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Abstract. Recently the authors presented a matrix representa-
tion approach to real Appell polynomials essentially determined by
a nilpotent matrix with natural number entries. It allows to con-
sider a set of real Appell polynomials as solution of a suitable first
order initial value problem. The paper aims to confirm that the
unifying character of this approach can also be applied to the con-
struction of homogeneous Appell polynomials that are solutions
of a generalized Cauchy-Riemann system in Euclidean spaces of
arbitrary dimension. The result contributes to the development
of techniques for polynomial approximation and interpolation in
non-commutative Hypercomplex Function Theories with Clifford
algebras.

1. Introduction

In [1] the authors presented a matrix representation approach to all
types of Appell polynomial sequences {pk(x)}k≥0 of one real variable
which relies essentially on the matrix H defined by

(1) (H)ij =

{
i, i = j + 1
0, otherwise, i, j = 0, 1, . . . ,m.

In fact, considering that a sequence of real polynomials of degree k
{pk(x)}k≥0 is called Appell polynomial sequence if

(2)
d

dx
pk(x) = k pk−1(x), k = 1, 2, . . . ,

cf. [3], by introducing the vector p(x) = [p0(x) p1(x) · · · pm(x)]T ,
from relation (2) we obtain the first order differential equation

d

dx
p(x) = H p(x),(3)

whose general solution is

p(x) = eHx p(0).(4)
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It is evident that the role of H is twofold: it acts both as derivation
matrix and also as some type of creation matrix ; in fact, the differ-
ent kinds of Appell polynomials are uniquely determined from (4) by
choosing the entries of the initial value vector p(0). In some sense, this
matrix reveals the arithmetical tape which glues the different types of
Appell polynomials together.

The prototype of an Appell sequence are the monomials pk(x) = xk.
The Bernoulli polynomials as the most prominent representatives of
Appell polynomials are in Numerical Analysis almost so important as
orthogonal polynomials are [14, 15, 32]. It is well known that among
the classical orthogonal polynomials only Hermite polynomials are also
Appell polynomials, cf. [36]. But even Laguerre and Chebyshev poly-
nomials (so far not studied in the context of Appell polynomials) can
be treated as Appell polynomials using a straightforward substitution
suggested in [13], cf. [1].

Although an old subject, during the last two decades the interest in
Appell polynomials and their applications has significantly increased.
As very few examples, recent applications of Appell polynomials exist
in fields like statistics, cf. [35], linear elasticity [5] or approximation
of 3D-mappings in [30]. Based on a probabilistic approach, there is a
nice contribution concerning Appell polynomials in the univariate case
as well as in the multivariate case in [2]. As examples of other types of
Appell polynomials we refer to iterated Appell polynomials (e.g. [25])
and concerning a determinantal approach we refer to [26]. We also
notice that some approaches to q-Appell polynomials from a determi-
nantal point of view and from Umbral Calculus have been introduced
recently in [18] and [19], respectively. Results in the framework of
noncommutative Clifford algebras and related to the Gel’fand-Tsetlin
branching approach gave evidence to Appell polynomial sequences with
shift, cf. [33], as sequences of orthogonal polynomials in several vari-
ables, cf. [7, 27]. Operational approaches based on Appell polynomials
for generalizing Jacobi, Laguerre, Gould-Hopper, and Chebyshev poly-
nomials are used in the recent papers [8, 9, 11]. Employing methods of
representation theory, they are also tools for applications in quantum
physics [40].

Some authors were concerned with finding new characterizations of
Appell polynomials themselves through new approaches. We mention,
for instance, the approach developed in [39], which makes use of the
generalized Pascal functional matrices and the characterization pro-
posed in [16] which is based on a determinantal definition. As pre-
viously quoted, the authors introduced in [1] a matrix approach in
the real case which has already been applied in the context of “image



3

synthesis” [34], and in connection with “evolution equations” for the
construction of a new algorithm of deflation [38].

In addition, Appell polynomial sequences were subject to innumer-
able generalizations, mostly depending from the type of applications
where they could be advantageously used, including multivariate com-
mutative or noncommutative settings.

This paper intends to confirm the advantageously use of the ma-
trix approach to real Appell polynomial sequences developed in [1] for
the case of monogenic polynomials in arbitrary dimensions and in a
noncommutative hypercomplex setting, i.e. for Clifford-algebra valued
polynomials in the kernel of a generalized Cauchy-Riemann operator,
cf. [17]. In [24] it has been shown that monogenic functions are hy-
percomplex differentiable. Therefore the classical definition in (2) by
the derivative property can be analogously used for defining mono-
genic Appell sequences with respect to the hypercomplex derivative,
cf. [6, 20, 21, 31].

The paper is organized as follows. Basic concepts and notations
used in Hypercomplex Function Theory are given in Section 2. In
Section 3 the extension to the hypercomplex case of the unifying ma-
trix approach developed in [1] is introduced. Since the hypercomplex
generalized Cauchy-Riemann operator is a linear combination of two
different types of first order differential operators (a scalar one and a
vector operator in the sense of the underlying Clifford algebra) also two
different nilpotent matrices H and H̃ are involved. Their relationship
is essential for guaranteeing the desired Appell property. The relation
between H and H̃ reveals in a new and condensed matrix form the
transition from the real to the hypercomplex case. Applying the re-
sults of Section 3 and the concept of a transfer matrix, in Section 4
some of the main hypercomplex monogenic counterparts of real Appell
sequences are listed.

2. Basic concepts and notation

For an independent reading, in this section we repeat briefly some
notions and results useful in the sequel, mainly following [10, 17, 23, 29].

Definition 2.1. Let {e1, e2, . . . , en} be an orthonormal basis of the Eu-
clidean vector space Rn provided with a non-commutative product ac-
cording to the multiplication rules eiej + ejei = −2δij, i, j = 1, 2, . . . , n,
where δij is the Kronecker symbol. The associative 2n−dimensional
Clifford algebra C`0,n over R is the set of numbers α ∈ C`0,n of the
form

∑
A αAeA, with the basis {eA : A ⊆ {1, . . . , n}} formed by

eA = eh1eh2 . . . ehr , 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1 and where
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the components αA are real numbers. The conjugate of α is defined by
ᾱ =

∑
A αAēA, with ēA = ēhr ēhr−1 . . . ēh1 ; ēk = −ek, k = 1, . . . , n, ē0 =

e0 = 1.

In general, the vector space Rn+1 is embedded in C`0,n by identifying
the element (x0, x1, . . . , xn) ∈ Rn+1 with an element of the real vector
space An := spanR{1, e1, . . . , en} ⊂ C`0,n. For our purpose we only
consider such elements x ∈ An of the form x = x0 +

∑n
k=1 ekxk =

x0 + x, called paravectors (naturally, x0 and x are called the scalar
part and the vector part of x, respectively). Similarly to the complex
case the conjugate x̄ and the norm |x| of x are given by x̄ = x0−x and
|x| = (xx̄)1/2 = (x̄x)1/2 = (x2

0 + x2
1 + · · ·+ x2

n)1/2, respectively.
In Hypercomplex Function Theory C`0,n−valued functions are stud-

ied. They are functions f : Ω ⊆ Rn+1 ∼= An → C`0,n defined in an open
subset by f(z) =

∑
A fA(z)eA, where fA(z) are real valued functions.

We will focus on a special class of these functions analogous to com-
plex holomorphic functions and connected with them via the following
concept.

Definition 2.2. A function f is called left (right) monogenic in Ω if
it is a solution of the differential equation ∂f = 0 (f∂ = 0) where

∂ :=
1

2
(∂0 + ∂x), with ∂0 :=

∂

∂x0

, and ∂x :=
n∑

k=1

ek
∂

∂xk
,

generalizes the Cauchy-Riemann operator (n = 1, e1 ≡ i, z = x+ iy)
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

The operator ∂ := 1
2
(∂0−∂x) is called the conjugate generalized Cauchy-

Riemann operator or the hypercomplex differential operator.

Hereafter we only deal with left monogenic functions and we shall
refer to them simply as monogenic functions (right monogenic functions
are treated analogously). Notice that in the case of a paravector-valued
function f of the variable x ∈ An, the hypercomplex partial differential
equation ∂f = 0 is, except for the complex case (n = 1), equivalent
to an over-determined Cauchy-Riemann system of n(n+1)+2

2
first order

differential equations for the (n+ 1) component functions of f.
We remark that hypercomplex differentiability as generalization of

complex differentiability has to be understood in the following way: a
function f defined in an open domain Ω ⊆ Rn+1 is hypercomplex dif-
ferentiable supposed there exists in each point of Ω a uniquely defined
areolar derivative f ′. Then f is real differentiable and f ′ := ∂f . On
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the other hand, f is hypercomplex differentiable in Ω if and only if
f is monogenic, cf. [24]. Consequently, if a hypercomplex function is
monogenic then the existence of the hypercomplex derivative is guar-
anteed and can be obtained as result of the application of the conjugate
generalized Cauchy-Riemann operator.

3. Sequences of monogenic hypercomplex Appell
polynomials

Considering that for each x ∈ An,

∂xn =
1

2
(1− n), n ∈ N,

only in the complex case (n = 1) the function xn belongs to the set
of monogenic functions. Obviously, this fact causes problems for the
consideration of monogenic polynomials in the ordinary way and, more-
over, for the whole understanding of a suitable analog to power series in
monogenic function theory, cf. [28]. Indeed, in some sense the problem
of embedding integer powers of x in a theory of monogenic functions
was in the 90-ties of the last century for more than a decade a driving
force for modifying or extending the class of monogenic functions. The
result was, for example, the consideration of a Modified Clifford Analy-
sis (H. Leutwiler et al.) or the introduction of holomorphic Cliffordian
functions (G. Laville et al.). The third way to overcome the problem
‘inside’ of the class of ordinary monogenic functions, namely by gen-
eralizing Appell’s concept of power-like polynomials will be explained
now (for further details, see [10]).

Motivated by relation (2) and the previously mentioned concept of
hypercomplex derivative, Appell sequences of homogeneous monogenic
polynomials in the framework of Clifford Analysis have been introduced
in the following way, [21, 31]:

Definition 3.1. A sequence of multivariate homogeneous polynomials
{φk(x)}k≥0 of degree k in the variable x ∈ An is called an hypercomplex
Appell sequence with respect to the hypercomplex differential operator
∂ if the following conditions are satisfied:

(i): ∂φk(x) = 0, i.e., φk(x) is monogenic for each k ≥ 0;
(ii): ∂φk(x) = kφk−1(x), k = 1, 2, . . . .

Remark 3.2. Hereafter, if x = x0 + x ∈ An, we shall refer to φk(x)
by using equivalently the following notations: φk(x0 + x) or φk(x0, x).

Before generalizing the matrix approach to hypercomplex Appell
polynomials, it is important to observe that, setting p0(x) ≡ c0 6= 0,
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from (2) the following explicit representation for the truncated sequence
{pk(x)}mk=0 of Appell polynomials in one real variable occurs:

p0(x) = c0

p1(x) = c1 + c0 x

p2(x) = c2 + 2 c1 x+ c0 x
2

...

pm(x) = cm +

(
m

1

)
cm−1 x+

(
m

2

)
cm−2 x

2 + · · ·+
(
m

m

)
c0 x

m,

or, equivalently, in a more compact form

(5) pk(x) =
k∑

j=0

(
k
j

)
cj x

k−j, k = 0, 1, . . . ,m, c0 6= 0.

In particular, in this notation

(6) p(0) = [c0 c1 . . . cm]T .

The formal replacement in (5) and (6) of the real variable x by x0, the
scalar part of the paravector x = x0 + x ∈ An, as well as that of cj by
c̃j x

j leads to multivariate homogeneous polynomials

(7) φk(x) =
k∑

j=0

(
k
j

)
c̃j x

j xk−j0 , k = 0, 1, . . . ,m,

with the vector φ(0, x) = [c̃0 x
0 c̃1 x

1 . . . c̃m x
m]T of initial values on

the hyperplane x0 = 0. Consequently, recalling that the entries of the
lower triangular generalized Pascal matrix P (x0) ≡ eHx0 are given by

(P (x0))ij =

{ (
i
j

)
xi−j0 , i ≥ j

0, otherwise, i, j = 0, 1, . . . ,m,
(8)

and denoting by φ(x) = [φ0(x) φ1(x) · · · φm(x)]T , the corresponding
matrix form of (7) is

φ(x) = eHx0φ(0, x),

which represents the counterpart in the hypercomplex framework of
(4). Introducing the diagonal matrix Dc̃ = diag[c̃0 c̃1 · · · c̃m], and the
vector

(9) ξ(x) = [1 x x2 · · · xm]T

the previous relation becomes

(10) φ(x) = eHx0Dc̃ ξ(x).
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Now, the entries of such a vector are hypercomplex Appell polynomials
with respect to ∂ if the two properties in Definition 3.1 are verified. It
is evident that this should lead to impose some constraints on the
diagonal coefficients of Dc̃. In order to deduce them, we prove the
following result.

Proposition 3.1. Let the matrix H̃ be defined by
(11)

(H̃)ij =

 −(n+ i− 1), i = j + 1 ∧ j even
−i, i = j + 1 ∧ j odd
0, otherwise, i, j = 0, 1, . . . ,m.

Then the following vector differential equation is true:

(12) ∂x ξ(x) = H̃ξ(x).

Proof. To obtain in matrix form the action of ∂x on the vector ξ(x) it
is sufficient to use the following relation from [17, p. 219]

∂x(xk) =

{
−k xk−1, k even
−(n+ k − 1)xk−1, k odd.

Straightforward calculations lead to (12). �

Notice that (12) means that H̃ is the derivation matrix corresponding
to ∂x.

Remark 3.3. In the complex case (n = 1) we obtain simply H̃ = −H.
Denoting by w = x0 + x, with x = ix1, it is easily checked that for
ξ(w) = [1 w w2 · · · wm]T one has ∂ξ(w) = 0T , the null vector, and
∂ξ(w) = Hξ(w), i.e., the entries of ξ(w) are complex Appell polyno-
mials ws = (x0 + ix1)s, s = 0, . . .m.

By applying to both sides in (10) the hypercomplex differential op-
erator we obtain

∂̄φ(x) =
1

2
(∂0 + ∂x)(eHx0Dc̃ ξ(x)) =

1

2

[
(∂0e

Hx0)Dc̃ ξ(x) + eHx0Dc̃(∂xξ(x))
]

=
1

2

[
(HeHx0)Dc̃ ξ(x) + eHx0Dc̃ (H̃ξ(x))

]
=

1

2
eHx0

[
HDc̃ +Dc̃ H̃

]
ξ(x).(13)

Due to the uniqueness theorem for monogenic functions (cf. [29]
or [23, p.180]) Dc̃ must be non-singular and we can suppose that all
c̃k 6= 0, k = 0, 1, . . . . Otherwise the restriction of a component φj(x0, x)
of φ(x) with c̃j = 0 to the hyperplane x0 = 0 would have the value
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φj(0, x) = 0 and, consequently, be identically zero. But this contradicts
the property of belonging to an Appell sequence.

We can now prove the following result.

Theorem 3.1. Suppose c̃0 6= 0 is a given real number. The polyno-
mials in (10) are monogenic if their remaining coefficients satisfy the
conditions

(14) c̃2k = c̃2k−1 =

(
1
2

)
k(

n
2

)
k

c̃0, k = 1, 2, . . . ; n > 1,

where (a)r = Γ(a+r)
Γ(a)

, for any integer r ≥ 0, denotes the Pochhammer
symbol.

Proof. For φ(x) being monogenic, from (13) the diagonal matrix Dc̃

should be of such a form that

(15) HDc̃ +Dc̃ H̃ = O,

the null matrix, which means that H and −H̃ become similar matrices.
By using the definitions of H and Dc̃, the product HDc̃ is given by

(HDc̃)ij =

{
(j + 1)c̃j, i = j + 1
0, otherwise.

Similarly, from (11) the entries of Dc̃ H̃ are

(Dc̃H̃)ij =

 (n+ j) c̃j+1, i = j + 1 ∧ j even
(j + 1) c̃j+1, i = j + 1 ∧ j odd
0, otherwise.

Thus, the identity (15) is evident for i 6= j + 1. For the other cases
(i = j + 1 ∧ j odd, and i = j + 1 ∧ j even), one has

(j + 1)c̃j+1 = (j + 1)c̃j, (n+ j)c̃j+1 = (j + 1)c̃j,

respectively, or, equivalently,

c̃2k = c̃2k−1, c̃2k−1 =
2k − 1

n+ 2k − 2
c̃2k−2.

From these relations the assertion follows. �

Under the hypothesis of Theorem 3.1 the polynomials φk(x) are
monogenic. It remains to check if property (ii) in Definition 3.1 is
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satisfied. Applying (15) we get

∂φ(x) =
1

2

[
(∂0 − ∂x)(eHx0Dc̃ ξ(x))

]
=

1

2

[
HeHx0Dc̃ ξ(x)− eHx0Dc̃ H̃ξ(x)

]
=

1

2
eHx0

[
HDc̃ −Dc̃ H̃

]
ξ(x) = HeHx0Dc̃ ξ(x) = Hφ(x),

which, actually, is the corresponding matrix representation of the prop-
erty (ii) in Definition 3.1.

Remark 3.4. Following the recent article [12] on special properties of
hypercomplex Appell polynomials like, for instance, three-term recur-
rence relations, further extensions including also all orthogonal Appell
polynomial sequences obtained by the Gel’fand-Tsetlin procedure, cf.
[7, 27], can be constructed.

In order to get such extensions, the suitable formal replacement in
(5) and (6) should be x by x0 and cj by c̃j xj Qs(x), where Qs(x) is an
arbitrary chosen monogenic polynomial of fixed degree s = 0, 1, 2, . . . .

One should notice that Qs(x), as an arbitrary chosen polynomial
monogenic with respect to the generalized Cauchy-Riemann operator,
is automatically a generalized constant since it does not depend from
x0 and therefore belongs also to the kernel of the conjugated general-
ized Cauchy-Riemann operator. This fact implies that from the point
of view of the hypercomplex derivative the polynomial Qs(x) behaves
like an ordinary constant number, i.e., its hypercomplex derivative is
constant zero. Moreover, one could come to the conclusion that the
first polynomial of hypercomplex Appell sequences could be such an ini-
tial monogenic generalized constant Qs(x) and all polynomials of higher
degree would have Qs(x) as common factor. This idea is realized in the
paper [33].

The matrix form of these multivariate homogeneous polynomials is

φ(x) = Qs(x) eHx0Dc̃ ξ(x)

and the constraints to be imposed on the diagonal entries of Dc̃ in order
to get hypercomplex Appell polynomials are

c̃2k = c̃2k−1 =

(
1
2

)
k(

n+2s
2

)
k

c̃0, k = 1, 2, . . . ; n > 1, s = 0, 1, 2, . . . .

Such constraints are achieved like in Theorem 3.1, but taking into
account that the action of ∂x on the vector ξ(x) is performed by the
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matrix H̃sQs(x), where

(H̃s)ij =

 −(n+ i+ 2s− 1), i = j + 1 ∧ j even
−i, i = j + 1 ∧ j odd
0, otherwise, i, j = 0, 1, . . . ,m.

This matrix results from the fact that

∂x(xkQs(x)) =

{
−k xk−1Qs(x), k even
−(n+ k + 2s− 1)xk−1Qs(x), k odd.

4. Special families of monogenic Appell polynomials

We recall that the real Appell polynomials, pk(x), may also be char-
acterized in terms of their exponential generating function of the form
(see, for example, [4])

f(t)etx =
+∞∑
n=0

pn(x)
tn

n!
,

where

f(t) =
+∞∑
s=0

cs
ts

s!
, c0 6= 0.(16)

The creation matrix H and formula (16) are the essential tools to get
the transfer matrix M = f(H) (see [1, Theorem 3.2]) whose action
is to change the vector of monomial powers ξ(x) into the associated
Appell vector p(x), i.e.,

p(x) = f(H)ξ(x) = Mξ(x).

The choice of the coefficients (14) with c̃0 = 1 gives the sequence
{P(n)

k (x)}k≥0 introduced in [21] which allows to define a generalized
exponential generating function in the hypercomplex setting by

(17) Expn(x) ≡ ex0F (x) =
+∞∑
k=0

P(n)
k (x)

k!
, x ∈ An,

where

F (x) =
+∞∑
s=0

c̃s
xs

s!
.

Due to the homogeneity of P(n)
k (x), we have

(18) Expn(tx) =
+∞∑
k=0

P(n)
k (x)

tk

k!
,
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showing that the generating function of the hypercomplex Appell se-
quence {P(n)

k (x)}k≥0 is of the form G(x, t) = Expn(tx), x ∈ An, t ∈ R.

Remark 4.1. In the complex case, G(x, t) = etx, x ∈ C, t ∈ R is
the generating function of the basic Appell sequence {xk}k≥0. Thus,
P(n)

k (x) behave like monomial functions in the sense of the complex
powers wk = (x0 + ix1)k, k ≥ 0.

Using the hypercomplex exponential function (17) we define gener-
alized hypercomplex Appell polynomials, in general non-homogeneous,
as follows:

Definition 4.2. The sequence {ψk(x)}k≥0, whose generating function
is G(x, t) = f(t)Expn(tx), x ∈ An and f(t) a formal power series as
in (16), is called generalized hypercomplex Appell sequence.

The function f(t) coincides with the one appearing in the generating
function of real Appell polynomials and the Cauchy product of (16) by
(18) leads to

f(t) Expn(tx) =
+∞∑
k=0

ψk(x)
tk

k!
,

with

ψk(x) =
k∑

s=0

(
k

s

)
csP

(n)
k−s(x).

Therefore, arguments similar to the ones used in the proof of Theorem
3.2 in [1] lead to the following result.

Theorem 4.1. Let H be the creation matrix defined by (1). If G(x, t) =
f(t)Expn(tx) is the generating function of the generalized hypercomplex
Appell sequence, then the transfer matrix M of order m + 1 is the
nonsingular matrix f(H).

However, in this case, M = f(H) transforms the vector

ξ(P(n)(x)) = [P(n)
0 (x) P(n)

1 (x) · · ·P(n)
m (x)]T

into the generalized hypercomplex Appell vectorψ(x) = [ψ0(x) · · · ψm(x)]T ,
that is

ψ(x) = f(H) ξ(P(n)(x)).

We notice that, when x = 0, ξ(P(n)(x0)) ≡ ξ(x0) while the compo-
nents of ψ(x0) are the classical real Appell polynomials entries of the
vector p(x0).

Applying the results of [1] and [37], different kinds of generalized hy-
percomplex Appell polynomials can be derived by an appropriate choice
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of f(t). The transfer matrices for generalized hypercomplex Bernoulli,
Frobenius-Euler, and monic Hermite polynomials are(

m∑
k=0

Hk

(k + 1)!

)−1

, (1− λ)(eH − λI)−1,

m∑
k=0

(−H2)k

22kk!
,

respectively.
The form of the transfer matrices stresses again the special role of

the creation matrix H. For the value λ = −1 in the transfer matrix of
generalized hypercomplex Frobenius-Euler polynomials, we get gener-
alized hypercomplex Euler polynomials (see [22]).
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