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Abstract

A one-dimensional model for a narrow ribbon is derived from the plate
theory of Kirchhoff by means of a power expansion in the width variable.
The energy found coincides with the corrected Sadowsky’s energy. Fur-
thermore, we derive the Euler-Lagrange equations and use them to study
an equilibrium configuration of a twisted ribbon. Within this example we
also describe how to construct the fine scale oscillations that develop in
the deformed configuration.

Dedicated to the memory of Walter Noll.

1 Introduction

Geometrically a ribbon is a body with a rectangular parallelepiped configuration
having thickness € much smaller than the width A which, in turn, is much smaller
than the length ¢. Customarily, the theory of finite deformations of an extremely
thin elastic ribbon is studied by associating to the two-dimensional rectangular
region, of width h and length ¢, the Kirchhoff bending energy, [22].

No stretching energy is introduced by assuming the material to be inex-
tensible. This is the starting point of the seminal work of Sadowsky [28, 20].
For h extremely small Sadowsky, in [28], proposed to model an isotropic rib-
bon through a one-dimensional energy that depends on the curvature and the
torsion of the deformed image of the interval (0,¢). Nowadays, this energy is
known as Sadowsky’s energy. A formal justification of the Sadowsky’s energy
was given by Wunderlich [35, 32] also by means of a parametrization of the de-
formed configuration of the ribbon as a ruled surface. His ingenious argument is
more geometrical than mechanical. Interesting generalizations and clarifications
on the argument may be found in [1, 3, 4, 5, 6, 10, 11, 21, 29, 30], moreover a
comprehensive collection of papers on ribbons is [13].
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The deduction of a one-dimensional model for ribbons was recently obtained
by means of I'-convergence in [14] in the isotropic case and in [15] for a gen-
eral material symmetry. The obtained asymptotic energy density turns out to
display two regimes only one of which agrees with the functional proposed by
Sadowsky. Another key difference to Sadowsky’s theory is that the asymptotic
functional does not depend only on the deformation of the midline, but rather
on a curve endowed with a triad of directors satisfying several constraints.

The starting point in [14, 15] was the Kirchhoff bending energy as done by
Sadowsky; in [16] analogous results were obtained starting from von Karman
models. The same asymptotic models found in [14, 15] were also recently ob-
tained from the nonlinear three-dimensional theory of elasticity in [17], i.e., by
letting € and h simultaneously to zero. Other models for ribbons deduced from
the three-dimensional theory of nonlinear elasticity may be found in [18, 19].

The present paper is concerned with the derivation of a ribbon model starting
from the Kirchhoff bending energy. We follow the typical mechanical approach
used to derive plate and rod theories, namely, in our contest, on a power series
expansion in the width variable. The power series of the energy is essentially
truncated at order h%2. The one-dimensional energy obtained depends on the
symmetric tensor K° which represents the second fundamental form of the de-
formed surface restricted to the midline of the ribbon. This line is naturally
endowed with three directors; three of the four components of the tensor K°
may be written in terms of these directors. Moreover the inextensibility of the
ribbon leads to the constraint det K° = 0, among others. Due to this constraint
the energy is not convex and, as a consequence, the energy minimization prob-
lem generally has no solution. Indeed, what may happen is that a minimizing
sequence of isometric deformation may have a limit that does not satisfy the
constraint det K° = 0; this, for instance, happens if the minimizing sequence
develops fine scale oscillations. This difficulty is resolved by using a so-called
relaxed energy in place of the original bending energy. The relaxed energy auto-
matically accounts for the fine scale oscillations and, as a consequence, is defined
also for symmetric tensor having determinant different from zero. Solutions for
which the determinant is different from zero should then be interpreted as the
limit of a sequence of finely oscillating deformations. Of course, microscopic
oscillation effects are expected to be lost for moderately thin ribbons, where the
membrane energy is important, and the ribbon cannot be considered inextensi-
ble. This situation is of no less importance since the competition and interplay
between bending and stretching energy can produce exotic behaviors, such as
for instance temperature-induced sharp shape transitions between helicoidal to
twisted configurations [33, 31, 34].

The theory developed has some analogies with the theory of nets modeled
as a continuum of fibers by Tchebychev and Rivlin [26, 27]. In Tchebychev
nets two families of inextensible cords cross each other without sliding. Pipkin
in [25] observed that the minimization problem may not have a kinematically
admissible minimizer. He therefore introduced the relaxed problem in which
the inextensibility constraint is weakened: the cords can grow shorter but not
longer. He named his model ‘inextensible nets with slack’.



In the case of ribbons the det K°® = 0 constraint is completely absorbed in
the relaxed bending energy density. The model that we obtain coincides with
those found in [14, 15]. Our derivation, contrary to that of Wunderlich [35]
makes no use of ruled surfaces.

The paper is organized as follows. In Section 2 we briefly review the Kirchhoff
theory for plates and in the following section we derive the model for a narrow
ribbon. In Section 4 we explicitly write the bending energy density of the
ribbon. Several results used in this Section are proved in Appendices A.1 and
A.2. The Euler-Lagrange equations are then derived in Section 5. In the last
Section of the paper we study an equilibrium configuration of a twisted ribbon.
This example is particularly interesting since the constraint det K° = 0 does not
hold. We therefore show how to construct a sequence of isometric deformations
whose limit is the equilibrium configuration. In this construction we use, like
Wunderlich, ruled surfaces.

Standard notation is used throughout. Vectors and tensors are denoted in
boldface letters; Latin indices take values in {1,2,3}, while Greek in {1,2}.
We adopt Einstein’s summation convention, and we denote with a dot, -, the
standard inner product and with the wedge, A, the standard cross product. The
transpose of the second order tensor A is denoted by AT, while the cofactor
by A* = (det A)A™" for an invertible matrix A. We recall that if A, B are two
tensors that can be represented by 2 x 2 matrices, then

det(A —B) =det A — A" - B + det B. (1)

Finally, the partial derivative with respect to the variable z; is simply denoted

by 8i~

2 Plate model

We consider deformations of an inextensible elastic plate that initially occupies
a rectangular domain w = (0,£) x (—=h/2,h/2), of length ¢ and width h, in the
x1, %2 plane. Let e,, a = 1,2, be an orthonormal system of base vectors oriented
as the initial domain with e; parallel to the x; axis. Deformations of the plate
are specified by a mapping x that takes the point = of w to the point x(z) of
the three-dimensional space. Let e3 be a unit vector orthogonal to e; and e5 so
that {e;, e, e3} is an orthonormal system of the three-dimesional space. The
vectors e,, a = 1,2, will be considered as two or three components vectors as
convenient; the context should make it clear. The deformation gradient, Vx, is
denoted by F and is represented by a 3 x 2 matrix. Since the plate is inextensible
we have that

Fe, Feg =e, - €, (2)

for a,, B = 1,2. Equivalently, we may write

OaX - 03X = €q - €. (3)



Let n be the unit normal to the deformed plate defined by
n = Fe; AFey, (4)

and let
K=-F'Vn (5)

be the second fundamental form of x. The symmetric tensor K is represented by
a 2x 2 matrix whose components, with respect to the e,, basis, are Ko3 = —0. X"
dpmn = 92 5X 1. Since it is impossible to have deformations that simultaneously
change both principal curvatures without stretching, by the inextensibility of
the plate we must have that

det K = 0; (6)

as follows from Gauss’s Theorema Egregium.
As energy density of the plate we simply take a quadratic form in K:

Q(z1, K) = %]D)(a:l)K K

where the bending stiffness tensor D maps symmetric second order tensors to
symmetric second order tensors. For simplicity, we assume that D depends only
on the x; coordinate. We further assume that D is strictly positive definite and
has the major symmetry, i.e., there exists a constant d such that D(xz;)A - A >
d|A]? and D(x1)A - B = D(x1)B - A for every symmetric tensors A and B and
for every x1. Hence the total bending energy in a given deformation x is

1 1 [t ph/2
Eh(x)zi/]D)K~Kda=§/ / DK - K dzadxy, (7)
w 0 J—h/2

where K is the curvature associated to x.

3 A model for a narrow ribbon

Hereafter, we assume that the width A of the plate is much smaller than its
length ¢. Under this assumption it appears natural to formally expand the
deformation :x in series with respect to xs, by writing

X(zlv 'IQ) = Xo(xl) + Z X(l) (‘rl)zév
i=1
deduce the formal expansion

oo

K(z1,22) = K°(z1) + Z K (),

i=1

and then substitute this last expansion into (7). If we content ourselves with
O(h?) approximation of the energy, and if we reckon that D does not depend on



x2 (symmetry with respect to x5 would indeed suffice), the resulting expression
of the energy is
h

4
') =1 /O DK® - K° day + o(h?). (8)

We now render this expression more explicit. To do so we find it convenient to
adopt the following notation: given any field f(x1,x2), we set f°(x1) := f(x1,0)
to denote the trace of f on the midline of the ribbon. By making use of this
notation, we introduce the directors:

Cl1 = (Fel)o, d2 = (Feg)o, d3 = l’lo7 (9)
and we observe that these vectors constitute an orthonormal basis:
dldJ :ei-ej, (10)

as can be checked by means of (2) and (4).

Keeping in mind that the operation of taking the trace on the midline com-
mutes with that of performing differentiation with respect to x;, we see that
the first director is tangent to the midline of the ribbon

d; = (01x)° = oix°. (11)

The second director
dz = (02x)°

is tangent to the ribbon on the midline and “represents” the orientation of the
cross section of the ribbon. The third director is perpendicular to the ribbon
on the midline.

Taking o = 8 = 1 in (3), differentiating with respect to z2, and evaluating
the result at zo = 0, we find

0= (0201x)° - (1x)° = O1(Fez)” - (Fe1)°,

that is
d,-d, =0. (12)

This is a constraint that must be satisfied by the directors. From the definition
of the second fundamental form we find that

K{y = (0%5x)° - n° = 91(95x)° - n° = ds - ds. (13)

The components K7, = d} - d3 and K, = d - d3 are the curvatures of the
ribbon on the midline. It is convenient to introduce the curvature

3
1
k= > dind;,
i=1
which, as is easily seen, satisfies the identity

d, =k Ad;,



which in the components k; := k - d; rewrites as
ki =dy-ds =Ky, ko=dy-di=-Kj, k3=d]-da. (14)

Then, k1 measures torsion, ko measures flexure with respect to ds and k3 mea-
sure flexure with respect to ds. Equation (12) implies that the ribbon does not
bend around ds:

ks = 0. (15)

We shall simply refer to ko as the curvature of the midline curve x° and to
k1 as the twist of the cross-section of the ribbon. The component K3, can not
be expressed in terms of only the directors. Hereafter, we set v := K3, so to

write , .
o d}-ds dj-ds —ky ki
= = . 16
of <d'2 -d3 Y ki v (16)
By Gauss’s Theorema Egregium, surfaces that satisfy (3) have Gaussian curva-
ture everywhere equal to zero. Evaluating (6) at o2 = 0 we deduce that

det K° = 0. (17)

This is a severe constraint on the deformations, indeed note that if ko = 0 then
also k1 = 0: in words, twist is not allowed if the midline is kept straight.
With (8) in mind, we set

1 L 4
50(r7di7’y) = 5/ DK° - K° dxl :/ Q($17Ko)d$17 (18)
0

0
where K° is given in terms of d; and v by (16), and
r:=x°
is related to d; by (11), that is
d, =71 (19)

Because of the constraint (17), minimizing the energy (18) is the same as
minimizing the energy

¢
Eo(r,d;, ) ::/ W(x1,K°)dxy, (20)
0
where, the density W is defined by

[ Q(x1,L) if detL =0,
W(zy,L) = { +00 otherwise. 21)

We view (20) as the microscopic energy. The energy density W, when finite,
is a strictly positive quadratic function over a non convex set. Indeed, as it is
easy to check, the set of 2-by-2 matrices with zero determinant is not convex.



Thus, W is not convex and hence the microscopic energy (20) may not have a
minimizer. What may go wrong is that a minimizing sequence (v, (d;)n,¥n),
which determines (according to (16)) a K¢ with null determinant, may approach
a limit K° with determinant not everywhere equal to zero. This can be achieved
for instance when the n—th element of the sequence is obtained by alternating,
on a scale of order 1/n or smaller, two deformations with finite energy, i.e.,
det K2 = 0 everywhere, but with an “average” (weak limit of the sequence)
K° with determinant different from zero. Hereafter, we shall say that K° is
generated by K. Thus, we may extend the definition of energy so to make it
finite also for deformations with detK® # 0: the energy that we may associate
to a K° generated by K¢ is the limit of the energies associated to K. The
macroscopic energy or relared energy is the least energy that is generated by a
sequence of deformations with finite energy; this corresponds to, see for instance

[9, 12],
¢

5;*(r7di77) = W**(xvio)dxh
0
where W** is the convex envelope of W.
This energy may be further reduced, since the field « is neither related to r
nor to d;, we minimize once and for all over v to obtain

£
miné':*(r,di,fy):/ W(Il,kl,kg)dl'l,
v 0

where
17 o . *% _k2 kl
W (1, k1, ke) :== mA}nW (ml, ( K 7) ) (22)
We interpret
Y
?(1'7(1,‘) = / W(.’El, kl, /{‘2) diL'l. (23)
0

as the macroscopic energy of the ribbon. A key observation here is that the
macroscopic energy is always less or equal to the microscopic energy; indeed,

¢ ¢
E(r,d;,y) = /W(tho)dxlz/ W** (21, K°) dzq
0 0

¢
Z / W(l’l,k’l,kg) da:l :S(I‘,di).
0
The energy of the ribbon (23) coincides with that obtained by means of I'—convergence

in [15].

4 Representation of the energy density of the
ribbon

In order to have an explicit representation of the energy density W of the ribbon
it is necessary to first evaluate the convexr envelope W** of the energy W defined



n (21). It turns out that, given any symmetric 2-by-2 matrix L,

W**(L) = Q(L) + a™ (det L)* +a (detL) ™, (24)
where
- . + _ .
a” = min QL), o= min QL) (25)
and where
detL if detL >0 _ —detL if detL <0
+ _ ) _ )
(det L) _{ 0 else, (det L) _{ 0 else.

Here and in what follows, for brevity we do not write the dependence of W
on the variable z;. This representation has been obtained in [15] by means of
convex duality. In Appendix A.1, besides giving a new proof, we prove that the
convex envelope can be obtained by a single “lamination”. That is: for every
symmetric matrix L there exist two symmetric matrices A and B and at € [0, 1]
such that

W*(L) = (1-t)Q(A) +tQ(B),  with L= (1—t)A+tB. (26)

The quantities A, B, and ¢ can be evaluated by using the symmetric matrices
D~ and DT that minimize problems (25). More precisely, D~ and DT are two
symmetric matrices with det D™ = —1 and det D™ = +1 such that

a”=QD"), af=QMD). (27)
If det L > 0 then the real number ¢ and the matrix B are given by
1

t= 9
2-2\(VA2+1-))
where A and 7 are defined by

L* D~
A= ——, = VdetL(v A2 +1-)\).
2v/det L g et L( )

While, if det L < 0 we have that

B=L-7D"

1
t= , B=L-D", 28
242N — VA2 1 1) 7 (28)
with

A= ﬁ =vV—detL(A — VA2 +1) (29)

T o/ —dearn T '

In both cases, det L > 0 and det L < 0, the matrix A is given by

L-¢B

A= . 0
T (30)



The elastic constants a® are computed in Appendix A.2, here we briefly

outline the results. We denote by
Dagys :=eq®@eg-De, @ es.
For an orthotropic ribbon with respect to the basis (e, ez), we have
D1122 = D122 = 0,
and it is found that

a =4/ D1111D2222 + D122, at = min{\/ D1111D2222 — D122, 2D1212}~

In particular, for the isotropic strain energy

Q(L) = d,|L|* + %(Ln + La2)?,
where d,, and dy are two elastic constants, we find

a” =2(d, +dy), at =2d,.

In this case, the convex envelope of W, (24), turns out to be, see Appendix A.2
for details,

d
W (L) = <d#+;) (L% 42| det L) . (31)
One can also check, by a direct computation, that a= = Q(D7), and ot =

Q(D7) for

Dt — <é (1)> D - (é _01) (32)

In the isotropic case, a simple computation leads to

L2+ I2,)?
dx (11712 if |L11| > |L12|,
(dﬁz) , I .

4L12 else if |L11| S |LlQ|7

min W (L) =
L22€R

and hence, the energy density of the ribbon (22) is

W(ky, ko) = 5 2

2 (33)
4k3 else if |ka| < |k1]-

k3 + ki)
- d ( 2 1 :
<du+ A> if |ko| > |k,

This is the corrected Sadowsky energy density found in [14]. Indeed, in the
regime in which the absolute value of the curvature ks is larger than the absolute
value of the twist, the energy density coincides with that proposed by Sadowsky
[28].



5 Euler-Lagrange equations

In order to derive the Euler-Lagrange equations we follow the approach of [24],
based on incorporating the constraints into the energy functional through La-
grange multipliers. To this effect, we introduce the Lagrangian associatead to
the energy (23)

4 4
C(I‘,dl,dg,dg,l’l, m3) = / W(k}hk‘g) + msks dxq +/ n- (I'/ — dl) dx1.
0 0

For notational simplicity, we have dropped the dependence of W on the vari-
able x1. Here mg3 and n are the Lagrange multipliers associated to the con-
straints k3 = 0 and r’ = dy, respectively, see (15) and (19). We consider an
e-parametrized family of admissible perturbations

r. =r+er,
d;. = eXp(E‘@)di, 1=1,2,3, (34)
n. =n-+en,

m3 e = M+ emg,

of a putative stationary point (r,d;,ds,ds, n,ms). Here n, rms, ¥, and © are
smooth functions taking values, respectively, in R?, R, R3, and R3*3, with C)
a skew-symmetric matrix. We leave it for later the determination of boundary
conditions and, accordingly, we restrict attention to perturbations that vanish
at the endpoints:

1(0)=#L)=0, ©(0)=©6(L)=0.
We note on passing that, since

Q. := exp(cO) (35)

is a proper rotation such that
Qo =1 (36)

the ordered list of vectors {d;. };=1,2,3 constitutes a positively—oriented orthonor-
mal triad which depends smoothly on ¢ and coincides with the triad {d;}i=1,23
for e = 0. We also recall, for later use, that the exponential matrix commutes
with its derivative, namely, %QE =Q.0=0Q..In particular, we have

d

e=0

As a consequence, if  is the axial vector of ©, then

= dis d;, =0d;, =0 And; (38)

e=0

10



for every i = 1,2, 3.

The next step is to evaluate the functional £ at the typical perturbed con-
figuration. The result is a differentiable function of e, whose derivative at e = 0
we require to vanish. We set

My ‘= (’)kaW(kl, kg), o = 1, 2,

and we define the referential moment vector and the referential curvature vector
as
m = (ml,mg,mg), k:= (k‘l,kg,kg).

We denote by k;. the quantities obtained by means of (14) but with d; replaced
by d;. and we set ke := (kie, koc, k3c). On letting k := d% .o ke, we may write,
on intergrating by parts,

d
= L E7d€7d 57d ey e, TH3e
=l (re, dic, doc, d3e, e, mi3e)
£ . [ .
= m-k+m3k3dx1—|—/r'1-(r’—dl)—n'-i'—n~0/\d1dx1.
0 0

One can write the relation between the curvature vector and the directors in
the perturbed configuration as:

1
kie = iéijkdgs “de,

an identity whose differentiation with respect to ¢ yields

) 1 . 1 .
k; = ieijkd; -dy + ieijkd; -dy
1 . 1 .
= ieijk(g A dj)/ -dy + §€ijkd;‘ -0 Ndg

1 ./ 1 . 1 .
= ieijkO A\ dj -dg + ieijkg A d; -dg + §€ijkd3‘ -0 Ndy

=0
= %qjkdj Adyg -6
—d;-0,
where we have used the identity d; = %eijkdj A dg. Now, on letting
m = m;d,, (39)
we can write

3 3
m'kzzmikizzmidi'GIZm'éla
i=1 i=1

11



and we arrive at the following expression:

¢ ¢
ﬁz/m~0/+m3k3—n~0/\d1d:c1+/r'1~(r'—d1)—n/~1"dx1
0 0

¢ ¢
:—/(m'—i-dl/\n)-é—l-r'ngkg,dxl-i-/I'1~(r/—d1)—n’-1"dx1
0 0

On requiring that £ vanish for every perturbation we obtain the constraint

equations:
I'/ = d17 k3 = 07

and the equilibrium equations:
n =0, m' +d; An=0. (40)

The equilibrium equations can be rendered in referential form by introducing
the components

n; . =n- di,
so that

On substituting (41) into the first equilibrium equation and (39) into the second
equilibrium equation we obtain, in the order,

n;dz +n;kAd; =0,

/ , (42)
midi + midi +di An=0.
Now we introduce the rotation matrix
D=d;®e,, (43)
and we observe that

We also notice that, given two arbitrary vectors a and b, the following identity
holds true:
D”(anb) = (D%a) A (D'Db)

Thus, in particular, we have
DT(kAd;) =kAe;,

and
D(d; An) =e; An.

Thus on premultiplying both equations in (42) by DT, we arrive at
nie; +n;k Ae; =0,
mie; + mk Ae; +e; An=0,
which are equivalent to
n+kAn=0,
m+kAm-+e; An=0.

12



6 Example: a twisted ribbon

A class of deformations that are of particular importance for the mechanics of
a ribbon are the twisting deformations.

We consider an experiment where an isotropic ribbon, while being subject
to a tensile force N, is twisted under controlled terminal rotation ©.

We model this experiment as follows. We identify the middle line of the
ribbon with a straight line passing through the origin and parallel to the unit
vector e;. We clamp the end 1 = 0 to a fixed base support by asking

r(0)=0, and d;0)=e; fori=1,23.

The condition that the end x7; = ¢ be clamped and subject to a tensile force N
is rendered by the following set of equations:

n¢)-eg =N, r({)-ea=0, r({)-e3=0,
dl(g) = ey,
ds(¢) = cosOey +sinBez, ds(L)=—sin®es + cosO es.
The boundary—value problem. For the reader’s convenience we recapitu-
late the relevant field equations.

e The referential equilibrium equations:

n+kAn=0
m’—:k/\m—i—:el/\n:O. (452)
e The compatibility equation:
d; =k Ad;, i=1,2,3. (45b)
e The constitutive equations:
My = %zlﬁ), a=1,2. (45¢)
e The constraint equations:
d; -d; = 4y,
ks =0, (45d)
r =d;.
The reference state. A solution of the twist problem is the following
r(zy) = z1€y,
dy(z1) = ey, (46)

da(z1) = 4 cos(Ox1/f)es + sin(Ox1 /f)es,
d3 (Il) = — sin(@xl/é)eg + COS(@Il/E)eg.

13



The corresponding referential curvatures are

ki(x1) = ©/¢,
]ﬂg(xl) = 0, (47)
kg(fﬂl) =0.

The corresponding referential tension and moment are, respectively,

n(z1) = (N,0,0),

my(x1) = O, W (k1, ko) =: GI,©,
ma(x1) = Op, W (ky, ka) = 0,
ms(x1) = 0.

(48)

The bending moments m; and mg are determined by the corresponding curva-
tures through the constitutive equations (33). Instead, the bending moment mg
is computed by making use of the equilibrium equation mb+ksmi —kyms—nz =
0. In the second equation of (48) we have set

1
Gl = 4(2d, +dy) 5.

Computation of W in terms of ). The solution found is the macroscopic
solution, i.e., the solution of the macroscopic problem. We now reconstruct the
microscopic solution. To do so we need to express the energy in terms of the

quadratic form Q.
0 Kk
K° =
(’ﬁ 7) ’

From (16) and (47) we find
where k1 = ©/¢ is the amount of twist, see (47), and v has to be determined
from (22). Since
Gt

8

see (31), we have that W**(K°) = GI,¢/8(4k? + ~?) and thence the mimimum
in (22) is achieved for

W (L) (JL|* + 2| det L),

v=0.
We therefore have

K°® = (131 %1) . W(ki,0) = W*(K°). (49)

Thus, we are in the case of negative Gaussian curvature (det K° < 0). We look
for A, B, and ¢ such that det A =det B =0 and K° = (1 —t)A + ¢B.

Since )
o\x __ 0 —h1
(K ) - (kl 0 > 9

14



on recalling (29) and (32) we have

_ (K°)*-DF _
AR War s Sl (50)
By (28) and (29) we find
: - (51)

t= ,
2+ 20(A—VAZ+1) 2

and

n=+v-—det K°(A— VA +1)=—Fk, (52)
so that by (28) and (30) we deduce that

o - k1 ki K° —1B -k Kk
B=K°—nD — A B _
7 </€1 7471) ’ 1—t ki =k

According to (26) and (49), we have

K° — %A + %B, and TV (ky,0) = W™ (K°) = %Q(A) + %Q(B). (53)

Microscopic oscillations. The macroscopic curvature K° has determinant
different from zero and therefore it is microscopically inaccessible. Equation
(53) shows that it can be generated by mixing, on a fine scale and in equal
proportions, the “curvatures” A and B, which have both null determinant.
The oscillations occurring in a twisted ribbon are also studied in [7, 8, 23].

In a ribbon of finite width h, given a matrix with a null determinant, like
A and B, it is always possible to find a deformation whose second fundamental
form is the given matrix, essentially by solving (5). Instead, given two matrices
A and B with null determinant it is possible to find a (smooth) deformation
whose fundamental form takes only the values A and B only if A is a multiple
of B, see Appendix A.3 for a proof of this statement. Since in the case under
consideration the matrices A and B are not proportional, it is necessary to
introduce a boundary layer between the regions where the curvature is equal to
A and B. Since

a=-i (e (F) m B=n(])s(])

the boundary layer can be introduced as follows. Let f, : R — [—1,1] be a
periodic function whose period is similar to that represented in Fig. 1 and let

K™ (21) = ky fo(nan) (fn(?lmn)) ® (fn(fllsm)) .

Then, K™ is a periodic function, whose period size is 1/n, having null deter-
minant everywhere and with average (and weak limit) equal to K°. Moreover,
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Figure 1: Period of the function f,.

the function K is equal to A and B except on n boundary layers of size
2/n?. Since the energy on these layers is bounded they will contribute, to the
total energy, by a constant times n 2/n?. Thus, the contribution of the layers
will approach zero as the oscillations increase, i.e., as n goes to +o0o. From the
second equation of (53) we can therefore deduce that

lim Q(K(" dry, = /W** K°)dz, = /th 0) da;.

n—oo 0

Reconstruction of the microscopic deformation from the microscopic
curvature. With (14) in mind, we set

WY =K = ki), kY= —K{ = —kif (),
and we construct a set of directors dz(-") such that
@y -af” = k™, @y -d” =&, and (@M)y-dy” =o.
This task is accomplished by introducing the skew—symmetric tensor

N 0 0 +k
KM =] o 0o -k, (54)
R

and by finding a proper rotation D(")(xl) that solves the Cauchy problem:

D™ — DK™ iy (0,0),
{( ) in (0,¢) (55)

D™(0) =1.
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The set of directors is then found by setting
d{™ .= DMe,,

compare with (43). We are now in a position, for small h, to construct a
isometric deformation x(™ : w — R3 by means of a ruled surface ¢ la Wunderlich
[35], see also [14]. We first determine the microscopic deformation of the midline

1
r(™ () = / d{™(s) ds,

0
compare the third equation of (45d), and then we set

‘b(n)(fl,&) = &1eq +§2(C0$19(n)‘31 +Sin19(")e2)’
v (&,&) = (&) + E(cos 9™ + sin™df),

where (cos (™), sin (™) is the eigenvector associated to the null eigenvalue of
K. Then, the microscopic deformation is

™) = oM o (@)1,

Tedious calculations show that the second fundamental form of x(™) is exactly
K and also that x(™) approaches x as n goes to infinity. We refrain from
doing these calculations and we refer to [14] for further details.

A Appendices

A.1 Convexification

The aim of this appendix is to determine the convex envelope of

[ QL) if detL =0,
W(L) = { +00 else,

where @ is a positive definite quadratic form defined on 2-by-2 symmetric ma-
trices.
Consider the function

Qaet(L; ) = Q(L) + adet L

with « a real number. For fixed o, Qqet(+; ) is a quadratic function - recall
that L may be represented by a 2 x 2 matrix - and hence it is convex if and
only if Qget(L; ) > 0 for every L. This inequality is satisfied for all L with
determinant equal to zero, since @ is positive definite. If det L > 0, the condition
Qaet(L; @) > 0 for every L holds if and only if

Q(L/VdetL)+a >0 for every L,
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that is equivalent to
a>—Q(L) for every L with detL =1,

or

> — mi L)= —a .

@2 - s Q) =~ ()
Similarly, if detL < 0, the condition Qqet(L; ) > 0 for every L holds if and
only if
< i L)=:a".

a< min Q)= a (57)
Note that o=, a™ > 0, since @ is positive definite. Hence, Qqet(+; ) is convex
if and only if —a~ < a < a™, and

W(’(L) = sup Qdet (L; a) (58)

—a~<a<at

is also convex, for the point-wise supremum of convex functions is convex. It
immediately follows that

W.(L) = Q(L) + o (det L)™ + o~ (detL)~, (59)

where (det L)™ is the positive part of det L, and (det L)~ is the negative part,
ie., (detL)” = —detL if det L < 0 and zero otherwise.

Clearly, W (L) > Qqet(L; @) for any L and for any «, hence W (L) > W,(L).
Since W, is convex it also follows that

W* (L) > W(L).

In the rest of the section we will show that the inequality above is indeed an
equality, and that the lower bound can be achieved by a single lamination. More
precisely, we show that given L we can find two symmetric tensors A and B,
and 0 < ¢t < 1 such that

(1-t)A+tB=L, and (1—t)W(A)+tW(B) = W.(L).

By the definition of W, the statement above is equivalent to: given L there exist
two symmetric tensors A and B with det A = detB = 0, and 0 < ¢t < 1 such
that

1-HA+tB=L, and (1-1HQ(A)+tQ(B) = W.(L).

In this statement we may eliminate the tensor A by noticing that: given L, B
and t, as above, there exists a symmetric tensor A with det A = 0 and satisfying
the equation

(1-t)A=L-1{B

18



if and only if det(L — tB) = 0. Since

1

(1= )Q(A) +1Q(B) = ——Q((1 — )A) + tQ(B)

= QL 1B) + 1Q(B)

t
=Q(L) + EQ(L -B),

the statement to be proven is: given L there exist a symmetric tensor B with
det B =0, and 0 < t < 1 such that

t
det(L —tB) =0, and Q(L) + EQ(L —B) = W,(L). (60)
Recalling (56) and (57), let D~,D™ be the two symmetric matrices with
det D™ = —1 and det D™ = 1 such that
a”=QMDT), af=QD). (61)

Note that the tensors D~ and DT only depend on the bending stiffness tensor
D. We now show that if det L > 0 there exist a symmetric tensor B with null
determinant and 0 < ¢t < 1 such that

1—1t
det(L—tB) =0, det(L—B)=-— " det L, (62)
and L_B
D =—- - (63)
—det(L — B)

Assuming, for the moment, the validity of this statement we deduce (60) in the
case det L > 0:

QL) + T (~ det(L ~ B))Q(D")

Q(L) + Q(D7)det L
= QL)+ at det L = W,(L),

t
Q(L) + 17—tQ(L - B)

where we have used, in order, (63), (62), (61), and (59). Hence, assuming (62)
and (63) we have shown that if detL > 0 then W**(L) = W,(L). A similar
proof can be made for det L < 0, while the result is trivial for det L = 0.

We therefore only need to show the validity of (62) and (63). In doing it,
we shall provide formulae that deliver B and t.

For detL > 0, set B = L — nD~ where the real number 7 is chosen by
imposing that detB = 0. With (1), this amount to solve the second order
equation

detL —ngL* - D~ —n* =0, (64)
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where we used the fact that det D~ = —1. Of the two solutions we choose

_ —-L*-D” +/(L* D)2 + 4det L

K 2
To keep the notation compact, we set
_L*-D~
2v/det L

so that

n= \/M(\/W —A).
Now that B has been fixed, we find ¢ by solving (62);. We first write
L-tB=L—{L-nD")=(l—tL+nD",
and by using (1), we write (62); as
(1 —t)*detL + (1 — t)tnL* - D~ — t** = 0,
which simplifies, thanks to (64), to
detL + ¢(nL* - D~ — 2det L) = 0.

Thus
—detLL 1

- nL* -D~ —2detLL - 2 —2X(V A2 + _,\)'

We may easily verify that 0 < ¢t < 1. Indeed, ¢ > 0 if and only if 2A\(v/ A2 +1 —
A) < 2, which clearly holds if A < 0, while for A > 0 is equivalent to VA2 +1 <
% + A which is trivially verified. Similarly we may check that ¢ < 1.

From the definition of B, we have that D~ = L — B. Taking the determi-
nant, we find —n? = det(L — B) from which (63) follows. Finally, by applying
(1) twice, we obtain that

t

detL | detL —L° - (iB)

det(L — B) =detL — L* - B = detL — ;

t—1 det(L — tB

and recalling (62); we deduce (62)s.
We close this appendix by summarizing the results found:

W*(L) = Q(L) + a™ (det L)* +a (detL) ™,
where
a” = min Q(L)=Q(D"), a™= min QIL)=Q(D").

det L=1 det L=-—1
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If det L > 0, set

\_ LD e 1
2v/det L’ 2-2A(VXZ 1=\

n=vVdetL(y/A\2+1—-)), B=L-7D";

while, if det L < 0, set

\_ L .-Df . 1
~ 2y/—detL’ 24 2\(A—VAZ+ 1)
n=+v—detL(A—yA2+1), B=L-yD".
Then, with
A_L-1B
1—t

we have that

1-t)A+tB=L, and (1-t)Q(A)+tQ(B) = W* (L)

A.2 Evaluation of a* for various symmetries

We first turn our attention to the computation of the constants a™ and o~ in
the definition of the convexification W** in (24). According to (25) we must
minimize the quadratic form Q(L) over the manifolds {L : detL = £1}. We
accomplish this task through the method of Lagrange multipliers by seeking
stationary points of the augmented functional (L,3) — Q(L) + B(detL + 1).
We note that the determinant of a 2-by-2 matrix is a quadratic form. Thus,
there exists a fourth—order tensor E such that

&%L::LHLD——L%::%EL~L. (65)
Thus, the augmented functional is
(L,8) = 5(B+ FEJL L5, (66)
We now argue that the minima a® have the following property:
D F oTE is singular, (67)

that is aT are generalized eigenvalues of D with respect to E. To verify the last
statement, let us recall the definition of D*, see (27), that is

D* = argmingep—41 Q(L). (68)

Then there exist BT such that the pair (D*, 3F) is a stationary point of the
augmented functional defined in (66). The stationarity conditions for such pair
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are
(D+ BTE)D* =0, (69a)

1
5]EDi -DfF1=0. (69b)

It follows from the second stationarity condition that D* % 0. This implies
that the tensor D+ SFE is singular. Moreover, the minimum a7 coincides with
the Lagrange multiplier 5F, up to sign:

(692) BT

1
o = Q(D*) = ;DD* . D* ~ ED*.D* R ()
To carry our calculation further on, we observe that
Diiir Ditge Diire L1y L1y
DL -L = |Dii22 Do Dioao Loy | - | La2 | . (71)
Di22 Diggs Dioro 2L15 2L15
and that
0 1 0 L11 Lll
EL-L=|1 0 0 Loo | | La |. (72)
0 0 —-1/2) \2Li» 2L12

Thus, on denoting by d and e the matrices appearing in the definitions of the
quadratic forms (71) and (72), we can write (67) as

det(d FaTe) =0. (73)

Orthotriopic response. In the special case, when the material is orthotropic
with respect to the basis (e1, e3), we have

Di122 = Dy222 = 0.

In this case, the characteristic polynomial

p(B) := det(d + fBe) = (D1212 - g) (D1111Da202 — (D1122 + 8)?)

has the following set of roots:

{=vD1111D2292 — D122, v/ D1111D2222 — D1122,2D1212}-

The positive definiteness of D implies that the first root is negative, and that the

remaining roots are positive. The negative root must coincide with 5~ = —a ™,

that is
a” = \/ID1111D2222 + Dyq20.

On the other hand, the minimality of a™ yields

at = min{y/D1111 D222 — D122, 2D1212}-
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We note that the foregoing calculation can be used also when the plate is
orthotropic with respect to a basis (e}, e)), not necessarily coincident with
(e1,es). In this case, the relevant strain energy is W/(L) = W(RLRY), where
R =€/, ®e, is a rotation matrix. Then it can be easily shown that the convex-
ification of @’ is given by

(W)**(L) = W**(RLRT).

Isotropic response. For the isotropic strain energy Q(L) = d, L[>+ % (L1;+
L22)2 the relevant components of D are Dy111 = Dagaa = 2d,, + dy, Di122 = dj,
]D)1212 = d#. Then

a” =2(d, +dy), ot =2d,,

and so
d
W (L) = d,|L|? + f(Lu + La2)? + 2d,,(det L)t + 2(d,, + dy)(det L)~
d
=d,|L]> + 7A|L|2 +dy det L + 2d,,(det L)" + 2(d,, + dy)(det L)~

d
= (dH + ;) IL|% + 2d,,| det L| + dy(det L + 2(det L) )

dx

- (du + 2) (L2 + 2| det L) .

A.3 Compatibility among curvatures

The aim of this Appendix is to prove the following statement.

Let w,wa and wp be three two-dimensional open sets, whit w = wa Uwg UT,
where I' = @A NwR is a smooth curve and wWa denotes the closure of wa. Let A
and B be two 2-by-2 symmetric matrices with null determinant. If there exists
a deformation y continuously differentiable on w and twice differentiable on wa
and on wy such that

Ky =Aonwa, and K, =B onwg,

where Ky denotes the second fundamental form of y, then the curve I is straight
and there exists a constant o for which A = ¢B.

We assume that a deformation y as described in the statement above exists
and we study the consequences. Since y is continuously differentiable we have
that Vy and the normal n = 91y A 0,y are continuous on w. Let t be the unit
tangent to the curve I'. Since (Vn)t = dyn and since K = —(Vy) T Vn we have
that

At=Bt, onTl.

Thus det(A — B) = 0, and the identity det(A — B) = det A — A*- B + det B
implies that
A*-B=0.
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Let (A, a;) and (0, a3) be the pairs of eigenvalues and eigenvectors of A, so that
A= )\a1 ® aj.

Then A* = Aas®ay and A*-B = 0 implies that Bas-a; = 0. We may therefore
write ~
B =pa;®a; + (a1 ®az +a; ®ay),

and, since det B = 0, conclude that
B = 531 ® aj.

Setting ¢ = A/ we have that A = ¢B. From the identity At = Bt we deduce
that a; - t = 0, which implies that t is constant and, in turn, that the curve I'
is a straight segment.
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