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Messages posted to social media in the aftermath of a natural disaster are not only use-

ful for detecting the event itself. More importantly, mining such deliberately dropped

digital traces allows a precise situational awareness, from which disaster’s consequences

on population and infrastructures can be timely estimated. Yet, to date, the automatic

assessment of damage has received little attention. Here, the authors explore feeding pre-

dictive models by tweets conveying on-the-ground social sensors observations to nowcast

the perceived intensity of earthquakes.

Keywords: predictive analytics, big social data, social media mining, damage assessment,

crisis informatics.

The large user base, interactive nature and ubiquity of mobile social media platforms have made them

primary hubs for public expression and interaction. The unprecedented amount of situational observations
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conveyed by social media users has arisen the paradigm of social sensing, enabling new context-aware and

predictive applications. Social media users can then be considered as social sensors, namely “humans as

citizens on the ubiquitous Web, acting as sensors and sharing their observations and views using mobile

devices and Web 2.0 services” (23). In the paradigm of social sensing humans are the sensors themselves,

as opposed to only being sensor carriers and operators.

Emergency management is a promising application domain for social sensing (10). Yet, little effort has

been devoted to obtain quick estimations of events consequences on population and infrastructures (25).

The importance of crowdsourced social data, such as eyewitness reports, towards the estimation of damage

have long been asserted. However, final results of current systems based on citizen reports may take days

since the disaster’s occurrence. Meanwhile, the citizen-sensed stream of on-the-ground observations risks

remaining unheeded.

Predictive models have long been trained on Web and social media data to explain both real world and

virtual world phenomena. Results have been obtained in many fields, either successful, as with syndromic

surveillance (12) and citations (9), or controversial, as with political elections (11). To date, little effort

has been made in the direction of predictive models capable of accurately and timely defining disaster’s

severity perceived by eyewitnesses (8). In an effort to answer the question: “Can we leverage big social

data in a responsive system able to nowcast disaster consequences?”, we evaluated the ability of a set of

predictive linear models to map the intensity of worldwide earthquakes. We demonstrate that situational

awareness perceived by social sensors and shared through Twitter can be exploited to predict the outcome

of traditional authoritative assessments with a great accuracy.

Related Work in Social Media Analysis for Disaster Management

Recently, a big body of work was devoted to automatically detecting emergencies by analyzing the anoma-

lies in social media communication patterns (2). Emergency-related keywords are sought in the real-time

message stream and anomaly/burst detection algorithms are applied by analyzing word frequencies in fixed-
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width time-windows. Comparisons with statistical baselines allow the identification of new emergencies.

Important results have been achieved for the detection of earthquakes (3, 8, 22), and more recently also for

wildfires (20), traffic jams (7), and transport breakdowns (4).

Other works have focused on making sense of emergency-related messages. Given the sheer amount

of messages shared during disasters, researchers have developed means to automatically identify the most

relevant information contained among large sets of messages (6, 15, 24). Such works largely adopt natural

language processing techniques combined with powerful machine learning algorithms and allow to obtain a

limited number of highly relevant messages, to be manually analyzed or further processed by other systems.

In an effort to obtain a clearer picture of unfolding disasters, Academia has also proposed means to

produce crisis maps from social media data. Typically, crisis mapping systems produce a geographic map

of an area struck by a disaster and different parts of the map are colored according to the severity of the

emergency, as inferred from social media messages (5, 13, 18). Furthermore, such maps can be comple-

mented with additional information directly extracted from relevant messages, such as eyewitness reports

of damage or multimedia content. Other systems are not specifically focused on crisis maps, but instead

provide a wide set of statistics and interactive visualizations via Web interfaces (3, 21, 25).

Finally, the study in (14) presents a survey on computational techniques for social media data process-

ing in emergencies and can be considered for further references in this field.

Going beyond event detection

To date, the majority of efforts for social media-based crisis management exploited bursts of messages to

perform event detection. An example of a typical burst of Twitter messages generated by an earthquake is

shown in Figure 1(a).

Although earthquake detection from social media is possible and effective (3, 22), the use of ad-hoc

equipment such as seismographs allows more timely and accurate results, also providing additional infor-

mation as magnitude and hypocenter. However, seismic networks are incapable of quantifying damage
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caused by earthquakes (6).

The severity of an earthquake is described by both magnitude and intensity. Magnitude characterizes

earthquakes by the energy released at the hypocenter. Although earthquakes having a high magnitude are

more likely to cause damage, earthquakes consequences depend on many other factors, such as depth and

distance of the hypocenter, soil characteristics, buildings vulnerability. So the magnitude cannot be consid-

ered a direct measure of the degree of damage and another dimension, the intensity, is used to indicate the

local effects of an earthquake. An estimation of the intensity can be derived from instrumental measure-

ments, however this approach does not take into account information coming from the earthquake-stricken

area and could be greatly improved by the analysis of data collected on-site.

The conviction that social media can be useful sources of information is increasing among emergency

stakeholders (17, 25). In fact, data collected from Web surveys is already employed to assess damage of an

earthquake. The “Did You Feel It?” (DYFI) tool (1) used by the U.S. Geological Survey (USGS) collects

and analyzes experiences and observations of registered citizens by inviting them to fill a simple Web

survey1 whenever an earthquake occurs in the vicinity of their home town. Questions are designed so that

citizen responses can be automatically translated into earthquake intensity values by a simple algorithm.

The DYFI system outputs intensity estimations on a 1 to 10 scale, with the minimum value indicating an

earthquake with no perceivable effects, and the maximum value indicating a devastating earthquake.

Despite being an interesting approach to the exploitation of crowdsourced knowledge, the DYFI system

lacks responsiveness, with the final outcome taking hours/days since the disaster has occurred. On the other

hand, a timely estimation of severe earthquakes would enable to put in place a more effective response, thus

prioritizing resources and efforts whenever and wherever they are most needed. For these reasons, the study,

design, and development of techniques able to extract knowledge from big social data in a timely manner is

a crucial research challenge. Here, our aim is to provide a timely estimation of DYFI earthquake intensity

values from tweets. To achieve our goal we trained a set of ordinary-least-squares predictive models which
1http://earthquake.usgs.gov/dyfi/

4

Digital Object Indentifier 10.1109/MIC.2016.47             1089-7801/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Internet Computing but has not yet been fully edited.
Some content may change prior to final publication.



exploit linear correlations between the predictive variables and the quantity to be predicted, namely USGS’s

official DYFI intensity value. USGS’s DYFI values serve as an authoritative ground truth, while tweets are

exploited to compute our predictive variables. This task is intrinsically hard given the heterogeneity between

subjective tweets, often produced by scared eyewitnesses, and authoritative intensity values deriving from

objective analyses by domain experts.

Social signs of earthquake intensity

The first step towards nowcasting earthquake intensity from social data consists in defining the link between

earthquakes and tweets. For each earthquake detected by USGS, we selected only those tweets shared

during a given time window after the occurrence time of the earthquake. Among selected tweets, we

retained only those tweets written in the most widely spoken language in the country where the earthquake

occurred. For instance, we selected English tweets for earthquakes occurred in the U.S., and Spanish tweets

for earthquakes occurred in Puerto Rico, Mexico, Chile, etc. Then, we computed 45 numeric variables that

serve as potential predictors of earthquake intensity.

Predictive variables are built upon the data made available by Twitter and fall into four different classes

according to the nature of the information they aim at capturing. The first class of variables exploits the

structure of tweets and their metadata. Specifically, we found hashtags to be particularly useful since

eyewitness reports usually carry #earthquake or #quake hashtags (similarly, Spanish messages carry #tem-

blor, #terremoto or #choque). Regarding the structure of tweets, our previous findings highlighted that the

emotional state of users after an emergency is reflected in the length, use of punctuation and number of

capital letters in the messages shared (3). Indeed, the more scared users are, the more they tend to share

shorter messages, with a less complex and less defined structure. These characteristics can possibly be

used as predictors of the extent of the damage. Furthermore, correlations between the spatial distribution

of tweets around the epicenter and the earthquake intensity were assessed whenever geographic (GPS) data

was available. Thus, we defined the following set of variables: total number of tweets (V1); ratio between
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the total number of tweets and the mean number of tweets shared during the same time of the day for all

other days (V2); number of #earthquake (or similar) hashtags (V3); number of hashtags with the name of the

involved country (V4); number of hashtags with the name of the location hit by the earthquake (V5); mean

(V6) and variance (V7) of the total number of words among messages; mean (V8) and variance (V9) of the

total number of characters among messages; mean ratio between number of capital letters and total number

of characters in messages (V10); mean ratio between number of punctuation characters and total number of

characters in messages (V11); mean (V12), minimum (V13) and variance (V14) of tweets distances from the

epicenter.

The second class of predictive variables, built upon user metadata such as an user’s home account

location, can help us understand whether a relation exists between earthquake intensity and the spatial

distribution of users reporting the earthquake. We exploited the Geonames2 gazetteer for the conversion

from the user location string to the geographic coordinates. The resulting 7 variables are: number of

distinct accounts (V15); number of distinct accounts that tweeted from the same country of the earthquake

(V16); number of distinct accounts that tweeted from a neighbor country (V17); number of distinct countries

derived from accounts locations (V18); mean (V19), minimum (V20) and variance (V21) of accounts distances

from the epicenter.

The third class of variables leverages the publication timestamp to quantify the time distribution of

tweets, and aims at grasping the bursty nature of emergency communications. Other previous studies have

exploited bursty characteristics of message streams for the tasks of topic or event detection (16) and here

we want to evaluate whether the quantification of such characteristics contributes to the estimation of the

intensity of earthquakes. Therefore we designed the following set of predictive variables: mean time delay

between one message and the next one (V22); mean (V23), minimum (V24), maximum (V25) and variance

(V26) in the number of messages per minute; longest streak of messages having a maximum delay of 5

seconds between one another (V27).
2http://www.geonames.org/
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The fourth class of variables is derived from linguistic features of tweets. Variables of this class are

count of specific keywords among tweets. Our choice of keywords is automatic and it exploits a modified

version of the proto-words detection algorithm proposed in (19). By providing the algorithm with a set of

seed events (i.e., high intensity earthquakes), it is possible to extract prototypical expressions representative

of messages related to such earthquakes. These prototypical expressions can then be exploited to compute

our linguistic variables. Given |C| classes of earthquakes, each class ci ∈ C is represented by a set of seed

earthquakes Si = {ϵi,1, . . . , ϵi,n}. We denote as Ti = {τi,1, . . . , τi,m} the set of tweets associated to the

seed earthquakes of class ci. Then, we compute frequencies for every unigram ηk found in a tweet τ ∈ Ti.

Ti,ηk = {τ : τ ∈ Ti ∧ τ contains ηk}

seedfreq(ηk, ci) =
|Ti,ηk |
|Ti|

The term seedfreq(ηk, ci) represents the normalized frequency of the unigram ηk for the class ci. The

normalization term |Ti| refers to all the tweets (i.e., also those that do not contain the unigram ηk) associated

to the seed earthquakes ϵi and is necessary to account for the different cardinalities among such sets of

tweets. The score of the unigram ηk for the class ci is then computed as:

score(ηk, ci) =
seedfreq(ηk, ci)

|C|∑
j=1

seedfreq(ηk, cj)

This score indicates how much a unigram ηk is representative of the class ci. For our experiments we

chose 3 classes of earthquakes: strong earthquakes that caused damage and casualties (STR), moderate

earthquakes widely felt by the population but without severe consequences (MOD) and light earthquakes felt

only by a few people (LIG). We picked the top 10 unigrams from the STR class as predictors, together

with the top 5 unigrams from the MOD class. Unigrams of the LIG class are not directly exploited to

compute variables but instead serve as contrast terms to highlight typical expressions of the other classes.

This resulted in 10 variables computed as the number of times a unigram of the STR class was used in the

earthquake reports (V28, . . . , V37), plus 5 variables computed the same way for unigrams of the MOD class
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(V38, . . . , V42). We also added aggregate variables: total number of unigrams of the STR class (V43); total

number of unigrams of the MOD class (V44); total number of unigrams from both the STR and MOD classes

(V45). Before running the proto-words detection algorithm, message texts have been preprocessed with the

Python NLTK3 framework by applying normalization, stopwords removal, tokenization, and stemming.

In order to build the dataset for our study, we started collecting earthquake-related tweets in English

and Spanish for a period of 90 days, spanning from October 18, 2013 to January 15, 2014. To get real-

time access to the global stream of newly produced tweets, we used Twitter’s Streaming API. Relevant

tweets were selected by keywords commonly adopted in earthquake-related tweets and already proposed

in literature, such as “earthquake” and “shaking” for English, “choque”, “temblor” and “terremoto” for

Spanish (22), (3). We then queried USGS for DYFI intensity values of worldwide earthquakes occurred

during the same time window. We finally built a dataset of up to 5 million tweets related to 7,283 globally

distributed earthquakes.

Quick estimates from social signs

We modeled DYFI earthquake intensity values as a linear combination of our 45 predictive variables, plus

terms for pairwise interactions:

yi = β0 +
45∑

j=1

βjVj,i + γIi + εi

In the definition of our model, yi represents the intensity of the i-th earthquake; β0 is the intercept term of

our linear model; βj are the coefficients of our variables Vj,i; γ is the coefficient vector of the interaction

terms; Ii is the vector of the pairwise interactions between variables and εi represents the error term.

In order to train the predictive models, we first divided the 7,283 earthquakes into 3 groups: (i) earth-

quakes occurred in the U.S. and Canada (“North America” group); (ii) earthquakes occurred in Puerto Rico,

Mexico, Chile, Peru, Argentina, etc. (“Central and South America” group); (iii) the remaining earthquakes

belong to the “Rest of the world” group. Then, for each group we trained a predictive model that aims to
3http://www.nltk.org/
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1(a): Trend of tweets containing the keyword “earthquake” shared before and after the 4.5 magnitude earthquake that struck near
Edmond, Oklahoma, U.S. – December 7, 2013.

Region R2 R2
adj R2

pred MAE RMSE n p p-value

North America 0.4888 0.4655 0.3874 0.65 0.82 734 32 ≪ 10−20

Central and South America 0.7160 0.6640 0.5597 0.41 0.56 182 28 ≪ 10−20

Rest of the world 0.5227 0.4913 0.4635 0.53 0.78 147 9 ≃ 10−18

1(b): Earthquake intensity estimation results.

Rank Predictive variable Class Predictive power (β coefficient)

1 V27 longest tweet streak time 4.7704
2 V5 location hashtag count tweet 3.0336
3 V45 STR + MOD unigrams count linguistic 1.5145
4 V4 country hashtag count tweet 0.7744
5 V12 mean tweet distance from epicenter tweet −0.6728

6 V22 mean time delay between tweets time −0.6022

7 V14 variance tweet distance from epicenter tweet 0.5765
8 V20 minimum account distance from epicenter user −0.5441

9 V13 minimum tweet distance from epicenter tweet −0.4418

10 V19 mean account distance from epicenter user −0.1353

1(c): Top 10 predictive variables ranked by their global absolute predictive power.

Figure 1
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estimate the DYFI value of the earthquakes of that group. Table 1(b) shows the evaluation results for the

three models we trained.

The proposed models have been evaluated by means of R2, Adjusted R2 (R2
adj), Predicted R2 (R2

pred)

as well as mean absolute error (MAE) and root mean squared error (RMSE). The R2
pred metric is a form

of leave-one-out cross-validation. It is particularly suitable to assess the goodness-of-fit of a model with

regards to unseen observations, and is useful to control the risk of over-fitted models. Indeed, it is possible to

avoid over-fitting and assess a model’s ability to generalize by analyzing R2 and R2
adj values versus R2

pred

values. In contrast to R2 and R2
adj , R2

pred values drop as an overfitted model loses its ability to generalize.

Error values for MAE and RMSE have to be considered in relation to the 1 → 10 DYFI intensity scale. For

every model we also report the number of observations n and the number of predictors p included in the

model. All the models proposed in Table 1(b) show p-values ≪ 0.001 assessing their statistical significance.

Overall, our models are able to estimate earthquake intensity with a percentage MAE error of 5.3% and

the best performing model shows a percentage MAE error as low as 4.1%. Estimations for earthquakes of

the North American region show increased errors: MAE 0.65 versus 0.41 and 0.53, RMSE 0.82 versus 0.56

and 0.78. This is because 98.5% of the earthquakes of the North American region had a magnitude value

between 2 and 4, while earthquakes in the two other regions had magnitude values almost always higher

than 4, instead.

Table 1(b) also shows that estimations for earthquakes occurred within the Central and South American

region present lower errors than those occurred in the rest of the world. This is mainly due to constraining

our analyses to only tweets in English and Spanish languages. The performance reduction for such earth-

quakes can be estimated in 22% to 28% less accurate predictions: MAE 0.53 versus 0.41 and RMSE 0.78

versus 0.56. It is worth noting however that despite a 0.19 reduction in R2, the “Rest of the world” model

exhibits a MAE value of 0.53 which still reflects accurate predictions.

In Table 1(c) are reported the 10 variables accounting for the highest predictive power among all the

trained models. This allows to gain insights into which variables are more important for this task.
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2(a): Hexagonal binning distribution of intensity estimation errors for earthquakes occurred in the U.S. Each hexagon represents the
root mean squared error (RMSE) of the earthquakes occurred in a limited geographic area. Wider hexagons represent areas where
a larger number of earthquakes has occurred. Green-colored hexagons mean low RMSE values (≃ 0), while red-colored hexagons
mean RMSE values ≃ 3. RMSE values have to be considered in relation to the 1 → 10 earthquake intensity scale.

2(b): Examples of earthquake reports related to the 6.0 magnitude earthquake occurred in the South Napa region, California, U.S. –
August 24, 2014.

Figure 2
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Furthermore, Figure 2(a) reports an analysis of the spatial distribution of prediction errors for earth-

quakes occurred within the U.S. territory. Given that the majority of earthquakes occurred in regions of

high seismic hazard (e.g., California), we employed an hexagonal binning technique to avoid overplotting

and obtain a more readable map. Groups of earthquakes are represented by hexagons of area proportional

to the number of earthquakes in the group, while the color represents the RMSE of earthquake intensity

predictions for each group. As shown, few high prediction errors are associated with smaller hexagons,

typically representing a single seismic event, while in areas affected by a large number of earthquakes our

predictions are overall accurate. Furthermore, the few orange-colored hexagons are spread throughout the

map, where no regions with errors considerably higher/lower than the average exist. In turn, this indicates

the lack of a geographic bias within our model.

Besides the small error in intensity estimates, another promising result of the study is the responsiveness

of our approach. The average delay of our estimations is in the order of 100 minutes, that could be further

reduced by shortening the time window used to collect earthquake reports from the Twitter stream when the

accuracy of the prediction can be traded off for responsiveness.

Back to society

These promising results seem to confirm the possibility to estimate the damage produced by earthquakes via

accurate analyses of social signs extracted from user reports, thus allowing responders to rapidly identify

potentially severe earthquakes.

The fluctuations of intensity estimation accuracy between our models highlight an important difference

between social mining systems and systems based on seismographs. Indeed, the latter are not influenced by

the magnitude of the earthquake and provide accurate analyses also in the case of light tremors. Being based

on spontaneous user reports, our approach is affected by the lack of social sensors in sparsely populated

areas, or by the lack of messages in the case of light tremors. However, this aspect should not raise much

concern since light seismic events do not pose a serious threat to communities and infrastructures, while
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earthquakes of interest are those actually felt by the population at large.

Variables from all the 4 classes appear among those yielding the highest contribution to our intensity

estimations. The first 3 variables, namely V27, V5, and V45, provide a contribution that is significantly

higher than the remaining ones, thus representing the most important predictors of earthquake intensity.

Notably, 5 out of 10 variables, namely V12, V14, V20, V13, and V19, are based on the account’s location

field or GPS geolocation associated to tweets. This further stresses the role of geographic information as

a key contributing factor for this task and demonstrates the correlation existing between the geographic

distribution of reports and the intensity. We believe this results to be even more interesting by considering

that we did not apply any geolocation technique to the analyzed tweets. That is, we only exploited natively

(GPS) geolocated tweets to compute such variables. Thus, the predictive power of geographic variables,

and the accuracy of the resulting models, could further increase by employing geoparsing techniques that

allow to augment the number of geolocated tweets.

Furthermore, an analysis of the messages shared after severe earthquakes highlighted that many tweets

contain reports and photos of specific places/buildings that suffered damage, as shown in Figure 2(b).

Automated image and text analysis techniques could be employed to further analyze tweets in the aftermath

of high intensity earthquakes, thus allowing to timely collect specific mentions of damage. Such information

could then be organized and shown via a Web interface. In fact, given the loose requirements of our

approach, a fully-working system for social media-based intensity estimation could be implemented by

exploiting the analysis pipelines of already existing Web emergency management systems, such as (25)

and (3).

Given this picture, directions for future work are manifold and include the possibility to carry this

approach over to other natural disasters such as hurricanes, flash floods, landslides or even man-made

offenses such as terrorist attacks or financial crises. Many of these emergencies lack the timely and detailed

characterization that is available for earthquakes thanks to seismographic networks. On the one hand, this

lack of quantitative descriptive data could represent an added difficulty to the training of damage models
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and, ultimately, to the deployment of such predictive damage assessment systems. On the other hand,

however, the lack of ad-hoc sensing equipment renders other sources of information, such as social media,

even more valuable. Other directions of improvement might consist in using the proposed approach to

rapidly identify and contact users who are directly involved in the emergency, for instance eyewitness users,

with the purpose of acquiring a better situational awareness. For example, users tweeting from a scarcely

covered region could be directly asked to provide more detailed information.

As a final remarks, one could think of the broad research field of social sensing, where emergency

management represents just one among the possible applications, as a mean to foster civic involvement and

improve social good. Processing spontaneous user reports and feeding results back to society could in fact

initiate virtuous circles between communities, researchers and emergency stakeholders, paving the way for

the development of more sustainable and resilient societies.
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