = mgn dh(g)

We shall consider nondegenerate configurations &, i.e., such that all the critical points of the
map V — d(€,V) are nondegenerate. In this way, we can always choose a neighborhood W
of £ where the maps d;, do not have bifurcations. A crossing configuration is a two-orbit
configuration &, such that d(&:, Vi(E:)) = 0, where Vj, (&) is the corresponding minimum
point. The maps dj, and d,;, are singular at crossing configurations, and their derivatives in
general do not exist. Anyway, it is possible to obtain analytic maps in a neighborhood of a
crossing configuration £. by a suitable choice of the sign for these maps. We summarize here
the procedure for dealing with this singularity for dj; the procedure for d;, is the same. Let
Vi, = (v, v},) be a local minimum point of d?, and let X}, = A, (E,vp,) and Xf = X} (E',v}).
We introduce the vectors tangent to the trajectories defined by E, E’ at these points,

oX

Th — %(E,’Uh), Th

and their cross product 7 = T}IL X 73,. Both vectors 7, T;L are orthogonal to Ay, = X/L — A&}, so
that 75 is parallel to Ay; see Figure 1.

planet orbit

asteroid orbi

Figure 1. The vectors 77, Ap,.
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Denoting by 77, A}, the corresponding unit vectors, we consider the local minimal distance
with sign

(10) dp = (77 - Ap)dp,.

This map is analytic in a neighborhood of most crossing configurations. Actually, this smooth-
ing procedure fails in case the vectors 7y, 7 are parallel.

Finally, given a neighborhood W of &, without bifurcations of dj, we write W = W~ U
Y UWT, where

S=Wn{d,() =0}, Wr=wn{d,(€) >0}, W™ =Wn{d,(E) < 0}.

4. Extraction of the singularities. In the following we shall expose a method to investigate
the crossing singularities occurring in (9). For simplicity, we shall eventually drop the index
5, referring to Jupiter, and denote simply by a prime the quantities referring to the crossed
planet.

Let &, be a two-orbit crossing configuration, and suppose that the trajectories are described
by the vector E = (S,G, Z, g, z). In the following we shall write y; for the components of the
vector E. We choose the mean anomalies as parameters along the trajectory so that V' = (¢, ¢).
The first step of our analysis is to consider, for each £ in a neighborhood W of &, the Taylor
expansion of V — d(&£,V) in a neighborhood of V}, = V,,(€), i.e.,

PEV) = d(E) + (V= Vi) - An(V — Vi) + RV (E, V),

where Rgh) is the remainder in the integral form, and define the approximated distance

(11) BL(EV) = \JB(E) + (V — Vi) - Au(V — Vi),
with
2
A, = 0|2 + SF (B, o) - A ~Th T
_Th’T}/l ’T;l’2+—g—%viv (E/,’U;l)'Ah

The matrix Aj, is positive definite except for tangent crossings, where it is degenerate. To
study the crossing singularities in case of a mean motion resonance with Jupiter we distinguish
between the case where the asteroid trajectory crosses the trajectory of another planet and the
case where it crosses the trajectory of Jupiter itself. In the first case the crossing sirslgularict;lf
appears only in the averaged terms %—Zlil. In the second case also the derivatives %, %
are affected by this singularity. In both cases the component %;{ is regular.

We obtain the following results.

Theorem 1. Let £. be a nondegenerate crossing configuration with a planet (including
Jupiter). Then there exists a meighborhood W of E. such that, for each i = 1,...,5, we

can define two maps
— \ L
W3Ee (8%) (€)
8yi h
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that are Lipschitz-continuous extensions of the maps

+ M'in/ 1
W38 ooy Ju ag

Moreover, the following relation holds in W:

¢ <6H1> e <6H1> . _,u’k2 i 1 8dh
i ), i ), ™ |0y \ \/det(Ap) /det(Ar) Ah dy;
Pmof; We can show this result by following the same steps as in [6, Theorem 4.2], replacing
R by —€eH;. [ |

Theorem 2. Let h = (h*,hf), and let £ be a nondegenerate crossing configuration with
Jupiter. Then there exists a neighborhood W of E. such that, for every n > 0 and for each
i=1,...,5, we can define four maps

oIs" ors"
WsE— 5> ), WBE!—>< 5) &
<8yi ©) ) ©

that are Lipschitz-continuous extensions of the maps

0 1 TS
12 T3¢ - h-V)adv,
12 weseog [ (am )l Vv
0 1 rory\ .
1 + — — h-
(5 weserg [ (Gewy — T ) s viav
respectively. Moreover, the following relations hold in W:
oIS > - <6]§’”> d 1 adh
— = 47 cos(nh - V; —_—
( oyi ), Oyi ( h) dyi \ \/det(Ap) \/det An) Oi

<8I§’">_ <8]5s’"> _ 4rsin(nh - V) 0 1 ady,

_ — A -
i )y, 0yi Ayi \ /det(Ay) \/det An) Oyi
Before giving a proof of Theorem 2 we state some consequences of both theorems. We

define the following locally Lipschitz-continuous maps, extending the vector field of Hamilton’s
equations (9) in a neighborhood of the crossing singularity:

Pho(c) e () "(€) e (%) (€,0),

+
WXT3 (E,0) (8‘%) (E.0) =
ayi h

+
Po(e)+e (%) (©)

where we use the definition above in case of crossings with Jupiter and the one below for
crossings with other planets. Here Hg, H,es are defined as in (8), and

aH + 2M1k2 Nmax <8Ic,n>:|: als’n +
- £€,0)=— : &) cos(no) + < 2 > &) sin(n )
6< 9y >h €.9) (2m)2 n:1< i ), (£) cos(na) i ), (€) sin(no)
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Moreover, we consider the map

w5 €0y 0ity () 610y = (22) (6100 (22)) (o

Corollary 1. If &. corresponds to a crossing configuration with a planet different from
Jupiter, then the following relation holds in W:

Y OH,\ ™ OH,\ "
Dﬁh<3yi> <3yz> _6<3yi>
_,u’k2 i 1 ath

T | Oy \ \/det(Ap) \/det An) Oyi

Corollary 2. If . corresponds to a crossing configuration with Jupiter, then the following
relation holds in W:

o (2 - <ﬂ>‘—e<%>*+e<3Hm>‘—e<%>*
"\ oy y; i ) Ay )y, i )y,

2'k? | & 1|0 1 ody,
= —h-V .
Q Lzzzl COS( (@ h)) dy; (x/det Ap) > \/det (Ap) 81/2]

We recall that, for each N € N and x # 2hn, with h € Z, we have

(14) ZCOS ne) DN( )—1),

where
sin((N +1/2)z)

sin(z/2)

DN(:E) =

is the Dirichlet kernel (see [12]).

Remark 1. With the notation above we have

%c cos (n(a —h- Vh)) = %(Dnmax (0 —h-Vy) — 1)7
n=1

which for ny,ax — 00 converges in the sense of distributions to the Dirac delta d,, centered in
oc:=h-Vp,.

Remark 2. The component &~ is locally Lipschitz-continuous.

4.1. Proof of Theorem 2. We shall prove the result only for the maps (12), the proof
for (13) being similar. Since we assume that Jupiter cannot collide with the Sun, the term rj
will never vanish, so that we study only the derivatives

0

1
a—yi /T2 W COS(TLh . V)dV
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for a fixed value of n € N. We shall refer to some estimates and results proved in [6]. For
the reader’s convenience we collect them in Appendix A. Moreover, we shall denote by Cj,
k=1,...,12, some positive constants independent of £.

Let & be a nondegenerate crossing configuration. Let us choose two neighborhoods W of
E.and U of (., Vi (E.)), as in Lemma 1 in Appendix A. To investigate the crossing singularity
we can restrict the integral above to the set

D={VeT?: V-V, AV —V,) <7r?}

for some r > 0. We first note that

0 1 0 1 1
E /D VAT cos(nh - V)dV = i /D(E — a) cos(nh - V)dV

n 0 (/ cos(nh - V) — cos(nh - V},) dV>
9y \Jp On

3} 1
+ a—yi(cos(nh Vi) /D adV

0 / 1
—dV
0yi Jp On

and prove that the first three addenda have a continuous extension to WW. From the estimate
(36) the map

+ cos(nh - V)

0 1 1
W\EagHa—yi/p<d(5,V) —6h(&v)>cos(nh-V)dV

admits a continuous extension to YW. We now prove that also the map

0 cos(nh - V) — cos(nh - V)
(15) WARSED o | SEV) %

admits a continuous extension to V. Indeed, we note that

0 cos(nh - V) — cos(nh - V) sin(nh - Vi)nh - %_‘;?

(16) O V) ey
— [cos(nh - V') — cos(nh - V},)]

e _1
8yi 5h(57 V) ‘

By (27), (37) the first addendum in the right-hand side (r.h.s.) of (16) is summable. For the
second, by (29) we get

|1 053

N 252 8yi

- d%+|V—Vh|2'

01
0y; on

From the estimate

| cos(nh - V) — cos(nh - V3)| < Co|V — V|
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we can conclude using (30).
The existence of a continuous extension to W of the maps

0
by — h-V)
W 35|—>aylcosn %) /5h5V

. ovy, 1 0 1
- _ h. h- h- - -
sin(nh - Vi)n m /Tz EV) dV + cos(n Vh)ayz /T2 EV) dV

comes from (27).
The last term cannot be extended with continuity at crossings. Using Lemma 3 we define
the two maps

B 1 =9 o .
W (— | —av) = ——) (/&2 +r2Fd
Se <8yi /D on ) y; <\/det Ah> ( nETF h>

h

27 dp, ady, = % ody,
\/det Ap, \/d2 + 72 8% Oyi

that are continuous extensions to W of the restrictions of 8%_ fD %dV to W, respectively.
Then we set

W>sEw— (8157 > _ 9 (— - i) cos(nh - V)dV

Ay Ay on
n 0 (/ cos(nh - V') — cos(nh - Vh)dV)
9y \Jp On
+ i(cos(nh Vi) / iaﬂ/
ayz " D 5h

P +
+ cos(nh - V3,) <8y- / adV) .
i h

To conclude the proof we just need to prove that these maps are Lipschitz-continuous. We
establish the result by proving that the function

0 1
F(&E :/cosnh'ViidV
( ) D ( )ayzayj d(g,V)

is uniformly bounded in W \ . Let us consider the Taylor expansion
cos(nh - V) = cos(nh - V},) — nsin(nh - Vy)h - (V —V},) + R;h),

where

Ry = RY(E,V)

is the remainder in integral form, so that in &/ we have

(17) IRY)| < CIV = Vi|?
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for some C' > 0. Using the approximated distance d;, defined in (11) we can write F'(£) as the
sum of four terms:

F=F+4Fy+ F3+ Fy,

where

0? 1
Fy = cos(nh -V, ———dV,
v=costih Vi) | Gy, dEV)

92 1 1
b = —nsin(nh - V) /D ( h)ayiayj <d(£, V) 5h(5)>

0? 1
A nsin(nh - V) /D v Vh)(‘)yiayj on(€) v

2
ny O 1
Fy= | Ry'——————=dV.
! /p 2 Oyidy; d(E,V)

We prove that each term F; is bounded by a constant independent of £. The boundedness of
Fy comes trivially from (28). From the relation

0 1_31oRoR 11 &

8yi8yj d N 4 dd 8y2 8yj 2 d3 8y28y]

and the estimates (26), (29), (31) we obtain
o 1
ayiayj d

1 Cy
' < 03[d5 (dn+ [V = Va|)? + d_] < (@& 1V Vi)

Then (17) and (30) yield the boundedness of Fy:

1 av
dv| < C _ < (k.
'/ 2 ayzay] (&, v) '_ 5/Ddh+]V—Vh\_ 6

To show the boundedness of F» we just need to prove that

0? 1 1 Cy
1 B o | P
(18) ‘ayiayj <d 5h>‘ T dp |V -V

so that

0? 1 1 dv
h-(V -V —— — | dV| < C, EE—— O
/D ( h)ayzayj <d 5h> ‘ =8 Ddh+|V_Vh| =

Using d? = 67 + R:(,)h) we get

_O (1 1) _3(1lodr 10505 1 __i 09,
dyi0y; \d o) 4 \d® 9y 5 dyi ) Oy *3 63 ) Oyi0y;
|31 0d oRy" _ELGR()

4d° 0y, Oy, 2d3 0y 0y;
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We prove that each of the four terms in the previous sum satisfies an estimate like (18). For
the second term we use estimates (31), (32), for the third (29), (33), and for the last (34). To
estimate the first term we note that

h
<1ad2 155,2L>a_5,%:<1 _%>aagaag+ 1 or{M 952
5

&y 5 dyi ) Oy \d Oy dy; & dy; Oy,
and use

Loy oo 1o 11

@ 8T |d oy ||dt " ¥, d25  ds} T of

We can conclude using (26), (29), (33), (35).
Now we show the boundedness of F3. We write

2 1 3 1 082 952
/Dh vV — Vh)ay,ayjah Z/7Jrl.(1/—xfh)55(9 8y]dV
1 1 9%
(19) —i/ph-(V—Vh)gayiayjdV

and study the two integrals in the r.h.s. separately. To estimate the first we use (11) and get

g_‘;j %— g—‘y/;‘ ARV = Vi) + (V = Vi) - %ﬁf(v Vi),
so that
-3 %)
B i S S
+4:%Z-Ah(v—vh): g—z AV — Vh)}
—2:22‘-Ah(v —Vh>: :(V — Vi) - %ﬁf(v Vh)]
—2:2—Z-Ah(v—vh): :(V ~ Vi) - %j"(v Vh)]
(V=Vp)- aajf(v Vh)} |:(V—Vh) %;;‘(V Vh)}

Then we use the change of variables { = AY 2(V V) and polar coordinates (p,6) defined
by £ = p(cosd,sinf). We distinguish between terms with even and odd degrees in (V — V).
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First we consider the ones with even degree. The term of degree 2 is estimated as follows:

L (0d} oV, 0d Vi
‘/ (V'=Va) 5 <ayz y; | By, ayi> 'Ah(v_vh)dv‘

~ adh ovy, 3dh ovy,
= 2d — 4+ — ARV = V)h - (V =V
/D h ( 9y 0y, + oy, 8yi> w( LR h)

Lav

oy

2
\/W/ (&3 +p 5/2df0 Zb/ (cos ) (sin 6)2d6

[v|=2
_dp Cy
\/detA dh

while for the term of degree 4 we note that

0117

/55h V=V B—J Ap(V — vh)] [(v-vh) %’:Z’L(v vh)} dv

2
72 dp Z cﬁ,/ (cos0)" (sin6)72dl| < Cha
Iy|=4

\/detA / d2 +p

for some functions b, ¢, uniformly bounded in W\ ¥, and for v = (y1,72) € (NU{0})2. The
terms with odd degree in (V' — V},) vanish, as can be shown by similar computations, using

2
/ (cos0)" (sin6)72df = 0,
0

with 71 + 72 odd. To estimate the second integral in (19) we proceed in a similar way, using

P22 PL o, OV OA,
= -2 ARV = V) —2— V-V
Oy;0y;  Oy0y;  0y;0y; ( h) Oy; Oy ( h)
OVi  0A [ O* Ay
-2 V -V V-V,)- V-V, .
ay Iy ( )+ |( h) 8%8%( h)

Remark 3. If €. is an orbit configuration with two crossings, assuming that dp,(E.) = 0 for
h = 1,2, we can extract the singularity by considering the approximated distances d1,d2 and
considering 1/d as sum of the three terms (1/d — 1/6; — 1/d2), 1/61, 1/02.

5. Generalized solutions and evolution of the orbit distance. Following [6, sections
5-6] we can construct generalized solutions by patching classical solutions defined in the
domain W+ with classical solutions defined on W™, and vice versa. Let (E(t),o(t)), with
E(t) = (S(t),G(t), Z(t),g(t), z(t)), represent the evolution of the asteroid according to (9). In
a similar way we denote by E’(t) a known function of time representing the evolution of the
trajectory of the planet. Setting £(t) = (E(t), E'(t)), we let T(Y) be the set of times ¢, such
that dmin(€(te)) = 0 and suppose that it has no accumulation points.
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We say that Y(t) is a generalized solution of (9) if it is a classical solution for ¢ ¢ T'())
and for each t, € T'()) there exist finite values of
lim Y(t), lim Y(t).
t—td t—ts
In order to construct a generalized solution we consider a solution )(t) of the Cauchy
problem given by (9) with a noncrossing initial condition )(ty). Suppose that it is defined on
a maximal interval J such that sup J = t. € T'(Y) and that Y(t) € W+ ast — t.. Suppose that
the crossing is occurring with a planet different from Jupiter (resp., Jupiter itself). Applying
Theorem 1 (resp., Theorems 1 and 2), we have that there exists

lim Y(t) = Y.

t—te

and the solution can be extended beyond t. considering the Cauchy problem

YV =1J3(Vy )T, V(1) =)-

for some 7 — t., so that we use Y(t.) = V.. Using again Theorem 1 (resp., Theorems 1 and
2), we can extend the solution beyond the singularity considering the new Cauchy problem

Y=Is(VyA)", V(te) = Ve,
whose solution fulfills, from Corollary 1 (resp., Corollary 2),

lim Y(t) = V. — Diff, (Vy2) (E(t.), V).
t—tz
Note that the evolution of the orbital elements according to a generalized solution is continuous
but not differentiable in a neighborhood of a crossing singularity. More precisely, the evolution
of the elements (G, Z, 0, g, z) is only Lipschitz-continuous, while the evolution of S is C, since
% is continuous also at orbit crossings.
Once a generalized solution Y(t) = (E(t),o(t)) is defined, we can consider the evolution

of the distance dj,(£(t)). Let us define
dn(t) = dn(E(1))

and suppose that it is defined in an interval containing a crossing time t. corresponding to a
nondegenerate crossing configuration. We have the following.

Proposition 1. Let Y(t) be a generalized solution of (9) and E(t) be defined as above. Sup-
pose that t. is a crossing time such that &, = E(t.) is a nondegenerate crossing configuration.
Then there exists an open interval I > t. such that dj, € C1(I,R).

Proof. We choose the interval I such that £(I) € W, with W defined in Theorem 1 (resp.,
2), and suppose that £(t) € WT for ¢t < t. and £(t) € W~ for t > t.. We can compute, for

t # t,
du(t) = Vedn(E(t)) - E(t) = VEd(E(L)) - B(t) + Vprdn(E()) - E'(2)

- o oA oA 0 04\T . -
:VEdh(E(t))- <— gy ,— ag , — ERRREYeR 8Z> +VEfdh(5(t))'El(t).
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The second addendum is continuous, while for the first we need to distinguish between crossing
a planet different from Jupiter (the resonant planet) and crossing Jupiter itself. In the first
case, we apply Corollary 1 and obtain

lim Cih(t) — lim Cih(t) = VECZh . Diﬁh<

t—td t—ty

o0 8% 0 0 0H
oo ' dg 0z 8G’ aZ it

= VECZh - Diffy, (0, —

oH A OH OA
dg = 0z 0G’ 0Z —

[ 2#51{2 > :|
_ K e d 0,
_ 7T\/m{ hydn} -

where {, } are the Poisson brackets.
In the second case, we apply Corollary 2 and get

lim d;h(t) — lim d;h(t) = VEd~h - Diffy, (—

t—td t—ts

OH 0H A OH IANT
o’ 0909 0z O0G’ 07

=t

= VECZh - Diffy, (0

_&%_ﬂ%”w%8%9T
" 99 0z 0G’ oZ

o 2/15Kk> [E"mﬁx cos( (c—h- Vh))
- |- e m dﬂ m

6. Dynamical protection from collisions. In case of crossings with the resonant planet,
the resonance protects the asteroid from close encounters with that planet (see [9]). This
protection mechanism is usually derived by a perturbative approach different from ours. Here
we describe how this mechanism can be recovered from the normal form (8) in the limit for
Nmax — 00.

Let us consider, for simplicity, a restricted 3-body problem Sun-planet-asteroid, where the
asteroid is in a mean motion resonance with the planet, given by

h=(h,}) € Z?

and their trajectories cross each other during the evolution. In the following we take a Hamil-
tonian containing only the direct part of the perturbation, the indirect part being regular.

Therefore, we set
1

7
where d is the distance between the asteroid and the planet. We consider the following
procedures:

(I) Through a unimodular transformation W of the fast variables V' = (¢,¢') we pass to
new variables (o, 7), with

H =

oc=h-V,
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whose evolution occurs on different time scales: ¢ has a long term evolution, and 7 has a fast
evolution. More precisely, we have

(20) VI3 W =uv,

where W = (0,7)7 and U is a constant unimodular matrix whose first row is (h,h'). The
transformation ¥ can be extended to a canonical transformation (here denoted again by ¥)
by defining the corresponding actions as (S,7) = U~ (L, L) and leaving the other variables
unchanged. Then we average over the fast variable 7 and get the Hamiltonian

27
(21) K(0,8,T; X) = % o v o 8.1 X
Here X is the vector of the other variables, evolving on a secular time scale. This procedure
is used, e.g., in [9].
(IT) As in section 2, we consider the resonant normal form obtained by eliminating all the
nonresonant harmonics from the Fourier series of the Hamiltonian. For each integer N we
take the partial Fourier sums

Hn(V,L, LX) = Y H(L, L X)e™V,

k<N
keR
where
R ={k=(k,k') € Z*: 3In € Z, with k = nh}
and )
(L LX) = —— L.L': X)e *Vq
Hk( 5 5 ) (271')2 - H(Vv 5 5 )6 V7

in which we denote by V the vector (¢,¢) when the latter are integration variables. We
formally define
Hoo(V, L, L'; X) = A}im JN(V, L, L; X).
—00

Note that 1
NV, L LX) = —— Dy(h-V—h-V)H(V,L, L'; X)dV,
(2m)2 Jp2

where Dy (x) is the Dirichlet kernel. We introduce the functions

%N(O',S,T7X) :%NOW_1(0—77—757T;X)7
Hoo(0,8,T;X) = g o U Yo, 1,5 T; X).

Indeed, both #y and #,, do not depend on 7. The Hamiltonian %5 corresponds to the
resonant normal form in (8). However, here we used a unimodular matrix ¢/ in the canonical
transformation.

Moreover, we observe that the Hamiltonian K defined in (21) can be written as a pointwise
limit for N — oo of the partial Fourier sums

27
Kn(o,8,T; X) = %/ Dn(6 — 0)K(5,8,T; X)d5.
0
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Let . = h-Vj. If dj, = 0, then o, is the value of ¢ allowing a collision, occurring for V = Vj,.
Assume that &, is a nondegenerate crossing configuration, i.e., d, = 0 and A, is positive
definite. We use Y = Y (€) to denote the variables different from o, and we set Y, = Y (&.).

Proposition 2. The following properties hold:
1. If € # &, then for each o we have
(i) #n(0;Y) =Kn(o;Y) for all N and
(i) Ho(o;Y) =K(o;Y).
Moreover, these functions are differentiable with continuity with respect to Y .
2. For & =&, we have
(i) %N(U Y.) = Kn(0o;Ye) for all N, for all o,
(ii) Hoo(o;Ye) = K(0o;Ye) for all o # 0., and
(iii) hmg_,oc Hoo(03Y) = limy s, K(0;Y,) = +00.
3. If € = & and o # o, then, denoting by y; a generic component of Y, the following
hold: -

(i) the derivatives %(0' Ye) = 5y (0;Ye) exist and are continuous;

(ii) the derivatives 88 0 (0;Y,) = 8{;?31\’ (0;Y,) generically do not exist.
4. For each N and for each value of o there exist the limits

0N ( KN >
| V)= 1 Y
e oy T Doy Y

from both sides of the crossing configuration set . These limits are generically dif-
ferent, and their difference converges in the sense of distributions, for N — oo, to the
Dirac delta relative to o., multiplied by the factor

—2#’1{2 ath

V/det(Ay) Oy (E)

Remark 4. It € = &, procedure (I) gives a well-defined vector field, provided that o # o,.
On the other hand, with procedure (II) it does not make sense to consider

However, for each N we can extend the vector field of J#y in two different ways on X, and
the difference between the two extensions has a very weak behavior for N — oo: it tends to
a Dirac delta in the sense of distribution, being the singularity of the delta just at o = o.

Proof of Proposition 2.
1. For every N, by applying the change of variables V' — ¥ (V) and the Fubini-Tonelli
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theorem we obtain

Hn(0;Y) :%No@_l(U,T;Y) = # Dn(h-V —o)H(V;Y)dV
T2
/ Dy (6 — o)H o U5, 7;Y)dedr
27T
(22)
=5 | D < /7—[0‘1’ 5, 7; )d%)d&
2m
/ D (6 — 0)K(5:Y)d6 = Bn(o:Y),

which proves (i). Point (ii) comes from the fact that, for £ # &, K(o;Y) is a smooth function
of o and the corresponding Fourier series converge pointwise for every o. Hence we can pass
to the limit as N — oo in the previous equality.

The differentiability comes from the fact that the distance function H = 1/d is bounded
for £ # &..

2. To prove (i), we can repeat the argument used in (22). Indeed, the double integral is
finite also for £ = &. and we can apply the Fubini—Tonelli theorem.

To prove (ii), we recall that the Fourier series of an L! function converges pointwise at
every point of differentiability [12]. Therefore, for every o # o., Ky(0;Ye) — K(o;Y,) for
N — co. Hence, using (i) and passing to the limit for N — oo in J# we get the result.

To prove (iii) we just need to prove that one of the two limits diverges. From Fatou’s
lemma,

2w

— 1
liminf (o3 Ye) > — Ho U Yo, 7;Y,)dr
0—0c 2m Jo
1 [ 1
(23) = — dr = +00.

2 Jo do VUl o.T1;Ye)

We can prove that the integral in (23) diverges by a singularity extraction technique. Let us
write

1 1 1 1
2y (i)

The first term in the r.h.s. of (24) is bounded, while the integral of the second diverges because

(25) SGUZ+ Vi Y) =7 -ByZ > det Ay (o —0e)?,
22
where
Z=UV —-W),
with U the unimodular matrix defined in (20), and
By=UTAU".
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The number by in (25) is defined by
baa = €2 - Bpea

and is strictly positive because By, is positive definite, £ being nondegenerate (and therefore
Ay, positive definite).
3. Estimate (25), decomposition (24), and the theorem of differentiation under the integral

sign yield the existence and continuity of the derivatives g—fj, that is, point (i). Point (ii) is a

consequence of property 4.
4. This follows from Theorem 2 and Corollary 2.

7. Numerical experiments. We compare the long term evolution coming from system (9)
with the full evolution of (1), corresponding to the classical restricted N-body problem.

To get the evolution of the planets, we compute a planetary ephemerides database for a
time span of 2000 yrs, starting at 57600 MJD with a time step of 0.5 years. The computation is
performed using the FORTRAN program orbit9 included in the OrbFit free software.! The
planetary evolution at the desired time is obtained from this database by linear interpolation.

Inspired by the classification in [10] we consider two paradigmatic cases, representing the
two crossing behaviors discussed in the previous sections. The first case is asteroid (887)
Alinda, which is considered in the gravitational field of five planets, from Venus to Saturn.
This asteroid is in 3 : 1 mean motion resonance with Jupiter, and we will consider its crossings
with the orbit of Mars. The second case deals with the “Toro” class: we consider a fictitious
asteroid that we call 1685a under the influence of three planets: the Earth, Mars, and Jupiter.
This asteroid crosses the orbit of the Earth and is in the 5 : 8 mean motion resonance with it.

We use the same algorithm as in [6] to compute the solution of system (9). This is
a Runge—Kutta—Gauss method evaluating the vector field at intermediate points of the time
step. The time step is reduced when the trajectory of the asteroid is close to a planet crossing,
in order to get exactly the crossing condition. By Theorems 1 and 2 we can find two locally
Lipschitz-continuous extensions of the vector field from both sides of the singular set 3. The
difference between the two extended fields is given by Corollary 1 for asteroid 887 (Alinda)
and by Corollary 2 for asteroid 1685a. In both cases, we compute the intermediate values of
the extended vector field just after the crossing, and then we correct them using Corollary 1
or Corollary 2. We use these corrected values as an approximation of the vector field at the
intermediate point of the solution; see Figure 2. This algorithm avoids the computation of
the vector field at the singular points, which could be affected by numerical instability.

To produce the comparison, we consider 64 possible initial conditions for system (1) cor-
responding to the same initial condition of system (9). For asteroid 887 (Alinda), these are
produced by shifting the mean anomalies in the following way. Let Ej and ¢ be the mean
anomalies of planet j and the asteroid, at the initial epoch 57600 MJD. For each planet, we
consider the 64 values Eg-k) = E_j + km/64, with k = 0,...,63. For every k, we compute the

initial value of the mean anomaly ¢*) = 7 + (%) of the asteroid such that

RE(ls + km /64) + h* (0 +1%)) = hils + h*L.

"http://adams.dm.unipi.it /orbfit
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Figure 2. Runge-Kutta—Gauss method and continuation of the solution of (9) beyond the singularity.

The integration of these 64 different initial conditions is performed with the program orbit9.
Then we consider the arithmetic mean of the five Keplerian elements a,e, I,2,w and the
critical angle o = hils + h*{ over these evolutions and compare them with the corresponding
elements coming from system (9), in which we choose nyx = 3. Figure 3 summarizes the
results: the solid line corresponds to the solution of (9), while the dashed line corresponds
to the arithmetic mean of the full numerical integrations. The shaded region represents the
standard deviation from the arithmetic mean. The correspondence between the solutions is
good. The Mars crossing singularity occurs around t = 3786 yrs.

For asteroid 1685a, we proceed in the same way, with the Earth playing the role of Jupiter.
For the long term evolution, we used ny.x = 3,15. In Figure 4 we show the results. Using
Nmax = 1D we see that the result improves very much. The Earth crossing singularity occurs
around t = 2281 yrs. In this test the value of o, at crossing results being about 348 degrees,
which is quite different from all the values of ¢ in Figure 4. We cannot really appreciate the
effect of the singularity in the evolution since we obtain very small values of the components
Diffy (%2).
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Figure 3. Asteroid 887 (Alinda): comparison between the long term evolution using Nmax = 3 (solid line)

and the arithmetic mean of 64 full numerical integrations (dashed line).
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Figure 4. Asteroid 1685a: comparison between the long term evolution (solid line) and the arithmetic mean
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of 64 full numerical integrations (dashed line). Above Nmax = 3. Below nmax = 15.
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8. Conclusions. We studied the long term dynamics of an asteroid under the gravitational
influence of the Sun and the solar system planets, assuming that a mean motion resonance
between the asteroid and one of the planets occurs. We focused on the case of planet crossing
asteroids and considered a resonant normal form 7, _; see (7), (8). The analysis is performed
separately for crossings with the resonant planet or with another one. In both cases, we could
define generalized solutions of the differential equations for the long term dynamics, going
beyond the singularity. These solutions are continuous but in general not differentiable. We
also proved that generically, in a neighborhood of a crossing time, the evolution of the signed
orbit distance along the generalized solutions is more regular than the long term evolution of
the orbital elements. In case of crossings with the resonant planet, we recovered the protection
mechanism against collisions in the limit 1, — 00. This implies that if the resonant angle o
is different from the critical value o, at the crossing times t. (see sections 5 and 6), also deep
close encounters are avoided, which makes the results of this theory more reliable. Indeed,
close encounters can still occur with a planet not involved in the resonance, and this represents
a critical case. Actually, in this case, the semimajor axis usually suffers a drastic change [13],
pushing the asteroid outside the considered resonance. By means of numerical experiments,
in some relevant cases, we showed that the model seems to approximate well the full evolution
in a statistical sense. We plan to make numerical tests on a large scale, to study different
dynamical behaviors of the population of NEAs.

This work extends the results in [6] to the resonant case and gives a unified view of the orbit
crossing singularity in case of mean motion resonances with one planet; indeed, comparing the
results in Corollaries 1 and 2 we see how the discontinuity in the derivatives, represented by
Diff h%, vanishes in a weak sense (i.e., in the sense of distributions) for ny.x — oo if o # 0.
Moreover, the resonant normal form introduced in (8) can easily be extended to include more
than one resonance, also with different planets, by considering all the harmonics associated
to the corresponding resonant module (see [11, Chapter 2]).

Appendix A. From the definition of the approximate distance d;, we have that
BE V)= E) +V =Vi) AV = Vi) + RP(E, V) = 62(6) + RV (€, V).

We summarize below some relevant estimates and results from [6]. In the following, we shall
denote by ¢;, © = 1,...,14, some positive constants independent of £. We first recall some
lemmas.

Lemma 1. There exist positive constants ci, co and a neighborhood U of (E., Vi, (E.)) such
that

107 < d? < 037

holds for (£,V) inU. Moreover, there exist positive constants cs, c4 and a neighborhood W of
E. such that

(26) d%+63|V—Vh|2§5;2L§d%+64|V—Vh|2

holds for € in W and for every V € T2.
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Lemma 2. Using the coordinate change § = A;L/z(V—Vh) and then polar coordinates (p, ),
defined by (pcos, psinf) = £, we have

1 1 1 2w
27 — dedl’ = / dé = <\/d2+ 2—d> )
(27) /D o, Vdet A, /g \/d}% + |£|2 £ vdet Ay, rTT h

with B = {¢ € R?: |¢| < r}. The term —2mdy/v/det Ay, is not differentiable at € = £, € X..

Lemma 3. The maps

0 1 0 1
+ Y s - Y s
w BgHayi/Tzéh(S,V)dV’ w BgHayi/Tchh(é’,V)dV

can be extended to two different analytic maps Q;{, G, such that, in WV,

G —GF =4n i<;>d L o
b Th Byi \/det(Ap) ) " \/det(An) Ovi |

Moreover, the following estimates hold, with Uy, = {(E,V4(€)) : £ € ¥}

(28) A %;yjﬁd‘/ <¢; for &in W,
(29) ‘gj}z , g%’jf < coldn+ [V = Vi) in U\ Us,
(30) /D % <c¢; for &in W,
(31) 'azjg}zj "8?;;; <c¢g for &in W,
(32) %—% < prowp MU\
(33) 87;5) <ecplV-Vu? inlU\Us,

(34) g?@%j <cen|V = Vol inU\Us,
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1 1
___|< i
(35) 'd 5h'_012 in U\ Us,
0 1 1 c13 .
R e I R S S
(36) dy; <d 5h>‘_dh+|V—Vh| in U\ U,
oV .
(37) 8—@:3614 for £ in W.
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