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Abstract

Background—Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome 

wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the 

biology underlying the disease we extended these genetic data in a pathway analysis.

Methods—The ALIGATOR and GSEA algorithms were used in the IGAP data to identify 

associated functional pathways and correlated gene expression networks in human brain.

Results—ALIGATOR identified an excess of curated biological pathways showing enrichment 

of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after 

multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol 

transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene 

expression analysis identified four significant network modules, all related to the immune 

response (corrected p 0.002 – 0.05).

Conclusions—The immune response, regulation of endocytosis, cholesterol transport and 

protein ubiquitination represent prime targets for AD therapeutics.
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Background

Alzheimer's disease (AD) affects over 5M Americans: one in eight over the age of 65 and 

represents >60% of the 6M dementia cases in Europe[1-3]. It is the commonest cause of 

dementia and imposes a large socioeconomic burden on individuals, their families and 

society. Prevalence is estimated to treble by 2050: thus understanding the mechanisms 

underlying this disease and developing treatments for it are essential. This study utilises the 

largest GWAS sample yet assembled for late-onset AD[4], and is the first to combine 
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GWAS and expression data in a systematic search for the biological pathways underlying 

the genetic susceptibility to this disorder.

Much of our current understanding of the mechanisms that contribute to AD derives from 

the genetics of Mendelian forms of the disease: mutations in APP, PSEN1 and PSEN2 cause 

early onset forms of AD and underpin the amyloid cascade hypothesis[5]. While amyloid 

deposition is diagnostic of AD, its aetiological contribution to the majority of common late 

onset AD (LOAD) is unclear and therapeutic strategies addressing the amyloid cascade 

hypothesis have been unsuccessful[6]. Therefore other therapeutic avenues must be 

identified and targeted.

LOAD is genetically complex with 56-79% heritability[7]. In the Genetic and 

Environmental Risk in Alzheimer's Disease (GERAD) dataset[8] approximately 20% of the 

total trait variance was accounted for by SNPs on the GWAS chip outside the APOE 

region[9], with the e4 allele of the apolipoprotein E gene[10] accounting for a similar 

amount[9, 11]. However, a substantial proportion of the genetic variance of late-onset AD is 

not accounted for by the 20 susceptibility genes currently identified[11]. The remaining 

genetic variance is likely to be due both to susceptibility genes of small effect which current 

sample sizes are insufficient to detect, and to rare variants, such as the coding variants in 

TREM2[12], that are poorly tagged by common variants in GWAS panels. In addition, 

individual genome-wide signficant genes identified in such studies may themselves not form 

good therapeutic targets and the areas of biology that they highlight may only give a partial 

view of the potential therapeutic landscape. In order to gain the maximum useful 

information about causative pathways that may underpin LOAD and be prime targets for 

pharmaceutical intervention we performed a robust pathway and integrated gene expression 

analysis using the largest available GWAS for AD[4].

Methods

Samples and genetic data

The sample comprised 17,008 AD cases and 37,646 control subjects in the primary GWAS 

analysis, with 8,752 AD cases and 11,312 control subjects in the replication/extension 

sample and is described in detail elsewhere[4]. Only selected SNPs were genotyped in the 

replication/extension sample (see Online Methods).

Pathway analyses—We explored whether particular biological pathways were enriched 

for genetic associations[13-14]in the IGAP data[4]. We used ALIGATOR[13-14], to test 

whether genes containing signals below the genome-wide significance threshold contribute 

to a pathway signal. ALIGATOR defines significant genes as having a best single-SNP p-

value less than a pre-set threshold. The resulting list of significant genes is compared to 

replicate gene sets generated by sampling SNPs randomly (thereby correcting for gene size). 

The method also controls for linkage disequilibrium between genes, and multiple testing of 

non-independent pathways (see Online Methods). Brown's method [15] was used to test 

pathway enrichment in the replication data. This method combines multiple SNPs together, 

explicitly correcting for both LD between SNPs and number of SNPs per gene (see Online 

Methods). Thus, correction for gene size was applied at both stages of the analysis. We 
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interrogated the externally curated gene ontology (GO), KEGG and MSigDB functional 

pathway collections (see Online Methods).

Expression correlation analyses—We used the expression data from Gibbs et al.[16] 

and performed weighted gene correlation network analysis (WGCNA) using the WGCNA 

package[17], separately on each tissue type to identify clusters of highly correlated genes 

called ‘modules’. These modules were then tested for enrichment of GWA association signal 

in ALIGATOR.

Results

The sub-genome-wide significant variation in the IGAP data contains genetic signal, 

manifest by a significant excess of SNPs at all significance threshold up to p = 0.05 

(Supplementary Table 1). This signal is unlikely to be due to uncorrected stratification, since 

each of the individual Caucasian GWAS samples in the IGAP meta analysis was corrected 

for ethnic variation using principal components[18].

We first identified a significant excess of biological pathways enriched for association signal 

in the IGAP data (Table 1, Supplementary Table 2). Using the most significant 18,472 SNPs 

(p < 8.32 ×10-4) from IGAP[4], covering the top 5% of genes, 177 significantly enriched 

(p<0.01) curated pathways were identified by ALIGATOR. To ensure that the excess of 

pathways was not an artifact of LD with genes of strong effect, we performed secondary 

enrichment analyses removing all genes that lay in the LD region of APOE or any of the 

genome-wide significant (GWS) genes from the IGAP[4] study. A significant excess of 

enriched pathways remained (Table 1), showing that the pathways showed significant 

enrichment independent of the “known” AD genes. Likewise, a significant excess of 

enriched pathways was observed when the p-value criterion for defining significant SNPs 

and genes was varied (Supplementary Table 3).

Many of the 177 pathways with p<0.01 in ALIGATOR are still significantly enriched after 

removing the APOE region and genes within 1Mb of a genome-wide significant SNP (Table 

2, Supplementary Table 4). They remain significantly enriched under a range of p-value 

criteria for defining significant SNPs, and are also significant under a GSEA analysis 

[19-20]. This robustness to analysis parameters and methods gives confidence that the 

enrichments observed by ALIGATOR are genuine. Of the 177 pathways significant at 

p<0.01 in the ALIGATOR analysis of the IGAP GWAS, 119 are significant (p<0.05) in the 

replication sample. This is more than expected by chance (see Online Methods), a further 

confirmation that the pathways highlighted by the ALIGATOR analysis contain genuine 

signals. Notably, pathway SNPs had significantly lower replication p-values than non-

pathway SNPs even after correcting for their p-value in the original IGAP GWAS (2-sided 

p=0.0237, see Online Methods). Thus, the pathway analyses highlighted which among a set 

of associated, but not genome-wide significant, SNPs are likely to replicate and therefore be 

enriched for true signals. To obtain the most strongly enriched pathways in the entire 

dataset, the p-values from the ALIGATOR analysis were combined with those from the 

replication study using Fisher's method and corrected for multiple testing of 9,816 pathways 

using Sidak's formula. Forty-five pathways were significant after multiple testing correction 
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(Sidak p<0.05) in the combined dataset. These pathways are shown in Table 2, grouped into 

clusters by gene membership, such that pathways with more than 40% of genes in common 

are gathered in a cluster.

This multiple testing correction may be considered conservative since it assumes that the 

pathways are independent, whereas in fact there is considerable genic overlap between them. 

Sidak-corrected p-values for the combined IGAP GWAS and replication datasets are 

therefore given in Supplementary Table 4 for all 177 pathways significant at p<0.01 in the 

ALIGATOR analysis of the IGAP GWAS. Redundant pathways (i.e. those with high genic 

overlap with other pathways) were not pruned from our analysis since it is not clear a priori 

which pathways will give the most significant enrichment and should thus be retained. 

Pruning a posteriori (i.e. by choosing the most significant pathways) will bias the 

significance of the combined discovery and replication p-values (making the correction for 

multiple testing of pathways anticonservative). The pathway clusters given in Table 2 and 

Supplementary Table 4 are intended to aid interpretation of our results in light of shared 

gene membership between pathways, by highlighting areas of biology rather than individual 

pathways.

The clusters of multiple pathways were related to the broad categories of immune response, 

regulation of endocytosis, cholesterol transport, protein ubiquitination and clathrin, with the 

first three of these being particularly strongly enriched for signal. Since one would expect 

SNPs showing strong association to be significant upon replication regardless of biology, the 

analysis was repeated removing genes containing a genome-wide significant SNP in the 

IGAP GWAS from the analysis of the replication data. From Table 2 it can be seen that the 

immune-related and ubiquitination pathways are still highly significant. Sidak-corrected p-

values for all 177 pathways significant at p<0.01 in the ALIGATOR analysis are shown in 

Supplementary Table 4. The relationship between the enriched pathways is shown by their 

shared gene membership (Figure 1). Table 3 lists genes in the clusters identified in Table 2 

that are counted as significant (best single-SNP p<8.32×10-4) in the ALIGATOR analysis of 

the IGAP GWAS and also gene-wide significant (gene-wide p<0.05) in both the IGAP 

GWAS and the replication data. P-values for all genes counted as significant in the 

ALIGATOR analysis from the 177 pathways enriched at p<0.01 are given in Supplementary 

Table 5.

In contrast to ALIGATOR, GSEA uses all genes (rather than using a threshold) and weights 

these by their significance, so may highlight different biological signals. We therefore 

performed a secondary analysis of all pathways using GSEA. Pathways significant under 

GSEA but not ALIGATOR are shown in Supplementary Table 6. Most of these pathways 

relate to areas of biology already highlighted in the ALIGATOR analysis, the exceptions 

being synapse, neuronal differentiation and calcium signalling (Supplementary Table 6). 

Genes contributing to these pathway signals that are significant in both the IGAP GWAS 

and the replication study are listed in Supplementary Table 7. Notably, these pathways 

contain large genes. In addition to the differences between ALIGATOR and GSEA 

described above, the Simes correction for gene size used by GSEA is less stringent for large 

genes than that used by ALIGATOR, thereby explaining the discrepancy in the results 

between the methods.
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In the ALIGATOR analysis 73.2% of the top 5% of genes mapped to a pathway, leaving a 

substantial minority of genes unannotated: in addition many annotated genes may possess 

other functions not currently annotated. Genes with correlated expression patterns display 

functional similarities and Zhang et al.[21] highlighted modules of co-expressed genes as 

being important in the aetiology of LOAD. Therefore, in order to overcome the annotation 

gap and access biologically related signal across the entire genome, we created modules of 

brain co-expressed genes and tested them for enrichment of association signal in the IGAP 

GWAS. The dataset we used consisted of gene expression data from four brain regions in a 

sample of approximately 150 control brains[16], and was independent from that used by 

Zhang et al.[21]. We used control individuals rather than AD cases so that correlations 

between expression levels would not be confounded by neuron loss. A weighted gene 

correlation network analysis (WGCNA)[17] gave 117 modules of co-expressed genes in 

these data (see Online Methods and Supplementary Table 8): these 117 modules were tested 

for enrichment of association signal in the IGAP GWAS using ALIGATOR. Four modules 

were found to be significantly enriched after correcting for multiple testing, and these 

enrichments were robust to varying p-value criteria and analysis methods (Supplementary 

Table 9). The four significantly enriched modules, one from each brain region, are all related 

to the immune response and have overlapping gene membership (Figure 2).

The extent to which the overlap in gene membership between these modules is related to the 

GWAS signal was investigated by examining genes that occurred in multiple modules and 

testing these for enrichment using ALIGATOR and GSEA (Supplementary Table 10). It can 

be seen that the set of 151 out of 294 genes that are present in two or more modules 

consistently showed the most significant enrichment of IGAP signal across a variety of test 

criteria. Conversely, the set of 143 genes present in only one module showed no significant 

enrichment for association signal, highlighting the utility of using multiple datasets to 

produce meaningful co-expression modules. Figure 2 shows the strongest correlations (>0.9 

in at least one brain area) between the 151 genes present in two or more modules. It can be 

seen that the TYROBP gene highlighted by Zhang et al.[21] as an important causal regulator 

is also a hub gene in this network. Pathways significantly enriched in the 151 genes present 

in two or more modules are shown in Figure 2, clustered by gene membership. Many of the 

enriched pathways are immune-related, but some are related to fatty acid metabolism and 

lipoprotein, further corroborating the results of our analysis of the IGAP GWAS data. A list 

of the 151 genes is shown in Supplementary Table 11.

We also directly tested the modules described by Zhang et al.[21] for enrichment of 

association signal in the IGAP GWAS data (Supplementary Table 12). No single module 

was significantly enriched after correction for multiple testing of modules (“corr p” <0.05), 

but the most significantly enriched modules are immune-related. Interestingly, the immune/

microglia module highlighted by Zhang et al.[21] (#1, yellow) did not show significant 

enrichment for association signal in the IGAP GWAS under ALIGATOR analysis, although 

it did show moderate enrichment under GSEA. However, the 108 genes common both to 

this module and the set of 151 genes present in two or more of the four most significantly 

enriched modules in our analysis do show enrichment, which becomes progressively more 

significant as increasingly stringent criteria are used to select significant SNPs and genes 

(Supplementary Table 13). The genes that are in the Zhang module but not our set of 151 
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genes show no significant enrichment for association signal under either ALIGATOR or 

GSEA analysis.

Discussion

This analysis reveals pathways aetiologically related to AD in addition to those identified 

previously[14, 22]. The current sample[4] is larger than any used before and was imputed on 

a dense reference panel, giving improved gene coverage, and is therefore likely to be more 

powerful to detect real associations than any previous study. A larger set of pathways has 

been analysed than previously and annotations have changed, so gene membership of 

pathways is not identical to previous studies, though a substantial proportion of genes still 

fall into the annotation gap and are not currently mapped to any pathway. In the current 

analysis we also clustered genes that were within 1Mb of each other together in 

ALIGATOR, to prevent counting a single signal more than once. Secondary analyses were 

also performed removing genes in the APOE LD region and within 1Mb of the GWS genes. 

This was done to prevent pathway enrichments being biased by LD between pathway genes 

and neighbouring genes of strong effect, and to test whether there were significant pathway 

enrichments independent of “known” AD genes. Such enrichments would increase the 

interest of novel pathways and genes highlighted by the main analysis Despite these 

differences, many of the pathways previously identified[14] show enrichment in the IGAP 

dataset (Supplementary Table 14). These include cholesterol transport, immunity and the 

synaptic transmission, cholinergic pathway, the latter being the target of the cholinesterase 

class of drugs widely used in AD.

We used both GWAS and expression data to detect functional pathways associated with AD. 

ALIGATOR analysis of combined IGAP-GWAS and replication samples highlights four 

main areas of biology: the immune response, regulation of endocytosis, cholesterol transport 

and protein ubiquitination. The immune response is particularly significant in the replication 

sample, even when GWS genes from the IGAP GWAS are excluded. The replication SNPs 

were not chosen for pathway membership and do not survey the genome randomly, so the 

lack of significance in some pathway clusters once the GWS genes are removed does not 

mean that there is no excess signal in these pathways: this may simply not have been 

measured. However these data indicate that further genes that are involved in the immune 

response are likely to be implicated in LOAD. Both regulation of endocytosis and 

cholesterol transport are functions also implicated by the genome-wide significant genes, 

while the immune response and protein ubiquitination contain fewer genome-wide 

significant signals[4]. The most significant signals in the GSEA analysis relate to the same 

biology but add some additional categories related to neurological biology including the 

synapse and neuronal projection development along with calcium-related signalling, not 

revealed by ALIGATOR. It is notable that these areas of biology are linked by common 

gene membership (Figure 1) and their interdependence may also be important in 

susceptibility to AD.

The additional immune response genes implicated in cluster 1 (Table 3) are plausible AD 

risk genes: CR2 encodes complement receptor 2 which is present on subsets of B-cells as is 

the GWS CR1. HLA-DQB1 is in the chromosome 6 HLA locus in common with several 
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GWS loci. INPP5D is genome-wide significant once replication analyses are taken into 

account[4]. As well as being annotated as having immune system activity, ADAM10 has 

been proposed as a candidate α-secretase that cleaves APP to prevent the production of β-

amyloid[23]. The protein ubiquitination cluster 5 (Table 3) includes two ATPase subunits of 

the 19S proteasome, PSMC3 and PSMC6, and three proteins involved in transcriptional 

control, POLR2E, SUPT4H1 and TAF6. CNN2, encoding calponin 2, thought to regulate the 

actin cytoskeleton[24] appears in the endocytosis cluster, though it can also regulate 

phagocytosis in macrophages[25]. The additional genes from GSEA include CHRNA2 

encoding the neuronal cholinergic receptor, nicotinic, alpha 2 and RAPSN, the receptor-

associated protein of the synapse, both of which appear in the synaptic transmission, 

cholinergic pathway (Supplementary Table 13). CAV1 encodes caveolin 1 which can 

interact with APOE[26] and is found in caveolae, areas of cholesterol-rich lipid raft involved 

in endocytosis. CACNA1D encodes the calcium channel, voltage-dependent, L type, alpha 

1D subunit, one of a series of alpha subunits that confer channel-specific properties, 

influences insulin secretion and is a risk gene for type 2 diabetes[27]. Finally, APP itself is 

highlighted in this analysis: it is annotated in both the synapse and neuronal clusters. Recent 

findings show that there is at least one rare protective coding variant in APP seen in late 

onset AD[28] and this signal may reflect this or other relatively rare variants.

Convergent evidence for the importance of the immune response in AD susceptibility was 

obtained by performing WGCNA on expression data from four brain regions. The four 

modules that were significantly enriched for association in the IGAP GWAS after multiple 

testing correction were all related to the immune response, and shared multiple genes in 

common: INPP5D is GWS[4] and was the only GWS gene found in these modules. The 

enrichment for association was driven by genes that occurred in two or more of these 

modules. None of the modules from Zhang et al.[21] was significantly enriched for genetic 

association after multiple testing correction, though the immune-related modules in their 

study gave the strongest signal. However, while the microglia module highlighted by Zhang 

et al.[21] did not show significant enrichment for association, the genes shared in common 

with our signficant expression modules did, highlighting the utility of using multiple 

expression datasets in generating biologically-meaningful modules. The TYROBP gene 

highlighted by Zhang et al. as an important causal regulator is also a hub gene in this 

network[29].

Regulation of endocytosis, cholesterol transport and ubiquitination were not strongly 

represented in our WGCNA modules, which may relate to the large size of the modules and 

the use only of brain gene expression. In addition, co-ordinated gene expression in brain 

may well reflect differences in distribution of specific cell types or sub-types[30]. The brain 

expression signatures we used came from non-neurologically compromised brains but it is 

likely that changes in microglial composition or fate in response to inflammation or 

infection in these subjects could propagate such co-ordinate changes in gene expression. 

TREM2 is one of the 151 genes that occur in two or more expression modules (Figure 2) 

and rare variants in TREM2 are associated with a significant increase in AD 

susceptibility[12]. TREM2 regulates the phenotype of microglia controlling their 

downstream activation to an inflammatory or phagocytotic fate, thought to promote or 
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inhibit AD pathogenesis respectively[31]. Thus the expression signature we detect through 

genome–wide association may also be a marker for changes in microglial phenotypes that 

act to enhance or inhibit the susceptibility of individuals to AD.

As the main motivation for genetic analysis of complex traits is to understand the biology of 

disease and inform the search for treatments, interpretation of genetic signals in a 

biologically meaningful way is essential. Pathway analyses that integrate multiple dense 

sources of data provide a means of starting to do this. Identifying strong susceptibility 

targets also highlights potential drug targets. While expression analyses alone can provide 

important clues about aetiology of disease, integrating them with genetic data which identify 

causative factors underlying susceptibility to disease ensures that the gene expression 

signatures revealed are related to disease aetiology rather than secondary effects, making the 

pathways highlighted by the analysis primary targets for therapy. This study implicates 

regulation of endocytosis and protein ubiquitination, in addition to cholesterol metabolism, 

as potential therapeutic targets in AD. It strongly reinforces the critical role of the immune 

system in conferring AD susceptibility: gaining a detailed mechanistic understanding of the 

events within the immune system that predispose to AD and investigating how to address 

these mechanisms should now be a priority for AD research.

Online Methods

IGAP meta-analysis data—The main dataset was reported by the International 

Genomics of Alzheimer's Project (IGAP) consortium[4] and consists in total of 17,008 cases 

and 37,646 controls. The full details of the samples and methods for conduct of the GWA 

studies are provided in the respective manuscripts[4, 8, 22, 37-39]. This sample of AD cases 

and controls comprises 4 data sets taken from genome-wide association studies performed 

by GERAD, EADI, CHARGE and ADGC[40].

Each of these datasets was imputed with Impute2 software using 1000 genomes data (release 

Dec2010) as a reference panel. In total 11,863,202 SNPs were included in the SNPs allelic 

association result file. To make our analysis as conservative as possible, we only included 

autosomal SNPs which passed stringent quality control criteria, i.e. we included only SNPs 

with minor allele frequencies (MAF) ≥0.01 and INFO score greater than or equal to 0.8 in 

each individual study, resulting in 7,055,881 with SNPs which are present in at least 40% of 

the AD cases and 40% of the controls in the analysis. We corrected all individual SNPs p-

values for genomic control (GC) λ=1.087. These SNPs are well imputed on a large 

proportion of the sample, which increases confidence in the accuracy of the association 

analysis upon which the pathway and gene-wide analyses are based.

Replication data—11,632 SNPs with p-values <10-3 in the IGAP meta-analysis were 

successfully genotyped in a replication sample comprising 8,492 cases and 11,392 controls 

(see primary IGAP manuscript[40] for more details).

Assignment of SNPs to genes—SNPs were assigned to genes if they were located 

within the genomic sequence lying between the start of the first and the end of the last exon 

of any transcript corresponding to that gene, as defined by NCBI. The chromosome and 
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location for all currently known human SNPs was taken from the dbSNP132 database, as 

was their assignment to genes (using build 37.1). In total, we retained 2,804,431 (39.7% of 

the total) SNPs which annotated 28,636 unique genes with 1-16,514 SNPs per gene. 

Pathway analyses were also performed using 10kb and 60kb windows around genes to 

assign SNPs to genes.

Assignment of genes to functional gene sets—Genes were assigned to a series of 

functional gene sets defined by five independent sources: 1) Gene ontology (GO) [41] 

(http://www.geneontology.org/; downloaded 11/6/2011), 2) Kyoto Encyclopedia of Genes 

and Genomes (KEGG) [42] (http://www.genome.jp/kegg/; downloaded 27/6/2011), 3) the 

“canonical pathways” collection from the Molecular Signatures Database v3.0 (MsigDB) 

(http://www.broadinstitute.org/gsea/msigdb/index.jsp) accessed on 2/2/2011. We restricted 

our analysis to a total of 9,816 functional gene sets containing between 3 and 500 genes: 

8,888 in GO, 234 in KEGG and 694 in MsigDB.

Statistical analysis

Gene-wide significance—Gene-wide significance was calculated by combining single-

SNP p-values while controlling for LD and different number of marker's per gene using 

Brown's method[15] adopted for set-based analysis of genetic data[43].

ALIGATOR analysis—ALIGATOR was then used to test the list of gene-wide 

significance measures for enrichment within functional gene sets as previously described in 

Holmans et al.[13]. Unlike methods designed for gene-expression data (where there is 

typically only one measurement per gene), ALIGATOR corrects for variable numbers of 

SNPs per gene. ALIGATOR takes a list of significant SNPs and coverts this into a list of the 

genes in which these SNPs lie. Each gene is counted once regardless of how many 

significant SNPs it contains, thus eliminating the influence of linkage disequilibrium (LD) 

between SNPs within genes Replicate gene lists of the same length as the original are 

generated by randomly sampling SNPs (thus correcting for variable gene size). The lists are 

used to obtain p- values for enrichment for each gene set, to correct these for testing multiple 

non-independent gene sets, and to test whether the number of significantly enriched gene 

sets is higher than expected.

To minimise the possibility of multiple significant genes in a pathway that are close together 

reflecting the same association signal due to LD, we conservatively grouped significant 

genes that were <1Mb apart and located in the same functional gene set into one signal. To 

remove the possibility of a small gene set being deemed significantly enriched based on just 

one signal, we only classed gene sets as being enriched if they carried at least two signals

To assess the potential of any bias caused by LD with strong association signals that had 

been previously identified in these samples, we also performed ALIGATOR analysis after 

excluding three sets of genes: a) all genes within 1Mb of APOE (77 genes), b) all genes 

within 1 Mb of APOE and the 21 genes containing a SNP reaching genome-wide 

significance (p<5×10-8) in the IGAP meta-analysis (98 genes) c) all genes within 1Mb of 

APOE or any of the 21 genome-wide significant genes (552 genes). The same p-value 

criteria for defining significant SNPs are used for all these analyses.
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Definition of significant SNPs and genes for ALIGATOR—ALIGATOR requires 

that a set of significant SNPs are chosen to define the list of significant genes used to 

determine pathway enrichment [13]. As the genetic signal extends beyond the genome-wide 

significant genes (Supplementary Table 1), the p-value cut off used to select these SNPs 

should be fairly lax. For our primary analysis, we selected SNPs such that 5% of the genes 

would be deemed significant. When no gene window was used to assign SNPs to genes, this 

required 18,472 SNPs, with a p-value criterion for inclusion of 8.32×10-4. When a 10kb 

window was used to assign SNPs to genes, the SNP p-value criterion required to cover the 

top 5% of genes is reduced to 5.39×10-4, (14,385 SNPs) and using a 60kb window reduces 

the criterion still further, to 1.66×10-4 (7,807 SNPs). Supplementary Table 2 shows the 

number of significantly enriched pathways using each of these windows. It can be seen that 

using a 0kb window gives a more significant excess of enriched pathways than the 10kb or 

60kb windows. Thus, the 0kb window was used for all analyses presented in this paper. To 

ensure that the results of the ALIGATOR analyses are not dependent on the choice of p-

value criterion for defining significant genes, secondary analyses were performed using a 

range of p-value criteria.

Gene-set-enrichment (GSEA) analysis—As a further validation of the ALIGATOR 

results, and to show that the results of our analyses are not driven by the choice of p-value 

cut-off for defining significant genes, gene-set enrichment analysis (GSEA) was performed 

on the gene sets nominally-significant (p<0.05) in the ALIGATOR analyses using the 

method described in[44]. Rather than defining a list of significant genes, GSEA ranks all 

genes in order of a gene-wide association statistic, and tests whether the genes in a particular 

gene set have higher rank overall than would be expected by chance, weighted by the values 

of their gene-wide association statistic (thus giving more weight to significant genes). 

Following Wang and colleagues, in order to allow for varying numbers of SNPs per gene, 

the gene-wide statistic used was the Simes-corrected single-SNP p-value[45]. Since the 

GSEA method is known to be sensitive to very strongly associated genes, the analysis was 

performed removing all genes within 1Mb of APOE, and also the 21 genome-wide 

significant genes.

Clustering of significantly-enriched gene sets—To aid functional interpretation, 

gene sets significantly enriched in the ALIGATOR analysis were assigned to clusters 

according to the genes they contain. This was done as follows: For each pair of gene sets, an 

overlap measure K was defined as the number of genes in common to both sets divided by 

the number of genes in the smaller dataset. A gene set was assigned to a cluster if the 

average K between it and the gene sets already in the cluster was greater than 0.4. If it was 

not possible to assign a gene set to an existing cluster, a new cluster was started. This 

procedure was carried out recursively, in descending order of enrichment significance.

Pathway analysis of replication data—Pathway-wide evidence of association in these 

data was assessed by aggregating the p-values of all SNPs in the pathway using the method 

of Brown. This is a generalisation of Fisher's method for combining p-values in situations 

where the p-values are not independent, and was adapted to genetic association data by 

Moskvina et al. (2011)[43]. LD between SNPs was estimated using the December 2010 
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release of the 1000 Genomes data (the same release that was used to impute the data for the 

IGAP meta-analysis).

The pathways of interest contain several genes with very significant associations in the 

IGAP meta analysis that are also strongly associated in the replication study. Since the 

presence of such genes can give rise to a significant Brown p-value even in the absence of 

signal from the remainder of the pathway, the analysis of the replication data was repeated 

removing all SNPs from genes containing a genome-wide significant (p<5×10-8) SNP in the 

IGAP meta-analysis.

Effect of varying p-value criterion on pathway analysis—A significant excess of 

enriched pathways is still observed (Supplementary Table 3) when the p-value criterion for 

defining significant SNPs (and, thus, genes) is varied. Again, the significantly enriched 

pathways from Table 3 also show significant enrichment over a range of p-value criteria 

(Supplementary Table 4), thus giving extra confidence that the enrichments are genuine, and 

not an artefact of how the significant genes are defined. This is confirmed by observing that 

many of the significantly enriched pathways from the ALIGATOR analysis also have 

significant p-values in the GSEA analysis (Table 3 and Supplementary Table 4).

Replication of pathway analysis results—Further confirmation of pathway 

significance was gained from a replication sample in which a subset of SNPs from the main 

IGAP study (excluding the APOE region) were studied: these showed a significant 

enrichment of association signal in the pathways identified by the pathway analysis of the 

IGAP meta-analysis data. Pathway-wide Brown p-values derived from the replication data 

(see online methods) are given in Supplementary Table 4 for all 177 pathways enriched at 

p<0.01 in the original ALIGATOR analysis. Of these pathways, 119 have a Brown p<0.05 

when all SNPs in the pathway are included, and 97 have a Brown p<0.05 after removal of 

SNPs from genes with a genome-wide significant SNP in the IGAP meta-analysis. These are 

considerably higher than expected by chance, and indicate the presence of genuine AD risk 

variants in these pathways, even outside the “known” AD risk genes.

Genes containing a significant SNP (p<8.32×10-4) in the IGAP meta-analysis that are also 

nominally significant (gene-wide p<0.05) in the replication data are shown in Table 4 for the 

pathway clusters listed in Table 2. Gene-wide p-values for all genes containing a significant 

SNP (p<8.32×10-4) in the IGAP meta-analysis that lie in any of the 177 pathways enriched 

at p<0.01 in the ALIGATOR analysis are shown in Supplementary Table 5.

As a final test of whether SNPs that lie in pathways of interest are enriched for association 

signal in the replication data, a regression analysis of replication p-value on pathway 

membership was performed. Specifically, the 5297 replication SNPs that lay within gene 

boundaries were sorted in order of their IGAP meta-analysis p-value. The list was then 

pruned by removing SNPs within 100kb of a more significant SNP from the IGAP meta-

analysis. This left 730 SNPs. The pruning procedure was carried out to prevent the 

regression analyses being biased by clusters of neighbouring SNPs with similar p-values. Of 

these pruned and filtered SNPs 163 were in the 177 pathways enriched at p<0.01 in the 

ALIGATOR analysis and were found to have significantly lower p-values than the genic 
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SNPs not in the pathways (p=5.57×10-5). However, the ALIGATOR analysis preferentially 

selects pathways enriched for significant SNPs in the IGAP meta analysis and the IGAP 

meta analysis p-value is a highly significant predictor of replication p-value (p<2×10-16). 

While this shows that pathway SNPs are selected from genes that are likely to be true 

positives, in order to demonstrate an advantage of pathway membership (in terms of 

replication p-value) over and above that conferred by being significant in the IGAP meta-

analysis, a linear regression was carried out of –log(replication p) on –log(IGAP meta p) and 

pathway membership simultaneously. Pathway SNPs had significantly lower replication p-

values than non-pathway SNPs even after correcting for IGAP meta p-value (2-sided 

p=0.0237). This provides further evidence of the utility of pathway analysis in highlighting 

true positive signals.

Description of Gibbs expression data—The brain expression data are described in 

Gibbs et al.[16] and the GEO database reference for the dataset is GSE15745.

Description of WGCNA and derivation of co-expressed modules—Present/absent 

calls were made on the dataset by detection p-value. Any single probeset from a sample was 

designated absent with a p-value >0.1. If more than half the probesets in the dataset were 

absent, they were flagged for removal. In addition, a sample was removed if the number of 

missing probesets were above 2 standard deviations from the mean of the dataset. After 

removing probesets with over 50% absence, the remaining data was normalised. The 

influence of age and post-mortem interval (PMI) on the dataset was accounted for by 

performing regression according to these values and taking the residuals.

All arrays were separated by tissue type. Each tissue sample set was further assessed for 

outliers by hierarchical clustering. Any branch of arrays at the top of the dendrogram that 

contained less than 10% of the total number of arrays was removed so that the further 

analysis would not be charactersing these small sub-groups but focus on more global 

patterns of gene expression. This pruning was continued until each of the principal branches 

on the dendrogram contained over 10% of all arrays. The final sample numbers are given in 

Supplementary Table 15.

Weighted gene correlation network analysis was performed in the R environment using the 

WGCNA package[17] and performed separately on each tissue type. The dataset was 

collapsed so that multiple probes were reduced to single gene values based on gene 

annotation of the probesets obtained from Biomart. For duplicate probesets, the largest mean 

value for the sample was selected.

Soft-thresholding powers were selected by plotting a range of candidate powers against 

connectivity measures and observing the values where connectivity began to decrease. 

These all occurred between power values of 6 and 8 for the 4 tissue types. The modules 

were then created with this soft-threshold power (using a minimum module size of 20), and 

the component gene names of the modules extracted. The modules were then tested for 

enrichment for association signal in the IGAP GWAS as pathways in ALIGATOR using the 

same thresholds for defining significant SNPs (p<8.32×10-4) as previously.
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Research in Context

As the main motivation for genetic analysis of complex traits is to understand the biology 

of disease and inform the search for treatments, interpretation of genetic signals in a 

biologically meaningful way is essential. Pathway analyses that integrate multiple dense 

sources of data provide a means of starting to do this. Identifying strong susceptibility 

targets also highlights potential drug targets. While expression analyses alone can 

provide important clues about aetiology of disease, integrating them with genetic data 

which identify causative factors underlying susceptibility to disease ensures that the gene 

expression signatures revealed are related to disease aetiology rather than secondary 

effects, making the pathways highlighted by the analysis primary targets for therapy. This 

study implicates regulation of endocytosis and protein ubiquitination, in addition to 

cholesterol metabolism, as potential therapeutic targets in AD. It strongly reinforces the 

critical role of the immune system in conferring AD susceptibility: gaining a detailed 

mechanistic understanding of the events within the immune system that predispose to AD 

and investigating how to address these mechanisms should now be a priority for AD 

research.
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Figure 1. The pathways highlighted by ALIGATOR ontology analyses are related
The network was generated in ReVIGO[32] using gene ontology processes identified in 

ALIGATOR only. Bubble size (and label font size) reflects the frequency of the GO term in 

the GOA database, bubble colour reflects pathway p-value. Similar GO terms are linked by 

edges (lines) in the network where line width reflects the degree of similarity between 

pathways but line length is arbitrary. Strong relationships are revealed between negative 

regulation of endocytosis and cholesterol transport and many of the pathways are related to 

the immune response process.
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Figure 2. The immune response is enriched in gene co-expression modules from human brain
A Venn diagram indicating the number of genes in common across the four modules that 

were found to be significantly enriched in the IGAP GWAS using ALIGATOR after 

correcting for multiple testing. Each significant module originates from a different brain 

region as indicated here (Cb = cerebellum, FC = frontal cortex, TC = temporal cortex). B 
Network showing the pathways significantly enriched for gene membership among the 151 

genes present in at least two of the four most significantly enriched expression modules: the 

principal biological themes were derived from DAVID[33-34] analysis. Terms from the 

analysis were filtered at 0.05% FDR, progressively clustered according to average gene 

similarity at a threshold of 90% and rendered on Cytoscape with the Enrichment Map 

plugin[35-36]. The diagram shows only the principal (lowest FDR) term for each of the 

clusters and white nodes indicate a single term that does not cluster with other groups. 

Coloured nodes indicate a multi-term cluster: the related terms represented by each node are 

given in C, in increasing significance order. Sources of the functional terms are:

BP = GOTERM_BP_FAT: Gene Ontology biological processes in DAVID's GO Fat 

Database;

CC = GOTERM_CC_FAT: Cellular Component terms in DAVID's GO Fat Database;
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SP = SP_PIR_KEYWORDS: keywords in the Uniprot (Swiss-Prot/Protein Information 

Resource) database

SEQ = UP_SEQ_FEATURE: Uniprot sequence annotation feature.

The full data are available in Supplementary Table 8

D Network showing the strongest correlations in expression (>0.9 in at least one brain area) 

between genes present in at least two of the four most significantly enriched expression 

modules.
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