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Abstract
Health-related quality of life assessment is important in the clinical evaluation of
patients with metastatic disease that may offer useful information in understanding
the clinical effectiveness of a treatment. To assess if a set of explicative variables
impacts on the health-related quality of life, regression models are routinely adopted.
However, the interest of researchers may be focussed on modelling other parts
(e.g. quantiles) of this conditional distribution. In this paper we present an approach
based on quantile and M-quantile regression to achieve this goal. We applied the
methodologies to a prospective, randomized, multi-centre clinical trial. In order to
take into account the hierarchical nature of the data we extended the M-quantile
regression model to a three-level random effects specification and estimated it by
maximum likelihood.
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1 Introduction
Assessing the health-related quality of life (HRQOL) forms an important part in the
clinical evaluation of patients suffering from a metastatic disease and offers useful
information for understanding the clinical effectiveness of a therapeutic option. For
this reason HRQOL is nowadays considered as an important endpoint in oncological
studies, helping physicians and patients to better understand the treatment outcomes,
balancing among intent to cure, survival, side effects and quality of life, and to make
appropriate decisions. HRQOL is a subjective, dynamic and multidimensional measure
that includes physical, psychological and social domains. Its measurement evaluates the
overall clinical benefit that a particular treatment offers to a patient.

HRQOL is evaluated through self assessment questionnaires measuring various
aspects of quality of life. Data is frequently collected at various time points for
investigating how the disease and treatment impact upon an individual’s well-being over
time.

Many clinical trials also enroll patients from different medical centres since conducting
a multi-centre trial enhances the generalisation of findings, allowing researchers to
evaluate the efficacy of a therapy in a variety of patients and settings, and makes it
possible to investigate the effect of treatments when it is difficult, or even impossible, for
a single centre to recruit the required number of patients. However, multi-centre studies
involve an inter-centre variability as a result of differences in applying the study protocol
procedures1;2. Hence, a relevant issue in HRQOL is centre heterogeneity. The clustered
structure of a multi-centre trial is neither accidental nor ignorable and ignoring it may
lead to erroneous statistical inference.

Studies of multi-centre clinical trials quantify centre differences by using either a
fixed effect or a random effect approach. In clinical trials with a relatively large number
of centres each with a small number of patients the estimated centre-specific treatment
effects may be unstable and the loss of efficiency can be severe3;4.

Centre effects can therefore be more conveniently specified by using a multilevel
(random effects) modelling approach5 where patients are hierarchically clustered within
centres. Methods to design and analyse HRQOL studies, including the use of random
effect models, are thoroughly discussed by Fairclough6.
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Typically, a regression model offers a summary of the expected value of the conditional
distribution of the outcome variable given the set of explanatory variables. Researchers,
however, may be interested in modelling other parts (e.g. quantiles) of this conditional
distribution. This may be the case if one is interested for example in understanding
whether a treatment has a differential impact on patients with different HRQOL status.
For instance, patients with a poor HRQOL status might suffer more when receiving
one of the treatments under evaluation, than those who are in a better HRQOL state,
as a consequence of a different toxicity or adverse events of the treatment itself.
Identifying this effect provides relevant information particularly in those cases where
the improvement in the survival (or in the primary end point of the trial) due to a new
treatment is moderate. In this case, to expose patients to a new treatment may be ethically
and economically appropriate if this does not have a detrimental effect on their HRQOL.
On the other hand, adopting a new treatment can be inappropriate for those patients who,
being in a poorer HRQOL state, may suffer side effects as a result of the new treatment
beyond what is considered to be ethical, given the expected improvement in the survival.
Some further actions should have been considered for the latter kind of patients who
have been medicated with the new treatment, such as explaining to them the potential
consequences of the therapy, planning appropriate supporting actions when in therapy
and so on.

This type of analysis is not possible by using conventional regression models for the
conditional expectation but it can be obtained using quantile regression models. Quantile
regression was introduced in the econometrics literature by Koenker and Bassett7 and
thoroughly described by Koenker8. Since then, quantile regression has been applied
in many and different areas of research. Recently it has been successfully employed
in medical applications9–14. Only few applications of quantile regression to modelling
HRQOL currently exist in literature15–17, but the studies do not take into account the
hierarchical structure of the data. Recently, Geraci and Bottai12;18 propose a conditional
two-levels quantile regression model (LQMM) that assumes an Asymmetric Laplace
Distribution (ALD) for modelling the conditional likelihood given the random effects.
Inference for the model parameters is performed by using a bootstrap approach based on
resampling the sample data. Estimation and inference is facilitated by the lqmm package
in R.

There are, however, alternatives to quantile regression, such as M-quantile
regression19, which integrates the concepts of quantile regression and expectile
regression20 within a framework defined by a ‘quantile-like’ generalization of regression
based on influence functions (M-regression). The M-quantile of order q for the
conditional density of y given the set of covariates X, f(y|X), is defined as the solution
MQy(q|X;ψ) of the estimating equation

∫
ψq

{
y −MQy(q|X;ψ)

}
f(y|X)dy = 0,

where ψq denotes an asymmetric influence function, which is the derivative of an
asymmetric loss function ρq . A linear M-quantile regression model for yi given xi is
one where we assume that

MQyi(q|xi;ψ) = xTi βq,
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and estimates of βq are obtained by minimising

n∑
i=1

ρq{riq}, (1)

where riq =
yi−xT

i βq

σ , σ is a scale parameter, ρq{riq} = 2ρ{riq}
[
qI(riq > 0) + (1−

q)I(riq 6 0)
]

and I(·) is the indicator function. Different set of regression parameters
can be defined for each value of q. In particular, by varying the specifications of the
asymmetric loss function ρ we obtain the expectile, M-quantile and quantile regression
models as special cases. When ρ is the square loss function, ρq{riq} = 2r2iq

[
qI(riq >

0) + (1− q)I(riq 6 0)
]
, we obtain the linear expectile regression model if q 6= 0.520

and the standard linear regression model if q = 0.5 (ρ0.5{ri0.5} = r2i0.5). When ρ

is the loss function described by Koenker and Bassett7, ρq{riq} = |riq|
[
qI(riq >

0) + (1− q)I(riq 6 0)
]
, we obtain the linear quantile regression. Throughout this

paper we will take the linear M-quantile regression model to be defined by using as
ρ the Huber loss function21. In particular, the tilted version of the popular Huber
loss function can be written as:

ρq{riq} = 2

{
(c|riq| − c2/2)|q − I(riq ≤ 0)| |riq| > c
r2iq/2|q − I(riq ≤ 0)| |riq| 6 c.

(2)

where c is a cutoff constant. M-quantile regression models allow us to trade
robustness for efficiency by properly tuning the constant c: robustness is increased
as c decreases, while efficiency is increased as c increases.

Tzavidis et al.22 extended M-quantile regression to include random effects (MQRE-
2L) to account for a two-level hierarchical structure in the data and used maximum
likelihood to estimate the parameters of the model.

This paper is, to the best of our knowledge, the first attempt to apply a quantile-like
random effects model to complex data from longitudinal and multi-centre studies (three-
level models). In order to account for the hierarchical nature of the data we include two
random effects to capture the between centre variability and to account simultaneously
for unobserved individual heterogeneity, i.e. the variability due to repeated measurements
on the same patient. Therefore, we extend the MQRE-2L to a three-level random effects
model (MQRE-3L). From an applied point of view, the paper presents a methodology
(MQRE-3L) to investigate potential centre heterogeneity caused as a result of differences
in applying the study protocol procedures. The conditional distribution of HRQOL in
advanced melanoma patients is modelled by LQMM, MQRE-2L and MQRE-3L using
the data of the randomized multi-centre clinical trial.

Quantiles have a more intuitive interpretation than M-quantiles even if they target
essentially the same part of the distribution of interest23. In this paper we use M-
estimation because it offers some advantages: (i) it easily allows for robust estimation
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of both fixed and random effects; (ii) it can trade robustness for efficiency in inference
by selecting the tuning constant of the influence function; (iii) it can offer computational
stability because it can use a wide range of continuous influence functions instead of the
absolute value used in the quantile regression.

The paper is structured as follows. The data are introduced in Section 2. In Section 3
we present the results from the application of two and three-levels M-quantile random
effects regression model and quantile random effects regression to the HRQOL data.
Therefore, we introduce in Section 3.2 the extension to three-levels M-quantile random
effects regression. The results of the application are discussed and concluding remarks
are presented in Section 4.

2 The data: HRQOL of advanced melanoma patients in a
multi-centre clinical trial

The study considered in this paper is a prospective, randomized, multi-centre phase
III clinical trial that aimed at comparing the efficacy of two treatments, Cisplatin 75
mg/m2 and DTIC 800 mg/m2 (CT) versus the same regimen plus IL-2 and IFN-2b
(bio-CT), in advanced melanoma patients, who had not been previously treated with
systemic chemotherapy. Both treatments were administered for six cycles or until disease
progression. The primary objective of the trial was overall survival, while HRQOL
evaluation was planned as a secondary objective. Further details on the clinical analysis
and the HRQOL analysis are reported elsewhere24;25.

The HRQOL status was assessed by a self-reported questionnaire, the Rotterdam
Symptom Checklist (RSCL). In this paper, we focus on the physical symptom distress
scale (PSDS) score as the primary HRQOL outcome. The questionnaire was administered
to all patients for completion prior to the first cycle of chemotherapy (baseline
assessment), and subsequently just before each successive cycle of chemotherapy. The
HRQOL evaluation was not planned after disease progression or during the follow-up
period. Since a large part of the sample experienced disease progression starting from
the fourth assessment onwards, we limited our analysis to the data collected in the first
four occasions, since the sample became too small after this assessment.

The data were collected between March 1997 and December 1999. The trial enrolled
178 patients from 23 different clinical centres, half of them were randomized to receive
CT and the remaining 89 to receive bio-CT. The median time to progression was 3.6
months for bio-CT and 3 months for CT, showing a moderate effect of the treatment
under evaluation.

We considered 137 patients for the HRQOL analysis discarding 16 patients who did
not have a baseline measurement, 22 patients who never completed any form and three
who died before the start of treatment. In total there were 508 measurements of PSDS,
the average being 83.98 (sd=12.27). Summary statistics of PSDS stratified by treatment
are shown in Table 1. A difference between the two groups is evident in the left tail of
the PSDS distribution whereas the discrepancy is negligible at the centre as well as the
right tail of it.
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Table 1. Summary statistics of PSDS stratified by treatment.
Order of sample quantiles

treatment N. Obs 0.10 0.25 0.50 0.75 0.90 mean std. dev.
CT 264 68.70 78.26 87.88 93.94 97.10 84.73 11.82
bio-CT 244 64.26 75.76 86.66 92.75 97.10 83.17 12.72

Table 2. Summary statistics of PSDS at different temporal occasions.
Order of sample quantiles

temporal occasions N. Obs 0.10 0.25 0.50 0.75 0.90 mean std. dev.
0 137 69.70 82.61 90.91 96.97 98.55 87.80 11.25
1 121 65.08 76.81 86.36 92.42 95.65 83.20 12.02
2 98 63.64 74.89 86.04 92.32 97.10 83.00 12.36
3 68 61.84 75.76 84.85 89.86 94.36 81.07 13.07

Table 2 shows key sample quantiles of PSDS stratified by the temporal occasion at
which patients were evaluated. From Figure 1 it clearly appears that the HRQOL, as
measured by PSDS, tended to decline, roughly linearly, at all quantiles as the study
progresses. As mentioned above, the number of patients in the study declined as the
study continued.

Figure 2 shows the centre-specific distribution of PSDS scores at baseline. The
distribution appears to vary from centre to centre, suggesting that a certain degree of
variability in PSDS measures can be attributed to the centres which participated in the
trial.
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Figure 1. PSDS quantiles versus temporal occasions. The quantiles considered are 0.10,
0.25, 0.50, 0.75 and 0.90.
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!
Figure 2. Distribution of PSDS scores at baseline. The width of each box is proportional to
the number of patients in each centre showing the different sample sizes in each of them.

3 M-quantile modelling of HRQOL

In this section the conditional distribution of HRQOL in advanced melanoma patients is
modelled using the data of the randomized multi-centre clinical trial presented in Section
2. The aim of the trial was to compare the efficacy of CT versus bio-CT as a primary end-
point. Here we considered the impact of the two treatments on the HRQOL. In particular
we modelled the change of the HRQOL score at each time point from the baseline as
a function of the treatment. In addition to the treatment effect, the model includes a
linear trend since a reduction in the quality of life is expected as the exposure to the
treatment increases. To account for the hierarchical nature of the data we also included a
random effect to capture the between centre variability and a random effect to account for
unobserved individual heterogeneity, i.e. the variability due to repeated measurements on
the same patient.

The LQMM and the MQRE-2L do not allow to capture simultaneously the between
centre variability and the individual heterogeneity due to repeated measurements by
random effects. For this reason we extend in Section 3.2 the MQRE-2L to a three-levels
MQRE. Although the extension of the two-levels model given in Tzavidis et al.22 to
three-levels MQRE is conceptually straightforward, the description of the MQRE-3L
requires the introduction of some technical details.

3.1 Preliminary data analyses

Before showing the results from the study we present some preliminary data analysis.
We applied a model with the following three-level hierarchical structure because in the
multi-centre clinical trial data set, occasions (repeated measures denoted by k - level 1)
are nested within patients (npz, denoted by j - level 2), and patients are nested within
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centres (denoted by i - level 3):

yijk = β0 + β1bio-CTijk + β2temporal occasionijk + centre idi + npzij + εijk

i = 1, . . . , 23, j = 1, . . . , ni, k = 1, . . . , tij ,

where yijk is the change of the HRQOL score at each time point from the baseline,∑m
i=1 ni = 137 and

∑m
i=1

∑ni

j=1 tij = 508. Figure 3 shows normal probability plots of
level 1 - plot (a) -, level 2 - plot (b) - and level 3 - plot (c) - residuals obtained by fitting
a three-level mixed model to the data. The normal probability plots indicate that the
Gaussian assumptions of the mixed model are not met. This is confirmed by a Shapiro-
Wilk normality test, which rejects the null hypothesis that the residuals follow a normal
distribution (p-values: level 1 = 2.42e-06, level 2 = 0.05771, level 3 = 0.02672).
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Figure 3. Normal probability plots of level 1 (a) level 2 (b) and level 3 residuals (c) derived by
fitting a three-levels linear mixed model to the survey data.

Figure 4 shows two plots of standardized mixed model residuals. The histogram, plot
(a), depicts a skewed distribution of the residuals. This is confirmed by plot (b) which
shows the distribution of standardized mixed model residuals by centre: some centres
have many positive residuals, whereas others have many negative residuals. From this
second plot we can observe some high residuals r in absolute value (|r| > 2). This
indicates the presence of influential observations in the data. Figure 5 shows the Cook’s
Distance by centre, plot (a), and by patient, plot (b). These graphs also suggest the
presence of influential observations in the data. Our preliminary analysis hence indicates
that the estimates of model parameters can be potentially driven by the influential
observations and hence robust estimation may improve inference under the random
effects model.
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!
Figure 4. A histogram of standardized mixed model residuals (a) and the distribution of
standardized mixed model residuals by centre (b).

!
Figure 5. Cook’s Distance by centre (a) and by patient (b).

3.2 Three-level M-quantile random effects regression
In what follows we present a three-level M-quantile random effects regression. A
conventional three-level random effects model in matrix form is described by

y = Xβ + Du + Zγ + ε, (3)

where y denote the value of the variable of interest y, X is a N × p matrix of auxiliary
variables, Z and D are auxiliary contextual matrices. We assume that X contains 1
as its first component and Z and D are incidence matrices which specify the random
intercepts specification of model. Here β is a p vector of fixed effect parameters and
u, γ, ε represents the random effects (centre specific, patient and the occasion random
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effects). Model (3) conventionally assumes that u ∼ N(0, σ2
uIm), γ ∼ N(0, σ2

γIn),
ε ∼ N(0, σ2

εIN ) and mutually independent. Ig is an identity matrix of size g.
Maximum likelihood (ML) estimation based on the marginal distribution of y is widely

used for estimating the unknown parameters of model (3)26. In particular, estimates of β,
σ2
u, σ2

γ and σ2
ε are obtained by first differentiating the log-likelihood with respect to these

parameters and then solving the estimating equations defined by setting these derivatives
equal to zero5. Estimates of the random effects are then obtained by using the maximum
likelihood estimates of the fixed effects and the variance components.

Data may contain outliers that invalidate the Gaussian assumptions as it occurs in the
case study analyzed in this paper. In such a case, the estimated model parameters under
(3) will be biased and inefficient27. A number of papers27–30 proposed robust estimation
of the random effects model, which offers protection against departures from normality.
This is achieved by using an alternative loss function in the log-likelihood that grows
along with the regression residuals at a slower rate than the squared loss function.

For describing the relationship between y and a set of covariates X at other parts
of a conditional distribution we extend the two level M-quantile random effects
regression model22 to a three-level M-quantile random effects regression model.
In particular, we propose using asymmetric loss functions for this purpose when
the data are hierarchically structured. The main differences respect the MQRE-2L in
Tzavidis et al.22 are: (1) an additional equation for estimating the variance component
due to the presence of centre effect and (2) a more complex variance covariance-matrix
of y. According to Sinha and Rao31 and Tzavidis et al.22, we can extend the idea
of asymmetric weighting of residuals to hierarchical data by defining modified
estimating equations obtained changing the estimating equations of the robust
maximum likelihood proposal II by Richardson and Welsh (1995)27 as follows:

XTV−1
q U1/2

q ψq{rq} = 0 (4)

1

2
ψq{rq}TU1/2

q V−1
q DDTV−1

q U1/2
q ψq{rq} −

K2q

2
tr
[
V−1
q DDT

]
= 0

1

2
ψq{rq}TU1/2

q V−1
q ZZTV−1

q U1/2
q ψq{rq} −

K2q

2
tr
[
V−1
q ZZT

]
= 0

1

2
ψq{rq}TU1/2

q V−1
q V−1

q U1/2
q ψq{rq} −

K2q

2
tr
[
V−1
q

]
= 0, (5)

where rq = U
−1/2
q (y −Xβq) is a vector of scaled residuals with components rijkq ,

Uq is a diagonal matrix with diagonal elements uijq equal to the diagonal elements
of the covariance matrix Vq and ψq(r) = 2ψ(r){qI(r > 0) + (1− q)I(r ≤ 0)} is a
bounded influence function obtained as the derivative of a loss function ρq . Here
Vq = DΣuq

DT + ZΣγqZ
T + Σεq , Σuq

= σ2
uq

Im, Σγq = σ2
γqIn, Σεq = σ2

εqIN , σuq
,

σγq and σεq are the quantile-specific variance parameters, and βq is the p× 1 vector of
M-quantile regression coefficients. Finally, K2q is E[ψq(ε)ψq(ε)

T ] with ε ∼ N(0, IN ).
With (5) we extend the idea of weighting positive residuals by q and negative residuals

by (1− q), where 0 < q < 1 is the quantile order, used in fitting the single-level M-
quantile regression21, to M-quantile regression for hierarchically structured data. ML
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equations of model (3) and their robust version are a special case of the estimating
equations in (5) for a specific choice of ρq and q. See Tzavidis et al.22 for a detailed
discussion.

As discussed in Jones23, under specific distributions the relationship between quantiles
and M-quantiles is known and both quantiles and M-quantiles model the same part of the
distribution of interest. In this case estimates of the fixed effects βq can be practically
interpreted, for example, as the effect of a one unit increase in x on the lower quartile,
middle or upper quartile of the distribution of y. The variance parameters show the
between and within group dispersion around the M-quantile being estimated.

Estimating equations (4) and (5) can be solved iteratively to obtain estimators of βq ,
σuq

, σγq and σεq . Here we adopt Newton-Raphson algorithm for solving (4) and the
fixed-point iterative method32 for solving estimating equations (5). The steps of the
estimation algorithm are outlined in supplementary material. We have also worked
on studying the algorithmic stability that is, ensuring that the convergence of the
algorithm does not depend on the starting values. For the data we used in this
paper, we studied the convergence and we can confirm that, when initialising the
algorithm from different starting values, it always converged to the same point also
for the extreme quantiles. However, there may be cases in real data applications
where due to the sparsity of the data convergence is not stable at extreme quantile.
Hence, users of the method should always test the convergence of the algorithm
with their datasets to ensure that there are no convergence problems. A function
that fits the three-levels M-quantile random effects regression has been in written in
R33. Some asymptotic properties of the estimators and their variance parameters for the
MQRE models of order q are discussed in Tzavidis et al.22.

In order to compare the performance of the estimators from Section 3.2, a Monte-
Carlo simulation was conducted. In this simulation we evaluate the performance of the
MQRE-3L at two quantiles, q = 0.25 and q = 0.5. The aim here is two-fold. For one
thing, we investigate the ability of the MQRE to account for the dependence structure
of hierarchical data beyond two-levels and for another thing, we assess the asymptotic
approximations of the standard errors of the regression parameters and the variance
parameters (level 2 and level 3). The results are reported in supplementary material and
they show that MQRE-3L is a good compromise between efficiency under normality and
robust properties under contamination. Furthermore, the MQRE-3L performs on a higher
level than the MQRE-2L when three-level clustering is present in the data. Finally, for
all scenarios we have implemented, the asymptotic standard error of the fixed effects and
the variance parameters at q = 0.25 and q = 0.5 provides a good approximation to the
true variances.

3.3 Results
Table 3 shows the estimated three-levels MQRE regression coefficients for five quantiles:
0.1, 0.25, 0.5, 0.75 and 0.90. We used the Huber influence function for the MQRE-2L
and MQRE-3L with a fixed tuning constant c = 1.345. This value gives reasonably high
efficiency under normality and protects against outliers21. The estimates of the bio-CT
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coefficient measure the effect of bio-CT, as opposed to CT, on the PSDS at a given
quantile.

The intercept of the model associated with each conditional quantile represents the
value of PSDS at the first occasion, i.e. the effect of the first cycle of chemotherapy on
each patient after controlling for the centre and patient heterogeneity.

Table 3. Parameter estimates and corresponding standard error estimates in parentheses
for the data. MQRE-3L.

q=0.10 q=0.25 q=0.50 q=0.75 q=0.90
intercept -7.69 (2.56) -4.51 (1.73) -1.91 (1.30) 0.67 (1.58) 2.63 (2.51)
bio-CT -4.37 (2.62) -3.52 (1.58) -2.99 (1.06) -2.64 (1.06) -2.10 (1.98)
temporal occasions -3.33 (1.48) -2.25 (0.87) -0.97 (0.51) -0.15 (0.56) 0.48 (0.88)
σ2
centreq 3.24 (4.08) 6.58 (7.51) 11.97 (7.66) 5.19 (2.59) 0.08 (1.99)
σ2
npzq 17.10 (9.28) 35.32 (15.14) 33.03 (7.86) 27.81 (12.05) 20.32 (11.70)
σ2
εq 32.28 (13.52) 36.25 (10.00) 22.99 (4.95) 17.39 (6.39) 14.59 (6.19)

Table 4. Parameter estimates and corresponding standard error estimates in parentheses
for the data. MQRE-2L.

q=0.10 q=0.25 q=0.50 q=0.75 q=0.90
intercept -8.06 (3.18) -4.71 (1.94) -2.20 (1.29) 0.27 (1.51) 2.61 (2.52)
bio-CT -4.00 (3.04) -3.34 (2.07) -2.88 (1.61) -2.46 (1.72) -2.10 (2.56)
temporal occasions -3.43 (1.58) -2.32 (0.93) -1.06 (0.54) -0.22 (0.56) 0.47 (0.86)
σ2
npzq 19.10 (9.93) 42.07 (13.72) 45.10 (8.83) 31.99 (12.50) 20.53 (12.33)
σ2
εq 32.11 (14.78) 36.73 (9.64) 24.10 (4.88) 16.36 (5.40) 14.65 (5.46)

Table 5. Parameter estimates and corresponding standard error estimates in parentheses
for the data. LQMM (two-level) - random intercepts.

q=0.10 q=0.25 q=0.50 q=0.75 q=0.90
intercept -10.22 (2.53) -6.38 (2.13) -0.65 (2.14) 0.72 (1.68) 2.38 (2.65)
bio-CT -1.92 (4.07) -4.45 (2.43) -2.83 (2.88) -1.52 (1.99) -1.76 (3.05)
temporal occasions -1.90 (1.13) -1.29 (0.83) -0.86 (0.61) -0.72 (0.60) -0.64 (0.67)
σ2
npzq 77.21 (—) 61.33 (—) 50.96 (—) 52.52 (—) 48.46 (—)

Table 6. Parameter estimates and corresponding standard error estimates in parentheses
for the data. LQMM (two-level) - random slopes.

q=0.10 q=0.25 q=0.50 q=0.75 q=0.90
intercept -7.27 (2.70) -5.30 (2.24) -1.34 (2.21) 1.45 (1.66) 2.81 (2.58)
bio-CT -3.88 (4.10) -1.82 (2.50) -4.10 (2.68) -0.89 (1.87) -0.30 (2.73)
temporal occasions -2.49 (1.09) -3.02 (0.87) -1.50 (0.64) -1.45 (0.57) -1.42 (0.80)
σ2
npzq 59.94 (—) 55.20 (—) 31.78 (—) 29.46 (—) 49.78 (—)
σ2
time 10.40 (—) 10.73 (—) 7.68 (—) 7.04 (—) 5.50 (—)

The plots in Figure 6 show the estimated effect of each explanatory variable we
included in the model by quantiles. Estimates far from the centre of the distribution
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usually cannot be evaluated with high precision. To display the sampling variation, a
confidence band across the quantiles was constructed by estimating the point-wise 95%
confidence interval for the regression coefficients associated with the selected quantiles.
Grey-shaded areas around the line represent confidence bands. It appears that variation
differs among quantiles, sometimes substantially, and generally increases as the quantile
order approaches 0 or 1. On the edges of the probability range, such an increase can be
quite large as shown in Figure 6.
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Figure 6. MQRE-3L parameter estimates and corresponding 95% confidence intervals
estimates: (a) intercept, (b) BIO-CT treatment and (c) temporal occasion.

Table 3 shows that the centre effect (σ2
centreq ) is low at the tail of the distribution and

it is high in the centre of the distribution. However this effect is not significant for all the
locations. As it has also mentioned in the introduction in randomized clinical trial studies,
patients are recruited at multiple centers to accrue large enough samples within an
acceptable period. This rises an issue concerning the heterogeneity induced by potentially
different procedures for data gathering. To standardize the procedures a common study
protocol is usually adopted by participating centres. If the protocol has been properly
planned and applied the centre heterogeneity is expected to be negligible. Hence, this
result confirms the quality of the multi-centric design implemented for collecting the
data used in this paper.

For this reason we have also fitted the MQRE-2L and the LQMM. Table 4 reports the
estimated parameters for the MQRE-2L: the magnitude and the sign of the regression
coefficients don’t change respect the MQRE-3L, as well as, the values of the estimated
variance parameters for the patient and temporal occasion levels. Table 5 shows the
estimates of the regression coefficients and variance component for the two-levels
LQMM (random intercept). Note that the lqmm package does not report the standard
errors of the variance components for the LQMM. It is evident that there are not
differences in the sign of the regression coefficients respect the MQRE models. This
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means that the effect of the covariates do not change between the MQRE and LQMM
models at different quantiles. The major difference is in the magnitude of the estimated
variance parameter. The estimate of the patient effect level by LQMM shows higher
values of variability respect that given by MQRE especially at the tail of the conditional
distribution. The MQRE allows the estimation of a two-level and three-levels random
intercepts model but it does not allow for more complex correlation structures, including
random coefficient models. In contrast, the lqmm in R allows for the specification
of both random intercepts and random coefficients for the two-levels models. For
this reason, we have used the LQMM with random intercepts specified at the level
of the patient and random slopes (coefficients) specified for time. Random intercepts
imply a uniform (exchangeable) correlation structure whereas random slopes allow the
correlation structure to depend on time, which may offer a more realistic structure for
repeated measures data. Table 6 reports the estimated parameter for this model. The
estimates are comparable in terms of magnitude with those obtained by the other models.
The estimated variance component for the time does not show high variability between
temporal occasions. Considering that allowing for random slopes in quantile random
effects models is complex and can potentially result in convergence problems when
fitting the model and that quantile models with a random intercepts specification have
a correlation structure that is simpler to estimate whilst allowing for modelling the
entire conditional distribution of the outcome, the two and three-levels random intercepts
MQRE and two-levels LQMM could be appropriate for this application.

4 Discussion and conclusion
The estimates reported in Table 3 and depicted in Figure 6 indicate that the bio-CT effect
on PSDS score changed quite substantially at different quantiles. At the lower end of
the distribution of PSDS the effect is strongly negative meaning that bio-CT reduces
the PSDS score of patients compared to the standard treatment (CT). At the upper part
of the distribution of PSDS, the effect of bio-CT declined becoming negligible and not
statistically significant. This offers some evidence that patients can in fact benefit from
the bio-CT (although this is not statistically significant). Hence, for those patients, the
experiment regimen can be highly recommended, given the positive effect that this also
has on the survival. In the case that one had considered only a conventional random
effects linear model, this picture we get out of the quantile random effects model would
have been completely lost. The treatment effect on the expected value of PSDS is negative
(-3.29, sd=1.73) and not significant at the 5% level (p-value=0.0583).

Similarly we also found that the effect of time changed at different quantiles. The
exposure to treatments reduced the PSDS score much more at the lower quantiles than at
the highest ones, where this effect is not significant. This means that those patients who
are in a better HRQOL state tolerated the treatment reasonably well whereas those who
are in a poorer state suffered from the exposure to the therapy. In addition this information
is completely lost, if the data was analyzed using a standard hierarchical linear random
effects model. In this case one can only conclude that the HRQOL tends to decline on
average as the study goes on with the slope being -1.38 (sd=0.60, p-value 0.0214).
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As mentioned above the MQRE allows for the estimation of a two and three-levels
random intercepts model but it does not allow for more complex correlation structures,
including random coefficient models. To evaluate the stability of our results as compared
to other model allowing for more complicate correlation structures, we have also
estimated a LQMM two-level random slope model via the lqmm package of R. Although
the MQRE and LQMM results are not directly comparable as these models are targeting
different location parameters, both models attempt to model location parameters that are
associated with the same part of the conditional distribution of HRQOL scores. We found
that the bio-CT coefficients obtained from lqmm have the same sign as the MQRE hence
confirming our results.

In a multi-centre longitudinal trial, heterogeneity is often an issue and participating
centres usually resort to a common study protocol to standardize the procedures and
identifying eligible patients. Despite this, a large variability is often observed, hence,
one of the goal of this paper was to evaluate if a centre effect impacts on the outcome
distribution resorting to a MQRE-3L model.

Figure 7 shows the estimated intra-class correlation (ICC) of the MQRE-3L at different
quantiles. It is interesting to note that the ICC follows an inverted U curve. That is,
both intra-centre and intra-patient correlation are higher in the middle of the outcome
distribution where, proportionally, the within variability is smaller. Differences between
centres and between patients, therefore, might play a less important role in explaining
the total variability in below- and above-the-average quality of life of patients.

Via the MQRE-3L analysis reported in the previous section we have demonstrated that
centre heterogeneity is not an issue for the data at hand since it has been found negligible
at all quantiles suggesting that the implemented protocol has succeeded in standardizing
the data collection amongst centres. Nonetheless the methodology proposed in the
present paper allows one to investigate centre heterogeneity in depth. Hence it worths
to consider further this point.

Figure 8 depicts the ranks of the centre effect estimated at a low quantile order (0.10)
plotted versus the ranks of the same effect estimated at a high quantile order (0.90). If
the centre effect were the same at both quantiles this would imply that the points were
aligned on the first bisector which is also reported in the graph as a dashed line.

On the contrary from our analysis it turns out that some centres had a big effect (low
rank) on the HRQOL at the higher quantile whereas they ranked very highly at the lower
quantile. Motivations for this may be various. One may speculate that the recruitment
of patients might have been different, at least to some extent, for different hospitals.
Physicians, for instance, might have cared differently in administering questionnaires in
some centres. One may argue that it is easier to obtain reliable information from patients
in a reasonably good health, whereas this can be more problematic from those in poor
health, particularly if and where appropriate staff, i.e. psychologists or ad hoc prepared
hospital nurses, are not available as often occurs in smaller centres. This could result
in a positive effect on HRQOL of some centres at the lower tail and may disappear at
the higher quantiles where the performance of the hospitals can be sometimes reversed.
This would also be consistent with the largest centre variability at the highest quantile
modelled observed above.
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Figure 7. Estimated intra-class correlation (ICC) of the MQRE-3L at quantiles.
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Figure 8. Plot of centre random effect ranks (MQRE-3L for q = 0.10, 0.90).

This seems somehow confirmed by observing that the four centres which lay closer to
the first bisector of Figure 8, i.e. those which preserved the ranks performing in a similar
manner both at the lower and at the upper quantile, are in fact leading centres of the
trial considered in this paper, all of them having a reasonably large number of enrolled
patients (at least 10). Looking at the estimated residuals of centres of the M-quantile
regression of order 0.9, one may also notice that all of the centres which enrolled at least
10 patients (the larger ones) show estimates below the average of the estimated residuals.
This proportion drops to 15.8% for centres with less than 10 patients. On the contrary,
while exactly a half of the bigger centres are above the average of estimated residuals
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when the M-quantile regression of order 0.1 is considered, the proportion of estimated
residuals above the average drops to 36.8% (less than what happened for quantile 0.9)
for smaller centres. This consideration seems to be consistent with a sort of enrollment
bias that may have occurred in some of the participating centres.

This also suggests that a plot like the one reported in Figure 8 can also be usefully
employed in ad interim analysis to point out potential anomalous behaviours or situations
which may deserve some more in-depth ad hoc investigation. Finally, box-centile plots
of the predicted random effects are shown in Figure 9.
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Figure 9. Box-centile plots of predicted centre and patient-specific random effects.

We can observe that the drop out in this study is not negligible as in many other
longitudinal studies on HRQOL (see amongst others a recent work of le Cessie et al.34)
particularly in chronic diseases where the survivorship is extremely short. In our dataset
only a minor part withdrew from the study for reasons other than the trial design. In fact
nearly all of them dropped out of the study due to disease progression hence the treatment
was interrupted and their quality of life measurements were no longer collected. A usual
way to compensate a disproportioned drop-out is via sampling weights as far as the
drop out mechanism can be considered at random35. Lipsitz et al.36 and Yi and He37

investigated the use of weighting within a generalized equation estimation framework
in quantile and median regression respectively, an approach akin to what Robins et
al.38 proposed for estimating mean regression. A part from these two remarkable pieces
of work, no other attempts have been made to adjust for non response in fix effect
quantile models. No papers at all have dealt with this issue in fix effect M-quantile
modelling. Embedding weights in usual mixed model is a difficult task firstly addressed
by Pfeffermann et al.39. Estimated weights may heavily affect the inference procedures
both for the estimation of the model and for hypotheses testing. Weighting-adjusted
inferential procedures in random effect M-quantile modelling have not been addressed
so far to the best of our knowledge. Investigating drop out adjustment in fix as well as
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random effect M-quantile models is a challenging issue which was, however, far beyond
the aim of the present paper and it is a matter for future research.
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