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Optimal Joint Path Computation and Rate

Allocation for Real-time Traffic

Antonio Frangioni ∗ Laura Galli ∗ Giovanni Stea †

Abstract

Computing network paths under worst-case delay constraints has
been the subject of abundant literature in the past two decades. As-
suming Weighted Fair Queueing scheduling at the nodes, this translates
to computing paths and reserving rates at each link. The problem is
NP-hard in general, even for a single path; hence polynomial-time
heuristics have been proposed in the past, that either assume equal
rates at each node, or compute the path heuristically and then allocate
the rates optimally on the given path. In this paper we show that the
above heuristics, albeit finding optimal solutions quite often, can lead
to failing of paths at very low loads, and that this could be avoided by
solving the problem, i.e., path computation and rate allocation, jointly
at optimality. This is possible by modeling the problem as a mixed-
integer second-order cone program and solving it optimally in split-
second times for relatively large networks on commodity hardware;
this approach can also be easily turned into a heuristic one, trading a
negligible increase in blocking probability for one order of magnitude
of computation time. Extensive simulations show that these methods
are feasible in today’s ISPs networks and they significantly outperform
the existing schemes in terms of blocking probability.

1 Introduction

Real-time traffic is nowadays a relevant component of IP-based networks.
This definition encompasses a wide range of diverse applications, for which
a bound on the end-to-end transit delay—including queueing, transmission
and propagation delays—is mandatory for correct operation: for instance,
multimedia applications such as live video – which are already widespread –
or, again, applications such as remote sensing and control, surveillance sys-
tems, factory automation, stock exchange transactions etc., which are receiv-
ing increasing attention in the networking community. In the near future, it
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is foreseeable that the upcoming machine-to-machine (M2M) paradigm will
favor the emergence of new real-time applications.

Supporting delay-constrained traffic requires the ability to compute paths
where enough resources are available, on one hand, and to reserve these re-
sources, on the other. The two above problems have been widely researched
in the last two decades, both jointly and in isolation, under the name of
QoS routing (see, e.g., [1–10]) and QoS partitioning (see, e.g., [5, 11–18]).
The first problem consists in finding paths, the second one in computing the
resources to be allocated on a given path. Some works (e.g., [7–9]), consider
that, if Weighted Fair Queueing (WFQ) schedulers [19] are used at each
node and traffic flows are leaky-bucket-shaped, then a bound on the end-to-
end delay is a non-additive function of the rate allocated at each link. Thus,
the problem of QoS routing with end-to-end delay bounds translates into
finding a path where large enough rates are available. It has been shown
in [7,8] that finding such a path is a polynomial problem, even when the rate
to be allocated is not known in advance, assuming that a flow is allocated
the same rate at all nodes, which is called Equal Rate Allocation (ERA).
More recent works on QoS partitioning (e.g., [15–17]), however, show that
ERA may fail to compute a path when a feasible one would exist if unequal
rate allocation was instead allowed.

To the best of our knowledge, despite the abundance of literature, few
works so far have tackled the problem of joint path computation and rate
allocation with unequal rates at each link, constrained by a (non-additive)
maximum end-to-end delay objective. This problem, which we call Single-
Flow Single-Path Delay-Constrained Routing problem (SFSP-DCR) is NP-
hard, since it generalizes the Constrained Shortest Path problem (CSP);
this justifies why most authors might have deemed it impossible to solve it
to optimality in the context of real-time traffic allocation. However, just
because a problem is NP-hard this does not necessarily imply that it is
not solvable for practical dimensions, i.e., comparable to those of today—
and tomorrow—network domains. In fact, while complex path computation
was clearly not practicable when individual routers were supposed to run
it, recent developments in networking architectures make it a viable option
nowadays: for instance, Path Computation Element (PCE, citePCE13),
standardized by the IETF, are in fact dedicated servers for domain-wide
path computation. Moreover, several QoS-oriented architectures (e.g., [21])
envisage per-domain resource managers, capable of complex computations.
Last, but not least, Software Defined Networks [22] centralize network in-
telligence, therein including path computation capabilities. The problem of
path computation and resource allocation is largely independent of what a
flow is defined to be in the network architecture being considered. In some
of these, a flow (or microflow) is the stream of packets sent by a single appli-
cation: this is true of the IP IntServ architecture [23], which has well-known
scalability problems due to the high number of flow states to be maintained
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at the routers, as well as of other networks. In other architectures, a flow
(or trunk, or aggregate) is a (possibly large) set of microflows being con-
veyed from one end to the other of a domain and requiring homogeneous
forwarding behavior. This happens, for instance, in the IP DiffServ archi-
tecture [24], in MPLS [25], as well as in other IP-based networks, such as
the Evolved Packet Core for cellular communications [26].

To the best of our knowledge, the above problem has been first tackled
in our previous work [27]. In the latter, it has been shown that SFSP-
DCR can be formulated as a convex Mixed-Integer Non-Linear Program
(MINLP), and in particular as a Mixed-Integer Second-Order Cone Pro-
gram (MISOCP) that can be efficiently solved by general-purpose tools once
appropriate re-formulation techniques are used to construct “tight” models
(i.e., with a relatively low integrality gap) that are also compact (in terms of
both variables and constraints). Also, a number of approximation schemes
are proposed for variants of the problems (e.g., when capacity reservation
costs are not identical), along with a simple heuristic which tries ERA first
and then falls back on solving the SFSP-DCR optimally. A preliminary eval-
uation of the latter, in a somewhat abstract setting, shows that it obtains
extremely small average gaps in significantly smaller average running time
than the exact approach.

In this work we first extend the results of [27] to a number of issues that
were not addressed therein, and then we assess the actual impact of the
proposed approach on the network performance. By means of an extensive
simulation over several real-world IP networks with realistic demands and
capacities, we show that computing paths and rates by solving the SFSP-
DCR problem optimally largely outperforms the existing QoS routing and
resource partitioning schemes in terms of blocking probability. More specifi-
cally, we compare our scheme against one where ERA is imposed, as in [7,8],
and against one where shortest-widest and widest-shortest path computation
is used in conjunction with the optimal rate allocation advocated in [16,17].
We show that both these approaches perform surprisingly worse than the
optimal one, failing to compute feasible paths when these do exist in a sig-
nificant percentage of cases, and therefore resulting in remarkably higher
blocking probabilities even at very low network loads; close examination
of the results show that this is indeed a fundamental issue of the ERA
method when the network has links of significantly different (residual) ca-
pacity, something which happens in practice. Moreover, the computational
cost of the exact approach is affordable: thanks to the effective compact
formulation, optimally solving realistic-sized instances takes a time compat-
ible with online computations in an operating environment, i.e., less than
one second for a 50-node network on off-the-shelf hardware, which implies
that the approach can actually be implemented in real-life equipment. In
order to explore the trade-offs between performance and computational cost,
we also test the afore-mentioned heuristic approach, showing that it trades

3



a negligible increase in the blocking probability for an order of magnitude
of computation time, and thereby making the (almost) exact solution of
SFSP-DCR even more feasible in a realistic setting.

The rest of the paper is organized as follows: Section 2 reviews the re-
lated work. Section 3 introduces the system model, and Section 4 states
the problem formally and outlines our solutions. These are evaluated nu-
merically in Section 5. Finally, Section 6 reports conclusions and highlights
directions for future work on this topic.

2 Related Work

The problems of QoS-oriented path computation and resource allocation,
considered either jointly or separately, have attracted a considerable amount
of research since the mid ’90s. As far as path computation is concerned, a
relevant amount of literature has been published under the name of QoS
routing. The key problem in this stream of literature is how to compute a
path subject to multiple constraints (e.g., on the delay, jitter, bandwidth,
loss probability, number of hops, etc.), while minimizing some per-path met-
ric (e.g., the number of hops, the delay, etc.). Paper [1] sets the theo-
retical foundations for such multiconstrained QoS routing problem. The
problem is to find a path for one flow between a given source-destination
pair, minimizing the hop count and satisfying path constraints which can
be categorized into three types, based on their composition function: addi-
tive (e.g., the average/maximum delay and jitter), multiplicative (e.g., the
packet loss), or concave (e.g., a minimum bandwidth requirement). The
authors prove that the above problem is NP-complete if two or more ad-
ditive/multiplicative constraints are to be satisfied. Conversely, they show
that it is possible to find a path constrained by one concave metric and one
additive/multiplicative metric in polynomial time, and they suggest that
propagation delay (additive) and minimum reserved bandwidth (concave)
be actually used in QoS routing schemes.

Starting from this work, several works have addressed heuristics that
approximate the multiconstrained problem in one way or another (e.g.,
[2,3,28,29]). Most papers (e.g., [4,5,10,30–32]), assume that delays are static
and/or additive per-link metrics. This assumption does not consider that
queueing, which is not static, is a relevant delay component. Other papers
tackle the problem from a probabilistic point of view, assuming a stochastic
characterization of traffic and attempting to minimize or bound the aver-
age delay, which is hardly relevant at all for real-time traffic. Others, finally,
take a pre-computation perspective, i.e., assume that some pre-computation
work is done offline (taking whatever time it takes to do so), and then select
among the pre-computed paths when online demands are made [6,33]. Fewer
works (e.g., citeMaSt97,Orda99,pornavalai1997qos) propose path compu-
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tation techniques constrained by deterministic (non-additive) delay bound
constraints, also taking resource allocation on a path into account. The gen-
eral reasoning is that, if WFQ schedulers [19] are used at each node and the
requesting flows are leaky-bucket-shaped, then rate reservation translates to
i) an end-to-end delay bound, ii) an upper bound on the end-to-end jitter,
and iii) an upper bound on the buffer required at each node, once a path is
selected. Therefore, a delay-constrained path is just one with enough rate
to allow that maximum delay not to be exceeded. [9] finds the shortest path
constrained by jitter, delay and buffer bounds under the assumption that the
rate to be reserved is known in advance, using a polynomial algorithm. [7]
shows that the problem is still polynomial if the rate to be reserved at each
node is a variable, although it has to be the same at each node (ERA). [8]
proposes lower-complexity approximate solutions to the problem solved ex-
actly in [7]. Furthermore, it presents polynomial algorithms that find the
optimum path when the cost is either a non-decreasing function of the al-
located rate, path length and delay, or the residual rate of the bottleneck
link along a path. Work [17] computes asymptotic bounds when rate-based
joint routing and resource allocation has to be performed in a multi-class
networks, according to fairness requirements.

Over the past 20 years, the literature on packet scheduling has witnessed
a plethora of algorithms that approximate WFQ, normally at a lower com-
plexity. The last in this line is Quick Fair Queueing (QFQ), [34]. All these
algorithms sort packets in a different way with respect to WFQ, hence they
exhibit a different latency expression. This, in turn, means that the relation-
ship between the end-to-end delay bound and the reserved rate is different.

As far as QoS partitioning is concerned, several works exist that achieve
optimal partitions for additive delays on a given path (see, e.g., [5, 13]).
Under this hypothesis, [11] formulates and solves (heuristically) the prob-
lem of optimal routing and QoS partitioning given a number of pre-selected
routes for each (source, destination) pair, whereas [12] computes the opti-
mal delay partitioning and routing. Considerably fewer works assume in-
stead non-additive end-to-end delay bounds constraints: [16, 17] show that
reserving the same rate (as done in [7–9]) may be suboptimal and leads
to failing of paths which might otherwise be admissible. The authors then
propose an algorithm that allows a minimum-cost delay-feasible resource
allocation to be computed on a pre-selected path, if such an allocation ex-
ists, assuming that costs are equal on each link. Their scheme consists in
repeatedly trying ERA at the minimum rate that guarantees the requested
delay. If the rate thus computed is available at all links, then the allocation
is the minimum cost one; otherwise, the bottleneck links are allocated all
the available rate, their delay contribution is discounted from the delay for-
mula, and another iteration is performed to set the rates at the remaining
links. Then, either the algorithm converges to a feasible solution (which
is also optimal, in this case), or there is no feasible rate allocation along
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the path. This leads the authors to conclude that there should be little
benefits to be reaped by using non-uniform rate allocation; however, this
intuition has been challenged by other results. For instance, [15] proposes
a global (i.e., network-wide, or multi-flow) resource allocation scheme with
delay bound constraints, assuming that paths have been selected, and ex-
ploiting optimization techniques to minimize the overall rate reserved in the
network domain: rates are not assumed to be equal at each node for the
same flow. The paper shows that the problem can be solved optimally for
several classes of schedulers (including WFQ), and it may or may not have
a convex formulation depending on the scheduler class; the results show in-
stead that unequal rate allocation is necessary, since equal rate allocation
may fail at very low network loads. Paper [35] proposes several criteria for
resource allocation in WFQ-based networks (equal, capacity-proportional,
and remaining capacity proportional) and shows how they perform in con-
junction with least-loaded-path-first routing. The result is that ERA re-
duces the call blocking probability. A similar analysis is done in [18], with
respect to Earliest-Deadline-First (EDF) scheduling: several delay budget
partitioning schemes are proposed and evaluated in conjunction with various
(delay-agnostic) path computation techniques, such as widest- or shortest-
path-first. [14] discusses the advantages of optimal QoS partitioning (against
a baseline of equal partitioning) using average end-to-end delay as a metric,
and assuming Markovian models. Paper [13] formulates the optimum alloca-
tion problem on a given path with non-equal rates as a convex optimization
problem, given an utility function of the nodes’ rates.

To the best of our knowledge, our previous work [27] is the only one
to tackle joint path computation and rate allocation with unequal rates.
We showed therein that, under a number of conditions, the problem can be
formulated in such a way as to be solvable by general-purpose tools in a time
compatible with real-world network operations. However, no evaluation on
the impact of this approach on the observable network performance (such
as blocking probability) was performed.

3 System model

We consider a computer network represented by a directed graph G =
(N,A), where N is the set of nodes, corresponding to the routers in the
network, and A is the set of directed arcs (ordered pairs of elements of
N), corresponding to the links in the network; although links are typically
bi-directional, flow in the two directions is not supposed to interfere, and
therefore a link between a router i ∈ N and a router j ∈ N is appro-
priately represented by the two “opposite” directed arcs (i, j) ∈ A and
(j, i) ∈ A. We will denote by n the number of routers (the cardinality of N)
and by m the number of arcs (the cardinality of A), i.e., twice the number
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Figure 1: Some quantities in a path

of links in most cases. Our problem is to route one single “new” unicast
flow through the network along a minimum cost path, where the cost is
any linear function of the reserved capacities on the traversed arcs, with
a constraint on the maximum delay that any packet may incur during the
traversal. Note that the definition of flow is general enough to encompass
the activity arising from a single application (sometimes called microflow)
and a traffic trunk to be routed between the edges of an ISP (sometimes
called aggregate or macroflow). With reference to Figure 1, we denote with
s ∈ N and d ∈ N \ {s} respectively the source and destination of the flow.
Following previous work on the topic (e.g., [7–9]), we assume that a flow’s
traffic is regulated by a leaky-bucket traffic shaper, whose burst is denoted
by σ and whose rate is denoted by ρ. The latter ensures that, in any time
interval of duration t, at most α(t) = σ + ρ · t bits may enter the network.

Each link (arc) (i, j) ∈ A in the network is characterized by a fixed link
delay lij , a physical link speed wij , and a reservable capacity cij (≤ wij),
which is to be shared among the flows traversing that node. The reservable
capacity is dynamically updated at the setup and teardown of a flow. Each
node i ∈ N in the network is characterized by a maximum node transit delay
ni; moreover, the maximum transmission unit L (i.e., the maximal size of
any packet) is known and assumed to be constant in the whole network. The
flow has a deadline δ, after which packets are considered to be useless; in
other words, the worst-case delay of the flow must be at most δ. We assume
that each link (i, j) ∈ A is managed by a WFQ scheduler [19], hence flows
are reserved a rate rij at each link, 0 ≤ rij ≤ cij (≤ wij). Given a routing
for the flow, i.e., the selected s- d path P in G, a finite delay bound can
only be guaranteed if the minimum reserved rate at each link of the path is
at least as large as the flow’s rate ρ, i.e.,

rij ≥ ρ ∀(i, j) ∈ P (1)

Once (1) is satisfied, the maximum delay for the flow on path P is

D =
σ

min{ rij : (i, j) ∈ P}
+
∑

(i,j)∈P

(
θij +

L

wij
+ lij + ni

)
(2)
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where θij is the node latency, i.e., the scheduling delay at the link (i, j). For
WFQ schedulers, the latency is strictly rate-proportional, i.e.:

θij =
L

rij
(3)

Note that (3) is a convex function of rij when rij ≥ 0, something that will
be exploited in order to devise an efficient solution1. Note that it is not
possible to determine a priori which addendum in (2) is the dominant one.
This depends on the burstiness of the flow σ, which is known beforehand, but
also on the length of the path, which is an outcome of the computations.
In particular, the second addendum increases with the path length, and
may actually be the dominant term if long paths (or paths with long delay
propagations) are selected.

We assume that link buffers are large enough to prevent overflow. The
backlog bound at each node can be easily computed using formulas similar
to those for the delay bound, hence this condition can be easily checked a
posteriori.

4 Mathematical programming formulation

Given a flow with a burst σ and a rate ρ, which requests an end-to-end delay
no larger than δ along a path from s to d, the SFSP-DCR problem requires
to find one path from s to d, and a feasible rate reservation on each of its
links so that the flow can meet its deadline at the minimum cost. For now,
we assume that the cost is a linear function of the rates being reserved at
each link; we will explore different objectives later on in this section. We
now formulate the SFSP-DCR problem as an optimization problem, starting
with its constraints.

We use binary variables xij ∈ {0, 1} to indicate whether link (i, j) belongs
to P : this allows us to write down flow conservation constraints:

∑
(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij =


−1 if i = s

1 if i = d
0 otherwise

i ∈ N (5)

The above ensure that – at optimality – the x variables represent an s-d
path, if the (indirect) cost of setting any xij = 1 is positive. Here, BS(i) is
the subset of A containing the arcs entering node i (the so-called “backward

1This is not true of most WFQ approximations. For instance, QFQ’s latency (called
“Time Fairness Index” in [34]) is given by the following expression:

θij = 3 · 2dlog2 wi,j ·L/ri,je

wij
+

L

wij
, (4)

which is a discontinuous function of the reserved rates.
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star” of the node), while FS(i) is the subset of A containing the arcs leaving
node i (the so-called “forward star” of the node). Rate reservation variables
rij are instead continuous. We introduce an additional variable rmin, with
obvious meaning, and the corresponding constraints:

0 ≤ rij ≤ cijxij (i, j) ∈ A (6)

ρ ≤ rmin ≤ rij + cmax(1− xij) (i, j) ∈ A (7)

These ensure – on one hand – that rij = 0 if xij = 0, and – on the other
– that ρ ≤ rmin ≤ rij if xij = 1, so that (1) holds. Note that cmax =
max{ cij : (i, j) ∈ A } is used in (7) to ensure that any link not in the
chosen path (xij = 0) does not contribute to bounding rmin from above.

The constraint D ≤ δ, with D being given by (2), can be modeled using
an auxiliary variable t and a rotated SOCP constraint as follows:

t+
∑

(i,j)∈A

(
θij +

( L

wij
+ lij + ni

)
xij

)
≤ δ (8)

t rmin ≥ σ , t ≥ 0 (9)

Note that the li,j and ni terms in the sum in (8) are only counted in if
xi,j = 1, i.e., if the link and node are actually in P . For the same reason,
some care must be taken to constrain the latency variable θij to be equal to
zero if xij = 0, or to an appropriate (convex) nonlinear expression otherwise.
This is a disjunctive set, being expressed by a disjunction, which is in general
nonconvex. Different formulations can be used to represent a disjunctive set
in a mathematical program; the most widely used are big-M ones [36], that
however are also well known to result in generally weak lower bounds and
to be prone to numerical instability. One way to construct formulations
with stronger continuous relaxation is to compute the convex envelope of
the significant (nonlinear) fragments of the formulation, i.e., the best pos-
sible convex function agreeing with the nonconvex one at the points of its
(disconnected) domain. Luckily, this can be done for the problem at hand
using results originally due to [37,38] and first put to actual computational
use in [48] under the form of the perspective reformulation, that has been
employed in several applications with success (e.g. [39–43]). Building on
that theory, we propose the following formulation for imposing the required
constraints on θij :

ρxij ≤ rij ≤ cijxij (i, j) ∈ A

0 ≤ θij ≤ (L/ρ)xij (i, j) ∈ A

Lx2ij
rij
≤ θij (i, j) ∈ A (10)
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The crucial observation is that (10) can be directly modeled as a rotated
SOCP constraint. Finally, we assume a linear objective function:∑

(i,j)∈A fijrij , (11)

i.e,. minimizing the weighted amount of allocated rate along the path
(where fi,j are non-negative constants). The whole model is thus a Mixed-
Integer Second-Order Cone Program (MISOCP). Although MISOCPs are
non-linear, their continuous relaxation possesses an algebraic structure that
allows one to establish a strong duality theory; this in turn paves the way to
efficient algorithms (e.g., interior-point methods are able to solve SOCPs in
polynomial time), which means that MISOCPs can be solved (although in
general not in polynomial time) by off-the-shelf, efficient, general-purpose
solvers like Cplex or GUROBI. In [27], the proposed formulation is also com-
pared with one based on standard big-M constraints: it is shown therein that
the former is preferable, because its model size is smaller and its continu-
ous relaxation much stronger, resulting in substantially shorter computation
times. We will show in Section 5 that these times are indeed compatible with
a dynamic network environment, even at fairly large scales and loads.

4.1 Generalizations of the model

We now show that similar MISOCP models can also be derived under more
general hypotheses, regarding the objective function and the traffic arrival
profile.

Regarding the objective, the weighted-sum objective function (11) can
be expanded to include per-link (besides per-rate-unit) costs, while still re-
maining linear, i.e.: ∑

(i,j)∈A fijrij + Fijxij

Associating fixed costs Fij to links may have a number of uses, e.g., classify-
ing them based on reliability (a higher cost being associated to a less reliable
link), breaking ties by favoring shortest paths, etc. Both per-rate-unit and
per-link costs can be arbitrarily assigned, as long as they do not depend
on the problem variables: for instance, they can be constant, or depend on
topological properties, or on the link load (e.g., proportional to the available
link capacity). The model even maintains the same structure if the objec-
tive function is changed to a min-max (or max-min), i.e., minimizing the
maximum allocated rate at a link (or maximizing the minimum remaining
rate at a link). All it takes, in fact, is to substitute (11) with:

min ψ with the additional constraints ψ ≥ fijrij +Fijxij (i, j) ∈ A

and the same goes for the max-min case mutatis mutandis.
Regarding the traffic arrival profile, some of the literature on QoS-routing

considers flows shaped by dual leaky buckets: one (σ, ρ) for the average rate,
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and another (L, p) for the peak rate, with σ > L and p > ρ. Injected traffic
must conform to both profiles simultaneously, and the delay bound formula
changes to:

D =
L

rmin
+ max

{
0 ,

(σ − L)(p− rmin)

rmin(p− ρ)

}
+
∑

(i,j)∈P

( θij + lij + ni ) (12)

Fortunately, (12) can also be reformulated as a fragment of MISOCP. This
is based on the fact that the max term in (12) only depends on whether
p < rmin or vice versa: in fact, since σ > L, p > ρ and rmin > 0, the sign
of the expression between curly brackets is the same as that of p − rmin.
Hence, we can rewrite the first two addenda as:

ψ(rmin) =

{
L

rmin
+ K

rmin
if rmin ≤ p

L
rmin

if rmin ≥ p

where K is a nonnegative constant. The above is a 2-piecewise function,
with both pieces being individually convex. Thus the only place to focus
our attention on is the point p = rmin where ψ is nondifferentiable (but
clearly continuous). However,

ψ′−(rmin) = − L

r2min

− K

r2min

≤ − L

r2min

= ψ′+(rmin)

Hence, the left derivative in rmin is smaller than the right derivative, i.e., the
derivative is globally non-decreasing, and therefore ψ is convex. Therefore,
(12) too admits a convex (and, in particular, MISOCP) formulation, whose
easy derivation need not to be explicitly reported here.

While the objective function determines the properties of the optima
(hence the user-observed performance of the resulting QoS-routing scheme,
e.g., how much traffic you can actually fit in your network), the choice of
which objective is preferable may depend on several factors, including the
network administrator policies, hence a performance comparison of various
objective functions is outside the scope of this work. Furthermore, the
QoS-routing scheme that we compare against, namely ERA [7, 8], accounts
for single leaky-bucket shaping of traffic, and the optimal QoS-partitioning
scheme that we compare against [16,17] only considers minimizing the sum
of the allocated rates (i.e., assumes fij = 1). Thus, to allow for a fair
comparison, in the rest of the paper we also use a weighted-sum objective
with unitary weights and a single-leaky-bucket delay formula. However, it is
important to remark that a significant benefit of modeling the problem as a
MISOCP is that the above extensions to more complex objective functions
and different traffic arrival profile is quite easy, and they could be expected
to have a minor impact on the overall performance.
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5 Numerical Results

We now show that the optimal solution to the SFSP-DCR problem is both
affordable and effective in realistic settings. To back up the first claim, we
show that the solving time of the problem is normally below one second, on
off-the-shelf hardware, even for large networks and for a wide range of loads.
The second claim is supported by comparing our scheme with its direct
competitors: on one hand ERA [7, 8], and on the other hand the optimal
unequal resource allocation scheme proposed in [16,17] in conjunction with a
shortest-widest-first or a widest-shortest-first path computation scheme. In
particular we ran a large amount of simulation experiments on real-world IP
networks, under varying network parameters, and we measured the blocking
probability, i.e., the relative ratio of unfeasible path computations. We first
describe the setup, and then report and comment our results.

5.1 Simulation setup

Constructing a set of meaningful DCR instances is a nontrivial exercise. We
selected real-world IP network topologies taken from the Internet Topol-
ogy Zoo [47]. Table 1 reports the network topologies we used; we ex-
ercised care to extract a set as heterogeneous as possible with respect to
network dimension, connectedness (represented by the average node rank)
and geographic span (summarized by the average per-link propagation de-
lay), which ranges from regional (e.g., Belnet2009) to world-wide (e.g.,
DeutscheTelekom). Since the geographic coordinates of the nodes are pro-
vided, we set link delays lij as the ratio of the geodesic distance between i
and j to the speed of light in a fiber. As far as node delays are concerned, [44]
shows that they are typically small (20-40µs); since the above paper is al-
ready ten years old at the time of writing, we expect today’s routers to be
more performing, if possible, and less prone to delay spikes (which in [44]
are attributed to IP option parsing, something that e.g., MPLS forwarding
dispenses with), thus we fixed the node delay to 40µs, expecting this figure
to err on the safe side. We also remark here that the Sago topology (shown
in Figure 2) is an extended star with a three-link hub, hence having a single
path between any couple of nodes, as this detail will be significant in the
analysis (clearly, the path-finding part of the proposed approaches has no
influence in this case).

Link capacities are assigned using the FNSS tool [45], which provides
algorithms specifically designed for modeling link capacity assignment in ISP
backbones. The one we chose exploits the edge betweenness centrality metric
to select one among a finite set of link capacity values (in our case {1, 10, 40}
Gbps). FNSS also supports generation of realistic traffic matrices based on
the network capacity. We use this feature to generate the ρ value of each
request between two nodes in such a way that the request can be accepted in
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Table 1: Topologies used in the simulations (Topology Zoo dataset, [47]).
Topology # nodes # links # flows avg. node rank avg. prop. delay (ms)

Abilene 11 28 110 2.55 5.03
AttMpls 25 112 600 4.48 4.54
Bellcanada 48 128 2256 2.67 2.83
Belnet2009 21 48 420 2.29 0.19
DeutscheTelekom 39 124 912 3.18 13.79
Geant2010 37 112 1332 3.03 3.93
Ibm 18 48 306 2.67 4.67
Iris 51 128 2550 2.51 0.27
Sago 18 34 306 1.89 0.36
Tw 76 230 4970 3.03 2.66

an unloaded network; this ensures a reasonable baseline to assess blocking
probabilities. Traffic matrices are generated using a log-normal distribution
with a mean rate equal to 0.8 Gbps and a variance of 0.05. The MTU L
is fixed to 1500 bytes, while flow bursts σ are set to a variable number of
MTUs in order to evaluate different operating conditions, as discussed below.
Finally, to define flow deadlines δ, we calculate two extreme values: δmin,
corresponding to the one obtained by allocating the entire link capacity and
then calculating the delay-shortest path given this fixed allocation, and δmax

corresponding to the delay bound obtained by allocating a rate equal to ρ
on all the links of the shortest path. Clearly, delay requests smaller than
δmin cannot be met, whereas requests higher than δmax are likely to make
the delay constraint redundant. Therefore, δ is randomly chosen uniformly
within the interval [ δmin , δmin + (δmax − δmin)β ] for a fixed parameter
β ∈ (0, 1); the smaller β, the more difficult meeting the delay constraint can
be expected to be.

Path computation requests are generated at time intervals exponentially
distributed, with a varying rate λ: each path lasts for an exponentially
distributed time with a mean equal to 1s, hence λ represents the number of
erlangs. The number of path computations requested is

10

λ
max

{
m,

1

Pmin

}
where Pmin =

{
10−2 if λ > 5
10−3 otherwise

which yields enoug samples to estimate blocking probabilities correctly even
at low values of λ. Each point in the blocking probability graphs is obtained
as the average of five independent replicas. 95% confidence intervals are also
reported.

In our experiments we compared five different schemes: ERA, shortest-
widest path first with optimal unequal rate allocation (SWPF-URA), widest-
shortest path first with optimal unequal rate allocation (WSPF-URA), our
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Figure 2: The Sago topology on an outline of south-east US

optimal MISOCP, and the Three-Pronged Heuristic (TPH) of [27]. The lat-
ter can be quickly described as follows. First, one checks the existence of
at least one feasible path: this can be done in polynomial time (despite
SFSP-DCR being NP-hard) exploiting the fact that according to (2)–(3)
the delay is a decreasing function of the rates, which means that setting
rij = cij for each arc (i, j) provides the best (least) possible contribution to
the delay (cf. the computation of δmin above). Clearly, if this computation
fails, the problem is infeasible, and we terminate. If instead feasibility is as-
certained, ERA (which still runs in polynomial time) is attempted: if ERA
succeeds its solution is returned, otherwise (i.e., ERA does not find any path,
although we are sure there actually is one) one falls back on solving the MIS-
OCP optimally. TPH requires a much smaller computation time on average,
since on one hand infeasible problems are quickly ruled out at a very small
cost, and on the other hand the number of times that SFSP-DCR is solved
optimally via MISOCP is significantly reduced. Simulations have been per-
formed on a 2.299 Ghz AMD Opteron(tm) Processor 6376 with 16Gb RAM
running a 64 bits Linux operating system (Ubuntu 12.4). All the codes were
compiled with gcc 4.4.3 and -O3 optimizations. The MISOCP was solved
by off-the-shelf commercial solver Cplex 12.5, run with default parameters.
Hence, significant efficiency improvements w.r.t. our results can be obtained
at little cost, e.g., by appropriately tweaking the algorithmic parameters of
the solver. It should be noted that general-purpose solvers tend to become
better and better with time due to the large amount of development effort

14



devoted to their improvement, so it can be expected that the solution speed
of the MISOCP model will significantly improve over time, with no extra
implementation effort, just on the account of the combined advances in the
available hardware and software environments; this alone makes it attrac-
tive as a long-term option. Of course, development of specialized approaches
better exploiting the structure of the problem is also possible and has the
potential to further significantly improve the performance. The results of
the experiments are reported and discussed in the following.

5.2 Results

We start by reporting the blocking probability in Figure 3, as a function of
λ, for the various topologies when β = 0.2 and σ = 3 MTU. We repeated the
simulations for different values of β and σ, obtaining qualitatively similar
results, which are not reported for the sake of conciseness.

The figure clearly shows that MISOCP outperforms all the other schemes,
although TPH performs quite near. The improvement is more evident at low
loads, where the other schemes exhibit a surprisingly high (relatively speak-
ing) blocking rate, and obviously reduces as the network grows overloaded
2. As a general rule, MISOCP and TPH appear to perform better when
the network is highly connected (see, e.g., the AttMpls, DeutscheTelekom,
Geant2010 and Tw topologies, whose average node rank is above three); this
could be expected, because the more connected a network is, the larger the
solution space is in general. We remark, however, that such a reduction of
the blocking probability was not obvious at all a priori: given that MISOCP
computes the optimum and the competitors do not, it is straightforward
that, starting from the same network state, the chance of MISOCP finding a
feasible path are higher than its competitors’. However, nothing guarantees
that this will still be true as the respective network states diverge, i.e. with
MISOCP accepting paths that its competitors reject, hence occupying more
resources; this is instead what happens in all the cases.

The fact that ERA and both the URA-based schemes (i.e., SWPF-URA
and WSPF-URA) exhibit relatively high blocking probability even when
the network is unloaded begs some explanation. When λ = 0.1, in fact,
a back-of-the-envelope computation is enough to convince the reader that
the probability that the network is empty at the time of a flow request is
more than 90%3. For ERA, the high blocking probability is likely due to

2Note that, even in overload conditions, our schemes never fall behind the others, and
they sometimes exhibit differences that are significant, though harder to observe in a
logarithmic plot: for instance, in the AttMPLS plot with λ = 100, MISOCP blocks 45%
of the flows, and TPH 52%, whereas ERA and SWPF-URA block 59% (i.e., 31% more
than MISOCP), and WSPF-URA blocks 72% (i.e., 60% more).

3In fact, at least for sufficiently low blocking probabilities, the system can be modeled
as an M/M/∞ queue, hence the probability that an incoming request finds the system
empty is e−λ/µ = 0.904.
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Table 2: Additional data for two network topologies at λ = 0.1.
Abilene DeutscheTelekom

blocking probability 0.07% 0.24%
% of unequal alloc. 5.74% 23.13%
avg. Jain’s fairness index 87.5% 82.4%
avg. path length 2.51 2.99
avg. path l. of SWPF 2.23 2.54

Table 3: Occurrence of URA at various loads
λ Abilene DeutscheTelekom

0.1 5.81% 23.13%
1 7.98% 23.08%

10 27.66% 37.56%
100 68.63% 72.90%

the fact that a path—with the same rate at all nodes—having the requested
delay may not exist at all. This is confirmed by the data in Table 2, that
complement some of those in Figure 3. For instance, in the DeutscheTelekom
topology, ERA fails 23% of the times, whereas MISOCP (which instead
exhibits a negligible blocking probability) allocates rates unequally 23.13%
of the times. This number is almost equal to the blocking probability of ERA
at the same load. The same happens with the Abilene topology. Note that,
when MISOCP allocates unequal rates, these are generally quite different:
this is testified by the relatively low value of Jain’s fairness index in Table 2,
computed only on the paths where rates are allocated unequally. Table 3
reports the occurrence of unequal rate allocations as a function of the load:
as the load increases, the number of times where delay bounds are met
by harvesting rate where it is available increases as well. As far as rate
allocation is concerned, Figure 4 reports the cumulative distribution function
of the ratio of the average reserved rate along the path to the flow’s rate ρ,
for all the algorithms being evaluated. The figure shows that, for MISCOP
and TPH, a rate equal or very similar to ρ is allocated roughly 10% of
the times, and the median reserved rate is five times the flow’s rate. The
correlation between the path length (which is between one and six hops
in this case) and the overprovisioning is slightly positive, i.e. 0.2. In any
case, all the algorithms tend to exhibit a similar overallocation behavior,
with WSPF-URA overallocating more heavily, due to the fact that it favors
longer paths, hence needs to compensate for larger link-dependent delays
(i.e,. propagation and transmission). The fact that ERA appears to be
more thrifty than MISOCP with rate allocation, albeit by a very low margin,
should not overshadow the hundredfold difference in the blocking probability
between the two.
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The Sago topology deserves an ad hoc interpretation: since the edge
links in the spokes of its extended star have the lowest capacity (1Gbps),
any request having one edge node as an endpoint can only be accommodated
with ERA if 1Gbps is a large enough rate to guarantee the requested delay
(which is seldom the case). This shows that, unlike what stated in [16, 17],
assuming equal rate allocation does impair effective resource allocation, even
in this extreme case where path computation is instead unaltered. The Sago
example provides the blueprints for understanding the high failure proba-
bility in other networks. Indeed, one can expect that most networks have
a reasonably well-meshed core served by high-bandwidth links surrounded
by peripheral lower-bandwidth links, as shown in Figure 5. It may then
well happen that all possible paths between a given s-d pair (filled nodes in
the figure) have a relatively long segment in the core part of the network,
where high (residual) capacities are available (thick lines in the figure), but
must traverse at least one low-capacity link (thin lines in the figure). As
in the Sago example, the ERA assumption forces all the links in the path
(dashed in the figure) to receive the same low rate dictated by the bot-
tleneck low-capacity link, which may well result in the inability to satisfy
the delay constraint; however, allocating substantially higher rates on the
(many) high-capacity links may significantly reduce the delay experienced
there, and therefore allow the flow to meet its deadline.

As far as URA-based schemes are concerned, the high blocking proba-
bility can be due to the fact that the shortest-widest (resp., widest-shortest)
path may not be the optimal choice, i.e., computing path and resources dis-
jointly is generally unadvisable. This is confirmed by the data in Table 2,
where it is shown that MISOCP may compute longer paths than SWPF-
URA (e.g., in the DeutscheTelekom topology). Note that in the Sago topol-
ogy URA-based schemes perform exactly like MISOCP and TPH, since there
is only one path between two endpoints, and unequal resource allocation is
solved optimally. More in general, in roughly half the cases, URA-based
schemes outperform ERA, often by a large margin.

Average computation times are shown in Figure 6. The figure shows that,
in our implementation, ERA is by far the fastest scheme; its computation
time increases with the load, showing that it becomes increasingly difficult
to find a resource-constrained path when the network is saturated. The
computation time for both URA-based schemes is around 10ms, and it is
weakly dependent on the topology. This is due to the fact that SWPF
and WSPF schemes do not allocate resources, and complete within short
times over all the topologies we tested. On the other hand, the size of the
SOCP solved for resource allocation depends on the length of the selected
path (rather than on the size of the topology), and the latter is small in
general, hence not overly different from one topology to the other. Finally,
both schemes exhibit a decreasing trend with the load, which is due to
the fact that the optimization problem becomes unfeasible at high loads,
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and general-purpose solvers often detect unfeasible problems faster than
they solve feasible ones of the same size; this is also confirmed by the fact
that computation times are flatter in more connected networks. It should
be remarked that our implementation of the URA-based schemes could be
made faster by employing the technique of [16, 17] instead of a general-
purpose solver to solve the resource-allocation problem for the fixed path;
this might easily make them competitive with ERA efficiency-wise, although
it would do nothing to ameliorate the effectiveness gap w.r.t. MISOCP. The
exact approach is the most costly, which was expected; however, the order
of magnitude of computation times is indeed affordable, being in the tens of
milliseconds. Computation times do depend on the topology, which again
could be expected, and specifically on both its connectedness and dimension
(the former being more revealing of the size of the solution space than the
latter); the decreasing trend with the load can be explained in the same
terms as for URA-based schemes. Finally, TPH is indeed more efficient
than MISOCP, achieving times often close —and sometimes inferior — to
those of URA-based schemes while resulting in a comparatively much smaller
blocking probability. The improvement brought about by TPH is due to the
fact that, in most cases, the optimal solution is indeed one where all the
rates are equal (see again Table 2), hence the ERA part does find it in very
little time.

The above results seem to indicate that MISOCP (or TPH in its stead)
can be successfully used when path computation needs to be done in real
time, in highly dynamic environments. To further examine the feasibility
of this approach from the efficiency standpoint, Figure 7 reports box plots
of the computation times of MISOCP in two of the largest topologies (bot-
tom/top whiskers are at the 5th and 95th percentile respectively); these
results are typical for all the topologies, hence the other graphs need not be
reported. The figures show that the distribution of the computation times
is narrow, and that they depend weakly on the load, which indicates that
MISOCP has a predictable performance.

In the same vein, Figures 8 and 9 examine the impact of the burst σ on
both the blocking probability and the computation time (for the two largest
topologies, namely Iris and Tw; however, once again these results are typ-
ical). In both figures we vary the burst in {1, 3, 10} times the MTU, with
β = 0.2; as the burst increases, the requested rate at each link increases
as well, which makes path computation harder. The blocking probability is
hardly at all influenced by the size of the burst, as shown in Figure 8, mean-
ing that MISOCP finds a way to accommodate larger bursts in the network;
this comes at the price of slightly more involved computations, as shown in
Figure 9 (although in all cases the running time tends to decrease with the
load. We performed analogous experiments varying the requested deadline,
i.e., β ∈ {0.5, 1.0}: the effect is similar to varying the burst although in the
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opposite direction, since a higher β implies a smaller allocated rate on aver-
age. The results are analogous but the differences are even less noticeable,
since the deadline is extracted randomly within an interval, hence we omit
the corresponding graphs.

6 Conclusions

In this paper we have shown that optimal joint path computation and rate
allocation, under worst-case delay constraint, appears to be a promising
approach. Indeed, while the problem is NP-hard, it can be solved in split-
second time for today’s networks on off-the-shelf hardware and using general-
purpose tools, provided that an appropriate mixed-integer second-order cone
formulation is employed. The approach is much more effective, in terms
of blocking probability, than alternative polynomial-time schemes relying
on either equal rate allocation, or disjoint path computation and (possibly
unequal) rate allocation, even in unloaded networks. This appears to be due
to the following facts:

• Meeting stringent deadlines requires allocating large rates, possibly
much larger than the flow’s minimum requirement. When a path must
traverse bottleneck links (e.g., network edges), equal rate allocation
poses too high a demand on the bottlenecks, which makes the com-
putation unfeasible, while our scheme can circumvent the problem by
allocating higher rates in the core than at the edges.

• When path computation is resource-agnostic (e.g., shortest-widest-
path-first), there is a high chance that the paths thus computed will
be proved unfeasible when the problem of resource allocation on these
paths is subsequently tackled.

Besides solving the problem optimally, we have shown that there is space
for further exploring tradeoffs between computation times and path compu-
tation accuracy; for instance, a simple heuristic trades very little accuracy
for almost an order of magnitude of computation time.

There are several directions for future work, some of which are actively
being pursued at the time of writing. First, there is clearly further space for
improvement in the efficiency of the SFSP-DCR solution. Indeed, while the
tight MISOCP formulation already provides pretty reasonable solution times
when general-purpose solvers are used, special-purpose solution techniques
may significantly improve upon this; in that respect, Lagrangian-based so-
lution algorithms appear to be a promising idea.

Second, having established that optimal joint path computation and
resource allocation is a viable option, it would be interesting to examine
whether and how different objective functions (e.g., weighted rate sums,
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maximization of the min rate along a path, etc.) impact the effectiveness
and efficiency of path computation.

Third, this work considers only WFQ scheduling at the nodes. Commer-
cial routers also implement other, simpler scheduling algorithms, e.g. vari-
ants of Deficit Round Robin [46], or WFQ approximations, e.g. QFQ [34].
In the former, latency depends on several parameters, such as the number
of flows traversing a link and their bandwidth, whereas in the latter the
latency is higher than in WFQ and generally a non-convex function of the
rate. Solving the SFSP-DCR problem with such schedulers is likely to be
considerably more difficult, due to the different latency expression; further-
more, they may require more resources than WFQ to guarantee the same
delay bound. It thus becomes interesting to assess what you pay for having
simpler schedulers (e.g., higher path computation complexity, higher block-
ing probability, or both).

Finally, it would also be interesting to investigate the multipath exten-
sion of the present work; to the best of our knowledge, multipath delay-
constrained routing is in fact, as of today, unexplored.
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Figure 3: Blocking probability for all topologies, β = 0.2 and σ = 3 MTU
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Figure 4: CDF of the overprovisioniong ratio in the DeutscheTelekom net-
work, λ = 0.1.

Figure 5: Pictorial representation of a prototypical failure case for ERA.
The thickness of a link is indicative of its capacity.
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Figure 6: Average computation times
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Figure 7: Boxplot of computation times of MISOCP, AttMpls (left) and
DeutscheTelekom (right) networks
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Figure 8: Blocking probability as a function of the burst, in the Iris (left)
and Tw (right) networks.
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Figure 9: Average computation time as a function of the burst, in the Iris
(left) and Tw (right) networks.
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