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Abstract

We study the Home Care Problem under uncertainty. Home Care refers to medi-

cal, paramedical and social services that may be delivered to patient homes. The

term includes several aspects involved in the planning of home care services, such as

caregiver-to-patient assignment, scheduling of patient requests, and caregiver rout-

ing. In Home Care, cancellation of requests and additional demand for known or new

patients are very frequent. Thus, managing demand uncertainty is of paramount

importance in limiting service disruptions that might occur when such events real-

ize. We address uncertainty of patient demand over a multiple-day time horizon,

when assignment, scheduling and routing decisions are taken jointly, both from a

methodological and a computational perspective. In fact, we propose a non-standard

cardinality-constrained robust approach, analyse its properties, and report the re-

sults of a wide experimentation on real-life instances. The obtained results show

that, for instances of moderate size, the approach is able to efficiently determine

robust solutions of good quality in terms of balancing among caregivers and number

of uncertain requests that can be managed. Also, the robustness of the solutions

with respect to possible realizations of uncertain requests, evaluated on a small sub-

set of instances, appears to be significant. Furthermore, preliminary experiments

on a decomposition method, obtained from the robust one by fixing the scheduling

decisions, show a drastic gain in computational efficiency, with the determination
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of robust solutions of still good quality. Therefore, the approach appears to be very

promising to cope with robustness even on Home Care instances of larger size.

Keywords: Home Care, Patient Demand Uncertainty, Robust Optimization

1 Introduction

The design of efficient Home Care Services is a relatively new and very challenging

area of study in Operations Research, which is motivated by the ever increasing age

of population and the consequent need to reduce hospitalization costs. The term

Home Care Services refers to medical, paramedical and social services that may

be delivered to patient homes. It comprises several aspects, such as caregiver-to-

patient assignment, scheduling of patient requests, and caregiver routing. Hence,

the overall Home Care decisions are very complex to address in a rigorous and formal

way. For this reason, the different planning aspects have generally been considered

separately in the literature (e.g., [18]). Furthermore, whereas there now exists a

fairly large number of heuristic procedures (see for example [2], [5], [11], [13], [14],

[23], [24], [25], [27], [29]), very few exact approaches have been proposed dealing

simultaneously with the different planning aspects in Home Care. We mention here

[16], [28] (on a daily perspective) and [32], by referring to [15] for a recent and

comprehensive review on Home Care planning.

An additional exact approach has been designed in [7], where the authors use the

concept of pattern to jointly address: (i) the assignment of caregivers to patients;

(ii) the scheduling of the patient requests in a given planning horizon; and (iii)

the construction of the daily tours for the caregivers, indicating the sequence of

patients that each caregiver must visit every day. Patterns have been used also as a

decomposition tool to solve larger instances than the ones addressed in [7], leading

to pattern-based two phase approaches to Home Care [34].

Although the Home Care problem literature is now reasonably broad, very few

works address the issue of uncertainty in the problem data. Precisely, in [10] the

problem of assigning a set of patients to a set of caregivers over a time horizon

is considered, imposing that exactly one caregiver is assigned to each patient, and

assuming that the amount of working time required by each patient is uncertain. A

cardinality-constrained robust assignment model is proposed and tested on real-life

instances. In [35], the Home Care scheduling and routing problem with stochas-

tic service times is addressed. A stochastic programming model with recourse is

proposed, which is then transformed into a classical set partitioning problem and

an elementary shortest path problem with resource constraints, by approximating

the expected penalty function for late arrival at a patient. A branch and price

approach is designed and validated by means of numerical experiments. The case

of stochastic service times is also addressed in [30], where the authors propose a
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two-stage approach, based on integer linear stochastic programming, to deal with

staff dimensioning in Home Care. Finally, uncertainty on the availability of the

caregivers is considered in [26], where a matheuristic is proposed to handle the case

where caregivers are unexpectedly unable to operate. We conclude this short sur-

vey on uncertainty in Home Care by mentioning [31], where a robust optimization

model for dispatching technicians under stochastic service times is proposed within

a branch and price framework. In fact, the paper refers to a problem that, although

related to a different application context, presents some similarities to the Home

Care one.

The goal of this paper is to fill the literature gap between papers dealing with

deterministic Home Care scenarios and papers addressing uncertainty in Home Care,

by studying the Home Care problem where caregiver-to-patient assignment, schedul-

ing of patient requests, and caregiver routing are taken into account jointly over a

given multiple-day time horizon, and patient demand is subject to uncertainty. In

particular, we generalize the cardinality-constrained robust framework proposed in

[3] to extend the joint approach of [7] in an original manner. To the best of our

knowledge this is the first time that a robust framework is applied to the Home Care

problem, when assignment, scheduling and routing decisions are jointly addressed

over a given time horizon. More generally, this is the first time that a cardinality-

constrained robust framework is applied, in the proposed form, to a complex vehicle

routing problem such as the one arising in Home Care. We think that such a gen-

eralized robust framework could inspire the proposal of similar robust models for

other relevant routing problems ([17],[6]).

We remark also that scenarios with uncertain requests have already been ad-

dressed in the Vehicle Routing literature, but with different characteristics with

respect to the ones considered in this paper, and solely within the framework of

stochastic optimization. For example, in [1] the authors assume that some cus-

tomers are known at planning time, while others are dynamic. The goal is to service

as many customers as possible given a fixed number of vehicles, assuming that

stochastic information is available for the dynamic customers. A multiple scenario

approach is proposed which continuously generates and solves scenarios that include

both static and dynamic requests, and the plan is selected via a consensus function.

On the other hand, [12] presents a two-stage recourse problem in which the vehicle

routes are selected before the uncertain customer demands are realized. Once the

demands are observed, a recourse decision is taken that amends the routes with re-

turns to the depot, and a Tabu search heuristic is proposed to solve the problem. A

similar recourse function is proposed in [21], which resembles the kind of robustness

studied in this work, but for stochastic optimization problems: in case of failure,

the recourse is to go to the depot and continue the route. Finally, for scenarios with

mandatory as well as optional customers, and assuming stochastic travel and service
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times, the recently published paper [4] suggests to design initial routes serving the

mandatory customers, and then to perform insertions of the optional customers be-

tween mandatory customers, with the intent of skipping some optional customers in

case the realized service and travel times are larger than the planned ones. Skipping

is based on a dynamic programming approach.

The structure of the paper is as follows. The deterministic or nominal Home

Care problem studied in this paper is described in Section 2.1 Then, a robust Home

Care counterpart is presented in Section 3 together with the robust approach we

propose, which generalizes the cardinality-constrained one. The results of computa-

tional experiments on real-life instances are given in Section 4, and some concluding

remarks are made in Section 5.

2 Nominal Home Care

The nominal Home Care Problem (HCP), as introduced in [7], is defined on a com-

plete directed network G = (N ∪ {0}, A), where each node j ∈ N = {1, . . . n}
corresponds to a patient. The node 0 is used to denote the “depot”. All caregivers

start their tour from the depot and come back to the depot at the end of their

working day, for each day of the planning horizon W . Each caregiver is character-

ized by a “skill” representing the level of treatment the caregiver can provide when

assisting a patient. A hierarchical structure of the set K of skills is assumed, so that

a caregiver with skill k can work requests with skill up to k. In the following, O will

denote the set of the caregivers available in the planning horizon, and Od ⊆ O will

be the subset of the caregivers available on day d, for each d ∈W . Moreover, we are

given a care plan rj for each patient j ∈ N . The care plan associated with patient

j specifies the number of visits of each skill required by j in the planning horizon.

In [7], assignment, scheduling and routing decisions are “linked” by means of

the concept of pattern, which represents a template for scheduling the patient

requests along W . More precisely, it is assumed that, for each patient j, the requests

expressed by the care plan rj can be operated according to a set Pj of a priori given

patterns. Formally, denoting by P = ∪nj=1Pj the set of all patterns, and assuming

that each patient requires at most one visit per day, each pattern p ∈ P is such that

p(d) = 0 if no service is offered on day d, while p(d) = k indicates that a visit of

skill k is operated according to pattern p on day d. For example, if rj = (2, 1), that

is j requires two visits of skill 1 and one visit of skill 2, and if W is a week, from

Monday to Friday, then the requests of j could be operated according to the pattern

(1, 0, 1, 0, 2), indicating that the two visits of skill 1 will be delivered on Monday and

1We emphasize that, although “deterministic” and “nominal” are synonym in this context, “nominal”
will be preferably used, since this is the denomination commonly adopted in the robust optimization
literature [3].
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on Wednesday, whereas the visit of skill 2 will be delivered on Friday. The pattern

p ∈ Pj , selected for patient j, thus determines the scheduling of the requests of j,

and it has to be compatible with his care plan, guaranteeing the required number

of visits of appropriate skill.

Given the input data above, HCP thus consists of: (i) assigning a pattern from

Pj to each patient j, so scheduling the requests of j, defined by the care plan rj ,

during the planning horizon (care plan scheduling); (ii) assigning a caregiver to

each patient j for each day of the planning horizon in which a request of j has been

scheduled (caregiver assignment); (iii) determining the tour of each caregiver for

each scheduled day (routing decisions).

In addressing assignment, scheduling and routing decisions, the skill constraints

(i.e., the compatibility between the skills associated with the patient requests and

the skills of the caregivers), the continuity of care (i.e., at most T caregivers can

be assigned to each patient in W , for a given T ), and caregiver workday length

constraints, taking into account the travel time along the links of the network, and

the service time at the patients, must be satisfied. The objective function guiding

the three groups of decisions is based on a social equity criterion, i.e. the caregiver

workload balancing. Alternative objective functions, e.g. based on operating cost

minimization, could be also considered [9].

Below we list the main HCP notation. The same notation will be used, in the

next section, to define the proposed Home Care robust counterpart.

W planning horizon

O set of skilled caregivers

Od ⊆ O set of caregivers available on day d, for each d ∈W
K set of skills

sω ∈ K skill of caregiver ω, ω ∈ O
Dω workday length of caregiver ω, ω ∈ O
rjk number of visits required by j in W relatively to skill k, j ∈ N , k ∈ K
aj service (or assistance) time at patient j, j ∈ N ∪ {0} (a0 = 0)

tij traveling time from node i to node j, (i, j) ∈ A
T maximum number of caregivers that can visit each patient in W .

3 Robust Home Care

3.1 Why robustness?

In HCP, the input data are assumed to be certain. In particular, all patient care

plans are assumed to be known in advance. However, in some practical settings,

this assumption may be unrealistic. Indeed, patient requests are usually subject to

uncertainty in the considered time horizon. Precisely, at the moment of planning,
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some requests are certain, meaning that we know for sure that they will need to be

served, while others are uncertain. The uncertain requests can represent the arrival

of additional demand for known or new patients. This additional demand is usually

estimated, at the beginning of the planning horizon, by means of suitable forecasting

tools [20]. However, uncertain requests can also model demand, for patients already

assisted, that might be cancelled. This happens in contexts mainly dedicated to

palliative care and terminal patients, due to the nature of the eligible patients.

In both cases, if we want to adopt a deterministic approach, we have two options:

either disregard the uncertain requests and solely optimize on the certain ones, or

consider all requests (including the uncertain ones) as certain. Clearly the first

approach, that only serves certain requests, will produce cheaper solutions; yet, if

any of the uncertain requests is confirmed later on during the time horizon, likely

these may not be met, giving rise to service disruptions. The second approach, on the

other hand, is very conservative, being able to serve all the uncertain requests, but

producing very costly plans that may turn out to be strongly underused. Moreover,

trying to plan all the uncertain requests can lead to unfeasibility, if the caregiver

workday lengths are not sufficient to satisfy all of them.

Therefore, we look for a trade-off between solution cost and feasibility. This is

the natural setting for Robust Optimization. The literature on Robust Optimization

nowadays is vast and many different robust frameworks can be chosen. We decided

to suitably generalize Bertsimas & Sim framework [3], also known as Γ-robustness

or cardinality-constrained robustness, since it offers good control on the degree of

conservatism of the computed solutions. This will be deeply specified next.

3.2 The sequence-preserving Γ-Robust Home Care Problem

In order to take into account the uncertainty of some patient requests, we generalize

the HCP, described in Section 2, as follows: each patient j is now associated with

both a certain care plan r̄j , corresponding to the certain skilled requests of j, and

an uncertain care plan r̃j , corresponding to the uncertain skilled requests of j. To

model this, we duplicate each node of the logistic network, by associating each

patient j ∈ {1, . . . , n} with a corresponding uncertain “copy”, denoted by j+n. We

therefore associate the “original” (i.e., certain) copy j ∈ N̄ = {1, . . . , n} with the

certain skilled requests in r̄j , and the uncertain copy j + n ∈ Ñ = {n + 1, . . . , 2n}
with the uncertain skilled requests in r̃j . Notice that r̃j or r̄j could be missing for a

patient j: the first case verifies if j is a deterministic patient, whereas the latter can

be used to model j as a new patient. A pattern is then assigned to each node in N̄ as

well as to each node in Ñ , to schedule certain and uncertain requests, respectively.

Consider a set of tours, over the planning horizon, which includes all the cer-

tain and the uncertain requests, and a caregiver assignment to these tours. As we

already observed, these tours represent a very conservative solution, since all the
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uncertain requests are scheduled. On the other hand, this is unlikely to happen,

and only a subset of the uncertain requests will realize, making this kind of solution

unnecessarily expensive.

To achieve a compromise between degree of robustness and solution cost, we

consider scenarios where at most Γ uncertain requests (or, equivalently, at most Γ

nodes from the set Ñ) in each tour may realize, where Γ is a given parameter. More

formally:

Definition 1 Given the planning horizon W with length |W | and the set O of |O|
caregivers, a set of tours C, with cardinality |W ||O|, is a complete set of tours if

it includes all the certain and all the uncertain requests. A tour in C is called a

complete tour.

Given a complete set of tours C, for any tour τ ∈ C, let N̄(τ) and Ñ(τ) be the

subsets of certain and uncertain nodes in the tour, respectively.

Definition 2 A Γ-tour of τ is a tour composed of all the nodes in N̄(τ) and no

more than Γ nodes in Ñ(τ).

We say that a complete tour τ generates a set of Γ-tours. These Γ-tours differ

for the subset of (at most Γ) uncertain nodes of τ that they include. Figure 1 shows

an example of a complete tour τ - Fig. 1(a), and a subset of Γ-tours generated from

it, for Γ = 0, 1, 2 - Fig. 1(b)-(h). The dark nodes are the certain ones, while the

gray nodes are uncertain. R denotes the length, or workload, of each tour, and it is

composed both of service times at patients - 45 minutes for each visit- and routing

times reported on the arcs. Note that, with a workday length fixed to 240, the most

conservative scenario where all the uncertain requests are scheduled - Fig. 1(a) -

would be infeasible. In contrast, each generated Γ-tour - Fig. 1(b)-(h) - would be

feasible.

Now we introduce the proposed concept of Home Care robustness by considering

a specific subset of the Γ-tours, according to the following definition:

Definition 3 A sequence-preserving Γ-tour is a Γ-tour whose nodes represent a

subsequence of the complete tour that generated it.

In other words, a sequence-preserving Γ-tour is a particular type of Γ-tour derived

from the complete tour by deleting some uncertain nodes, without changing the order

of the remaining ones. Notice that sequence-preserving Γ-tours are significant from

an operational perspective, since caregivers may not want to alter the order of the

patient visits, planned via the complete set of tours, in case some uncertain requests

do not realize or are not confirmed on a daily basis.
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Figure 1: A complete tour and some generated Γ-tours

Definition 4 A complete set of tours C is a robust set of tours with respect to Γ

if, for each tour τ ∈ C, the length of each sequence-preserving Γ-tours generated by

τ does not exceed the workday length of the caregiver assigned to τ .

According to the definition above, C is a robust solution, with respect to Γ, if

for each tour τ ∈ C, the caregiver assigned to τ is able to perform the tour whatever

the (at most Γ) uncertain requests of τ will possibly realize, without changing the

order of the remaining visits. Equivalently, the maximum length of the sequence-

preserving Γ-tours generated by τ must be less than or equal to the workday length

of the caregiver. Hereafter each sequence-preserving Γ-tour showing the maximum

length will be referred to as a critical Γ-tour of τ . For example, the Γ-tours in

Figure 1 are the sequence-preserving Γ-tours for the represented complete tour, for

Γ = 0, 1, 2, respectively. By recalling that R denotes the length of each tour, then

the Γ-tour in (b) is the critical one for Γ = 2, while the ones in (e) and (f) are critical

for Γ = 1. Notice that, if the complete tour is assigned to a caregiver with workday

length 240, the assignment turns out to be feasible, according to the considered

form of robustness, for Γ = 0, 1, 2. In fact the length of each critical tour (and,

consequently, of each sequence-preserving Γ-tour) is less than or equal to 240.
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Based on this form of robustness, the sequence-preserving Γ-Robust Home Care

Problem, or sRHCΓ for short, consists in jointly addressing:

• care plan scheduling: assigning a pattern to each patient j, and a pattern to its

uncertain “copy” j + n, so scheduling all his certain requests, expressed by r̄j ,

and all his uncertain requests, expressed by r̃j , during the planning horizon;

• caregiver assignment: assigning caregivers to each patient j and to the un-

certain “copy” j + n, for each day where a request, respectively certain and

uncertain, has been scheduled;

• daily caregiver routing: determining the tour of each caregiver for each sched-

uled day, so that the resulting complete set of tours constitutes a robust set of

tours with respect to Γ.

As for the nominal case, the skill constraints and the continuity of care have to

be taken into account. Furthermore, as in HCP, the objective function guiding the

three groups of decisions aims at balancing the caregiver workload. This will be

better specified in 3.2.3.

We want to remark that, although an upper bound is put on the number of

admitted uncertain events in any feasible robust solution, in line with the cardinality-

constrained robust framework in [3], the proposed form of Home Care robustness is

not a pure application of the cardinality-constrained robust framework, indeed. In

fact, by exploiting the typical structure of the vehicle routing solutions, i.e. a set

of tours, the upper bound Γ|O||W | is equally partitioned among the tours (at most

Γ uncertain requests per tour are in fact admitted), in an attempt to balance the

uncertainty among the caregivers, thus providing more balanced working conditions

also in uncertain scenarios. The robust framework in [3] is therefore generalized in

an uncertainty balancing perspective.

3.2.1 A robust mathematical model

In order to model sRHCΓ, with a little abuse of notation we use N = {1, . . . , 2n}
and A to denote, respectively, the set of patient nodes and the set of the arcs of

the enlarged complete logistic network. A “+” beside N or one of its subsets (e.g.,

N̄+) will be used to indicate that we are including node 0, i.e. the depot. Again,

with a little abuse of notation, we use rj and Pj to denote both the certain and the

uncertain care plans and pattern sets, respectively. The distinction between certain

and uncertain being provided by the patient index j.

Let us define the following families of variables in order to model the care plan

scheduling, the caregiver assignment and the routing decisions:

zjp =

{
1 if pattern p is assigned to j

0 otherwise
j ∈ N , p ∈ Pj
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uωj =

{
1 if caregiver ω is assigned to j

0 otherwise
ω ∈ O, j ∈ N

xωdij =

{
1 if caregiver ω travels along (i, j) on day d

0 otherwise
(i, j) ∈ A, d ∈W , ω ∈ Od

Furthermore:

ydij ≥ 0 auxiliary flow variable, which represents the number of nodes visited

after i by a caregiver moving along (i, j) on day d, d ∈W .

Using the variables and notation above, the feasible set of sRHCΓ can be modeled

as follows:∑
(i,j)∈A

∑
ω∈Od

xωdij ≤
∑

p∈Pj :p(d)≥1

zjp ∀j ∈ N, ∀d ∈W (1)

∑
(i,j)∈A

∑
ω∈Od:sω≥k

xωdij ≥
∑

p∈Pj :p(d)=k

zjp ∀j ∈ N, ∀d ∈W, ∀k ∈ K (2)

∑
p∈Pj

zjp = 1 ∀j ∈ N (3)

∑
ω∈O

uωj ≤ T ∀j ∈ N (4)

xωdij ≤ uωj ∀(i, j) ∈ A,∀j ∈ N, ∀d ∈W, ∀ω ∈ Od (5)

uωj ≤
∑

(i,j)∈A

∑
d∈W

xωdij ∀j ∈ N, ∀ω ∈ O (6)

RωdSΓ ≤ Dω ∀d ∈W, ∀ω ∈ Od (7)∑
(i,j)∈A

xωdij =
∑

(j,i)∈A

xωdji ∀j ∈ N, ∀d ∈W, ∀ω ∈ Od (8)

∑
(0,j)∈A

yd0j =
∑
j∈N

∑
p∈Pj :p(d)≥1

zjp ∀d ∈W (9)

∑
(i,j)∈A

ydij −
∑

(j,i)∈A

ydji =
∑

p∈Pj :p(d)≥1

zjp ∀j ∈ N, d ∈W (10)

ydij ≤ 2n
∑
ω∈Od

xωdij ∀(i, j) ∈ A, d ∈W (11)

Constraints (1) state that at most one caregiver per day can visit j, if a visit

has been scheduled on that day for node j. Constraints (2) guarantee that, on

day d, for each skill k exactly one caregiver, of adequate skill, must visit j if a

service of that skill has been scheduled for j on day d. In particular, if two skill

levels are considered, caregivers of skill 1 can perform only visits of skill 1, whereas

caregivers of skill 2 can perform both types of visits. Constraints (3) ensure that

exactly one pattern is assigned to each patient. Notice that a pattern is assigned

to each patient and also to its uncertain copy, therefore we schedule all the certain
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and all the uncertain requests of each patient. The design variables xωdij thus model

a complete set of tours according to Definition 1. Constraints (4) express the care

continuity requirement, i.e. they bound the number of caregivers that can visit

each patient during the time horizon. Constraints (5) guarantee that a caregiver

can visit a patient only if assigned to the patient (linking between routing and

assignment variables). Furthermore, constraints (6) force uωj to zero if caregiver

ω never visits patient j during the week. Constraints (8) are the classical flow

conservation constraints on the routing variables. Constraints (9) and (10) are the

flow conservation constraints on the auxiliary y variables, which are introduced to

avoid subtours. They also guarantee the correct linking between scheduling and flow

variables. Constraints (11) link together routing and flow variables.

Finally, constraints (7) are introduced to guarantee that the complete set of

tours described by the design variables xωdij is a robust set of tours with respect to

Γ (see Definition 4). More precisely, for each day d and each caregiver ω ∈ Od,

RωdSΓ represents the maximum length amongst all the sequence-preserving Γ-tours

generated by the complete tour of ω on day d, say τ . That is, it is the workload

of a critical Γ-tour of τ , as previously defined. By imposing that such a maximum

workload cannot exceed the workday duration of ω, we ensure that all the sequence-

preserving Γ-tours generated by τ satisfy the daily length of ω. Thus, the solution

represents a robust set of tours, as required.

3.2.2 The robust approach

sRHCΓ is a very complex problem, since it involves assignment, scheduling and

routing decisions, plus uncertainty of the patient requests. Therefore, we start our

study by proposing a matheuristic approach to sRHCΓ rather than an exact solution

method. This is achieved by replacing each RωdSΓ expression, in constraints (7), by a

suitable upper approximation.

Given a tour τ , let A(τ) denote the set of arcs of τ , while wl(τ) denote its

workload. Furthermore, let tmaxj = max(i,j)∈A{tij} be the maximum travel time

amongst all arcs entering j, for each node j. Then:

Proposition 1 Given a complete tour τ and a sequence-preserving Γ-tour π gen-

erated from τ , the following expression is an upper bound on the workload of π:

U(π) =
∑

(i,j)∈A(π)∩A(τ)

(tij + aj) +
∑

(i,j)∈A(π):(i,j)/∈A(τ)

(tmaxj + aj) (12)

Proof: By definition, the workload of π is wl(π) =
∑

(i,j)∈A(π)(tij + aj). Now,

look at the expression U(π). For each arc (i, j) ∈ A(π), two cases happen. Either

(i, j) ∈ A(τ), too, and in such a case the travel time considered in U(π) is the exact

value tij . Or (i, j) /∈ A(τ). In this latter case, which verifies when the arc entering
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j in the tour τ has been removed when generating π, the exact travelling time tij is

over-estimated by tmaxj in U(π). Therefore U(π) ≥ wl(π). 2

The motivation for distinguishing between the arcs in A(π)∩A(τ), and the rest, is

that the former are fully characterized within the mathematical model by the design

variables xωdij , and their contribution to the workload of a sequence-preserving Γ-

tour π can then be expressed using such a characterization. Indeed, to further

simplify the upper bound computation, hereafter only the arcs in A(π) ∩A(τ) that

are incident to at least one certain node will be evaluated exactly, i.e. via the values

tij , whereas the travel times of the others, i.e. the ones whose end nodes are both

uncertain, will be over-estimated, too, via the values tmaxj .

Now let us formalize the problem of estimating the workload of each critical

sequence-preserving Γ-tour according to the just stated upper approximation. To

this end, let us introduce auxiliary decision variables vωdj , ∀j ∈ Ñ , d ∈ W , ω ∈ Od.
These are binary variables taking on value 1 if the uncertain node j ∈ Ñ is visited

on day d by caregiver ω (i.e., j belongs to a sequence-preserving Γ-tour of ω on day

d), 0 otherwise:

vωdj =

{
1 if j is visited by caregiver ω on day d

0 otherwise
j ∈ Ñ , d ∈W , ω ∈ Od.

Using the variables above, for each day d and each caregiver ω ∈ Od we study

the following upper approximation of RωdSΓ:

R̄ωdSΓ =
∑

(i,j)∈A:i,j∈N̄+

(tij + aj) · xωdij +
∑

(i,j)∈A:i∈Ñ,j∈N̄+

(tmaxj + aj) · xωdij +

max{
∑

(i,j)∈A:i∈N̄+,j∈Ñ

(tij + aj) · xωdij · vωdj +
∑

(j,i)∈A:i∈N̄+,j∈Ñ

(tji − tmaxi ) · xωdji · vωdj +

∑
(i,j)∈A:i∈Ñ,j∈Ñ

(tmaxj + aj) · xωdij · vωdj }

(13)

∑
j∈Ñ

vωdj ≤ Γ (14)

vωdj ∈ {0, 1} ∀j ∈ Ñ . (15)

Given a complete tour τ , modelled by the xωdij , and a sequence-preserving Γ-

tour π generated from it, whose uncertain selected nodes are defined by (14)− (15),
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the objective function in (13) estimates the workload of π by considering exactly

the contribution due to the arcs linking certain nodes as well as the depot (first

summation in (13)), and also the contribution of the arcs linking certain nodes and

depot to selected uncertain copy nodes, i.e. to nodes j ∈ Ñ such that vωdj = 1 (third

and fourth summation in (13)). Note that all such arcs belong to A(τ). On the other

hand, for the arcs (i, j) /∈ A(τ), and for the arcs in A(τ) linking selected uncertain

nodes, the traveling time of (i, j) is estimated from above via tmaxj . Therefore,

problem (13)-(15) looks for a critical sequence-preserving Γ-tour based on the just

stated over-estimation of the tour workload. From Proposition 1 we get R̄ωdSΓ ≥ RωdSΓ.

The model obtained from (1)− (11) by replacing constraints (7) with:

R̄ωdSΓ ≤ Dω ∀d ∈W, ∀ω ∈ Od (16)

thus represents a matheuristic to sRHCΓ. The following property can be easily

proved [33]:

Proposition 2 For each day d and each caregiver ω ∈ Od, the constraint matrix of

model (13)− (15) is totally unimodular (TU).

Therefore, by treating the design variables xωdij as constants, a standard technique

in Robust Optimization, each inner ILP model (13) − (15) can be replaced by its

Linear Programming relaxation and so, by strong duality, by its LP dual, leading to

a MILP formulation to the proposed sRHCΓ approximation. The complete model

is reported in Appendix A.

3.2.3 Guiding the Home Care decisions

In the computational experience described in Section 4 we have addressed a social

equity criterion, aiming at balancing the caregiver workloads. This kind of criterion

was also investigated in [7] and [34]. Precisely, we have considered the objective

function minmax, which minimizes the maximum caregiver utilization factor. In the

robust framework under study, the caregiver utilization factor is expressed as the

total workload of the caregiver during the planning horizon in the worst scenario,

i.e. by considering his critical tours, over his maximum possible workload. The

corresponding MILP model is thus (constraint numbers refer to Appendix A):

min m

(20)-(33)∑
d∈W

R̄ωdSΓ

|W |·Dω
≤ m, ∀ω ∈ O.

(17)
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Notice that the alternative balancing objective function, which maximizes the mini-

mum caregiver utilization factor, cannot be used in the same form investigated in [7]

and [34], since the corresponding optimal value is always 1. This is formally proved

in Appendix B to this paper.

3.2.4 Estimating the matheuristic approximation

To conclude, let us provide an estimate of the absolute error which is committed,

under the objective function minmax, when solving the proposed matheuristic ap-

proach rather than the exact one, which considers the exact workload of the critical

tours in (17) instead of the studied approximation R̄ωdSΓ. The analysis will be per-

formed by considering the set of the patients as partitioned into clusters. In real

Home Care instances, in fact, the set of the patients is usually clusterised. Precisely,

patients located in the same municipality form a cluster of nodes, such that the

distance between any pair of nodes within the cluster is very small compared to

the distance between nodes belonging to different clusters. Such intra-cluster dis-

tances can be usually assumed equal to a certain (small) value δ. In addition, the

inter-cluster distances depend only on the clusters, and not on the specific patients

within the clusters. This is the case of the Palliative Home Care data set we used in

Section 4, where the set of the patients is organized into 5 or 8 clusters. Note that

to consider a cluster organization of the patients is not a loss of generality, indeed,

since data sets where this kind of structure is not present correspond to a cluster

organization with clusters of cardinality one.

By exploiting the patient’s organization into clusters, in our experiments we used

the following inequalities, proposed in [7], to take under control the workday of the

operators in a computationally efficient way:∑
i∈(N\C)

∑
j∈C

xωdij ≤ 1 ∀C, ∀d ∈W, ∀ω ∈ Od. (18)

(18) impose that, for each cluster of patients C, and in each day of the plan-

ning horizon, each available operator enters C at most once. These cuts, referred

to as Exploit-Cluster, or EC, model a reasonable requisite in the studied Home

Care problem, since in the absence of time windows associated with patient visits,

stakeholders usually require that operators visit each municipality at most once per

day.

Below we provide an estimate of the error committed by the matheuristic when

(18) are used to enhance the approach. The estimate relies on the observation that,

due to the distance structure, any permutation of a subset of patients belonging to

the same cluster induces the same identical workload contribution to the objective

function. In the expression, Nc denotes the number of clusters, Tmaxc and Tminc are

the maximum and the minimum inter-cluster distance, respectively. For the proof
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of the statement we refer to Appendix C to this paper.

Proposition 3 For any feasible solution, the absolute error committed by the matheuris-

tic approach, under the objective function minmax, with respect to the objective func-

tion value of sRHCΓ is bounded from above by:

|W ||O|(Nc(Tmaxc − Tminc ) + (Γ− 1)(Tmaxc − δ)). (19)

Therefore:

Corollary 1 The absolute error committed by the matheuristic approach, under the

objective function minmax, with respect to the optimal value of sRHCΓ is bounded

from above by |W ||O|(Nc(Tmaxc − Tminc ) + (Γ− 1)(Tmaxc − δ)).

Note that, according to the stated result, the error committed by the proposed

upper approximation can be small when the number of the caregivers is limited,

and the addressed Home Care instances are characterised by a few, and quite dense,

clusters. This is the case of the data set investigated in Section 4, where |W | = 5,

and the number of the clusters is either 5 or 8. Clearly, the error also depends on the

robustness parameter Γ, which is however a constant for the considered approach.

4 Computational experiments

We report the results of some experiments on Robust Home Care instances, which

have been generated starting from some benchmarks in the literature. The aim

has been to assess the efficiency of the sequence-preserving Γ-Robust Home Care

approach, proposed in this paper, the quality of the returned solutions and their

degree of robustness. Also, we wanted to have some indications on the character-

istics of the instances which can be affordably addressed via the presented robust

approach.

Traditionally, the efficiency and the efficacy of robust approaches are investigated

via the so-called “Price of Robustness”. That is, by estimating the price that we

are willing to pay to guarantee robustness, using robust solutions instead of the

“cheaper” nominal ones [19], which may become unfeasible when some uncertain

events realize. In the Home Care context under study, instead, the situation is

radically different. In fact, since each nominal solution only takes into account

certain requests, it becomes unfeasible when uncertain requests realize. In order

to take into account such realized requests, the computed nominal solutions should

be modified by scheduling the new requests over the time horizon, and inserting

them into some caregiver tours, provided that the skill constraints and the workday

capacity constraints remain satisfied. But, as the results presented in the rest of

this section reveal, also for instances apparently of small size, with 40 patients and
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2 caregivers, computing nominal solutions may be as difficult as determining robust

solutions. Therefore, it may not be convenient to invest in the nominal solution

computation, and then try to modify the found solutions, if the robust approach

returns solutions of good quality and degree of robustness with about the same

computational effort.

The validity of this kind of assessment is corroborated by the fact that, as shown

in Section 4.5, if we fix the scheduling decisions by assigning a pattern in Pj to each

patient j (i.e. we fix the decision variables zjp in constraints (3)), so decomposing

the robust approach along the lines outlined in [34], then the sequence-preserving Γ-

Robust Home Care approach proves to gain a lot in terms of computational efficiency,

still returning robust solutions of good quality. Therefore, it appears to be a solid

tool to face with instances of reasonable size, and a basic block to address instances

of larger size, via decomposition approaches. The latter aspect, preliminary assessed

in this paper, is the subject of current investigation.

The main achievements that are shown can be summarized as follows:

1. the proposed matheuristic approach is able to efficiently address Robust Home

Care instances of moderate size, in terms of number of patients and caregivers,

by returning solutions near to the optimal ones, and the efficiency does not

deteriorate too much as parameter Γ increases; note that, despite the moder-

ate size, such instances as well as their nominal counterparts are difficult to

address;

2. the computed solutions are well-balanced, i.e. the average percentage difference

between the maximum and the minimum caregiver utilization factor (Avg∆UF )

is very small; concerning the number of uncertain requests that are selected in

the critical tours, this number varies greatly, and tends to increase with Γ;

3. the proposed upper approximation of the caregiver utilization factor is a good

estimate, since a small increase of the objective function value is empirically

testified;

4. the degree of robustness of the computed solutions, experimented on a subset

of scenarios, and measured in terms of percentage of uncertain visits that can

be scheduled in case they realize, is significant and tends to increase with Γ;

5. by fixing the scheduling decisions, the efficiency of the approach drastically im-

proves, with a very small deterioration of the quality of the returned solutions

in terms of Avg∆UF and approximation error; on the contrary, the number of

the selected uncertain requests increases; therefore, this kind of decomposition

seems to be suitable to successfully address robust instances of larger size.
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4.1 The robust data set

The robust instances have been generated starting from the data set used in [7] and

in [34], which is publicly available at http://www.di.unipi.it/optimize/.

It comprises real world Clusterised Home Care instances provided by one of

the largest Italian public medical care unit, on a 5-day planning horizon. These

instances are characterized by 2 types of hierarchical skills, travelling times obtained

via Google Maps, and a service time at the patients equal to 45 minutes. Specifically,

we selected 12 source instances among the smaller ones in the data set. Each source

instance refers to a week in January 2006, and it is characterized by 40 or 60 patients

organized in 5 or 8 clusters or municipalities (4 combinations). Furthermore, there

are 3 instances, namely 0, 1 or 2, for each combination.

From each source instance, 9 robust instances have been generated by considering

the combinations of:

• α, that represents the percentage of the nodes of the source instance which are

considered certain (0.7, 0.8 and 0.9),

• 3 random seeds for generating the uncertain requests (A, B and C hereafter),

thus summing up to 108 robust instances. Each instance is thus identified by

a string reporting the following fields separated by a “-” character: the week, the

number of municipalities, the number of patients, the instance identifier in the group

(i.e. 0, 1 or 2), the value of α and the seed (i.e. A, B or C).

With respect to the source instances, the robust instances with 40 patients are

characterized by one caregiver of skill 1 with a workday of 8 hours, and one caregiver

of skill 2 with a workday of 6 hours. On the other hand the robust instances with 60

patients have an additional caregiver of skill 1 (therefore, 2 caregivers of skill 1, and

1 caregiver of skill 2). The reduction of the number of the caregivers in the robust

instances is motivated by the fact that, in the robust scenarios, only a subset of the

requests, i.e. the certain ones, must be covered necessarily. Moreover, the source

instances exhibited a quite low utilization factor for the caregivers. Finally, for each

robust instance the care continuity has been set to 1 (i.e. T = 1), while the patterns

have been generated by using the flow based method proposed in [7].

The experiments have been performed on an Intel Xeon E5501 2.00 GHz with

4 processors using Cplex 12.3. The time limit has been set to 12 hours (43.200

seconds), while the memory limit is 1 Gbyte.

4.2 Assessing the efficiency of the approach

The analysis will be performed separately for the robust instances with 40 patients

and for the larger ones, with 60 patients. For each robust instance both the nominal

counterpart, i.e. the instance obtained by deleting all the uncertain requests, and
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Figure 2: 40 patients - optimality gap

the more conservative counterpart, i.e. the instance obtained by treating all the

uncertain requests as certain, have been solved, in order to better assess the impact of

the considered levels of robustness. Specifically, Γ = 1 and Γ = 2 have been analysed

for the robust instances with 40 patients, whereas Γ = 1 has been investigated for the

instances with 60 patients. The figures related to the more conservative counterparts

are not reported since for all of them the solver certified the instance unfeasibility.

4.2.1 Instances with 40 patients

The graph in Figure 2 reports the average optimality gaps, i.e. the average values,

across the seed, for the percentage relative gap with respect to the best lower bound

obtained in the branch and bound tree, while the one in Figure 3 shows the average

computational time (in seconds).

Observe that, although both the nominal and the robust instances appear dif-

ficult to solve, the returned optimality gaps are quite small, especially for the con-

figuration with 8 clusters. In particular, the robust approach shows to be able to

compute solutions near to the optimal ones. Also observe that there are groups of

instances in which the optimality gaps of the solutions provided by the robust model

are smaller than the ones returned by the nominal model. For the robust model with
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Γ = 1, an explanation for this fact may be that, for almost every group of instances,

the number of terminations due to a memory limit decreases with respect to the

nominal model. This implies that when robustness is considered, the portion of the

branch and bound tree explored is greater than in the nominal case.

More in detail, whereas the nominal instances appear to become more difficult

when α, i.e. the percentage of the certain requests, increases, for the robust approach

the case Γ = 2 appears to be computationally harder than Γ = 1. The worst

scenario appears to be α = 0.8 combined with Γ = 2, especially for the instances

with 5 clusters. This is quite reasonable, indeed, since this is the scenario where the

number of the certain requests, which must be necessarily served, is quite high and,

at the same time, the number of the subsets of uncertain requests is significant, so

that the number of the sequence-preserving Γ-tours to be considered in the inner

maximization problems may determine an explosion of the problem solution space.

4.2.2 Instances with 60 patients

The robust instances with 60 patients proved to be more difficult to address. In

particular, within the considered time and memory limit, a solution was found for

17 over 27 instances with 5 clusters, and for 13 over 27 instances with 8 clusters. In
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Table 1: 60 patients: performance metrics (AvgIPTime is in seconds)

Instance NInst AvgIPTime AvgGap

0106-5-60-0-0.7 1 43200.00 11.61%
0106-5-60-0-0.8 2 43200.00 5.62%
0106-5-60-0-0.9 1 43200.00 6.71%

0106-5-60-1-0.7 3 43200.00 1.11%
0106-5-60-1-0.8 2 2845.00 0.00%
0106-5-60-1-0.9 3 19252.67 0.19%

0106-5-60-2-0.7 2 43200.00 17.98%
0106-5-60-2-0.8 2 43200.00 5.59%
0106-5-60-2-0.9 1 43200.00 14.94%

0106-8-60-0-0.7 0 n.a. n.a.
0106-8-60-0-0.8 1 43200.00 6.76%
0106-8-60-0-0.9 1 43200.00 8.08%

0106-8-60-1-0.7 1 43200.00 12.59%
0106-8-60-1-0.8 2 43200.00 10.59%
0106-8-60-1-0.9 1 43200.00 5.14%

0106-8-60-2-0.7 3 39937.33 3.97%
0106-8-60-2-0.8 2 43200.00 16.30%
0106-8-60-2-0.9 2 43200.00 6.47%

addition, one instance with 5 clusters and one with 8 clusters proved to be unfeasi-

ble. The optimality gap was 5.62% in the case of 5 clusters (average gap over the 17

feasible instances), and 8.55% in the case of 8 clusters (average gap over the 13 fea-

sible instances), therefore greater, on average, than the one related to the instances

with 40 patients. Table 1 details the obtained results. In this table, column NInst

reports the number of instances of each group for which a solution was found, and

string “n.a.” is used to point out that no feasible solution was found. The other

columns report the average computational time, in seconds (AvgIPTime), and the

average optimality gap (AvgGap).

4.3 Assessing the robust solution quality

Also these results are presented separately for the instances with 40 patients and

for those with 60 patients. The quality of the solutions will be given in terms

of the metric Avg∆UF , number of uncertain requests selected in the critical tours

(or equivalently number of vjs variables set to one), and error committed by the

matheuristic against the exact approach, estimated theoretically in Section 3.2.4

(see Proposition 3). Precisely, the empirical relative error has been computed by

determining, a posteriori, the critical tours (note in fact that the model (20)− (33)
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does not return such tours explicitly), and calculating the difference between the

upper estimate, addressed by the inner ILP model (13) − (15), and the sum of

the corresponding, exact, workloads. To determine the critical tours, the selected

uncertain requests of the complete tours must be found; i.e., for each day d and each

caregiver ω ∈ Od, the nodes j ∈ Ñ such that vωdj = 1. This has been obtained by

ordering the uncertain nodes in the complete tour of ω on day d in a nonincreasing

way with respect to their cost in the objective function of (13) − (15) (notice that

the design variables xωdij are constant at this level), and selecting the first positive Γ

ones according to this ordering (or all the positive ones, if their number is less than

Γ).

4.3.1 Instances with 40 patients

Figure 4 reports the metric Avg∆UF , i.e. the average percentage difference between

the maximum and the minimum caregiver utilization factor. Interestingly, the robust

solutions appear to be more equitable than the nominal ones in terms of caregiver

utilization factor. This is especially true for the configuration with 5 clusters and

for the setting Γ = 1.

Another interesting issue is the quality of the computed solutions in terms of
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number of uncertain requests that are selected in the robust tours. At this regard,

Figure 5 shows this number compared to the total number of uncertain requests.

This number, given by the average number of the vjs variables set to one in the

provided solutions, varies greatly across the groups of instances and also across the

robust instances within the same group. While it is reasonable to assume that, for a

given source instance, such a number tends to increase as the number of certain visits

decreases (i.e. when α decreases), it clearly depends on the scheduling of the requests

along the planning horizon, via the selected patterns, and on the distribution of the

uncertain visits across the skills. Figure 5 shows that the average number of selected

uncertain requests increases when going from Γ = 1 to Γ = 2, but there are groups of

instances for which it remains quite far from the total number of uncertain requests.

By addressing the quality of the proposed matheuristic approximation, Figure

6 reports the empirical percentage relative error committed by the approach. As

shown, this error is very small, especially for the configuration with 5 clusters.

Finally, as an additional information we report that, when Γ = 1, the uncertain

visits are almost everywhere in charge of the more skilled caregivers, whereas the

distribution is more balanced among the caregivers when Γ = 2. Precisely, when

5 municipalities are considered, the number of instances for which both caregivers
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are assigned uncertain visits goes from 5/27 for Γ = 1 to 16/27 for Γ = 2. With 8

municipalities, the figures are 17/27 for Γ = 1 and 24/27 for Γ = 2.

4.3.2 Instances with 60 patients

Details on the quality of the robust solutions for the instances with 60 patients

are given in Table 2. As shown, the average number of uncertain requests that

are selected (column Avgvj), compared to the total number of uncertain requests

(column AvgNInc), varied greatly also in this case. Furthermore, also for these

larger instances the average percentage difference between the maximum and the

minimum caregiver utilization factor (column Avg∆UF ) proved to be very small,

showing a good balancing of the workload among the caregivers.

Concerning the percentage relative error committed by the matheuristic ap-

proach (column AvgAErr), the error is very small also for these instances, going

from a minimum of 0.05% to a maximum of 2.97%. In addition, in this scenario we

better investigated the quality of the proposed approximation by means of an alter-

native metric (see column AvgLBErr in Table 2). Differently from AvgAErr, which

is related to the approximated inner ILP model (13)− (15), when AvgLBErr is con-

sidered, each inner problem is solved exactly, i.e. using exact traveling times. Then,
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Table 2: 60 patients - quality metrics

Instance Avgvj AvgNInc Avg∆UF AvgAErr AvgLBErr

0106-5-60-0-0.7 8.00 25.00 1.94% 1.55% 1.09%
0106-5-60-0-0.8 3.50 16.00 1.56% 1.34% 1.12%
0106-5-60-0-0.9 3.00 8.00 0.57% 0.47% 0.47%

0106-5-60-1-0.7 9.00 22.00 1.10% 1.95% 1.56%
0106-5-60-1-0.8 6.00 15.00 1.90% 2.20% 1.97%
0106-5-60-1-0.9 2.67 7.00 0.23% 0.55% 0.55%

0106-5-60-2-0.7 7.00 23.00 5.65% 2.97% 2.07%
0106-5-60-2-0.8 2.50 16.00 0.40% 1.37% 0.69%
0106-5-60-2-0.9 4.00 7.00 6.93% 1.11% 1.11%

0106-8-60-0-0.7 n.a. n.a. n.a. n.a. n.a.
0106-8-60-0-0.8 4.00 17.00 1.64% 0.05% 0.05%
0106-8-60-0-0.9 3.00 9.00 2.44% 0.64% 0.53%

0106-8-60-1-0.7 7.00 23.00 0.86% 1.76% 0.00%
0106-8-60-1-0.8 3.50 16.00 1.73% 1.03% 1.03%
0106-8-60-1-0.9 3.00 8.00 0.63% 1.16% 1.16%

0106-8-60-2-0.7 5.00 25.00 1.01% 1.13% 1.11%
0106-8-60-2-0.8 5.00 17.00 5.51% 1.77% 1.32%
0106-8-60-2-0.9 3.00 8.00 0.41% 0.84% 0.84%

the percentage relative error between the upper estimate returned by the matheuris-

tic, and the sum of the workloads of the optimal tours so determined, is computed.

Note that, for each day and caregiver, the workload addressed in AvgLBErr, be-

ing related to the optimal solution of an inner ILP model (13) − (15), is greater

than, or equal to, the one of the corresponding critical tour addressed in AvgAErr.

Therefore, the estimates in AvgLBErr are more accurate than the ones in AvgAErr.

More, since AvgLBErr considers the exact workload of the optimal tours for the

given scheduling and assignment decisions, then the difference between the values in

AvgAErr and the values in AvgLBErr provides the net error induced by some arc

cost over-estimate. Such differences are negligible, often null, so emphasizing the

goodness of the proposed upper approximation.

4.4 Sensitivity analysis and rate of covered uncertain requests

In this section, we present the results obtained by performing a sensitivity analysis

on the value of Γ on a small subset of instances. On the same subset we measure

the robustness of the generated solutions with respect to possible realizations of

uncertain requests. Specifically, we consider the three robust instances generated

from the source instances 0106-5-40-0, 0106-5-40-1, and 0106-5-40-2 for α = 0.7 and
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seed A.

Figure 7 reports the optimality gap obtained on the three instances as the value

of Γ ranges in {1, . . . , 5} with a time limit fixed to 2 CPU hours. Observe that the

gap is still acceptable even for quite high values of Γ. The computational results,

even if reported for a small set of instances, seem thus to suggest that our approach

is a viable option to address robustness in Home Care.

In order to evaluate the robustness of the generated solutions with respect to

possible realizations of uncertain requests, for each robust instance in the set we

generated 5 samples of possible scenarios in which a fixed number (5, 10 or 15) of

uncertain requests realize, thus summing up to 45 scenarios. Note that this number

can be very close to the total number of uncertain requests that characterize the

robust instances (17, 17 and 16). Then, for each realization, we count the number

of uncertain visits that can be scheduled according to the robust tours, i.e. we sum

the numbers of (at maximum Γ) realized uncertain requests appearing in the ro-

bust tours. Figures 8 and 9 report, respectively for Γ = 2 and Γ = 3, averaged on

the 5 samples, the percentage of realized uncertain visits that can be scheduled in

robust tours with respect to the number of randomly generated uncertain requests

(%CoverVsRandomVisits) and the percentage of realized uncertain visits that can

be scheduled in robust tours with respect to the maximum number of uncertain

visits allowed by the robust tours (%CoverVsTourStructure). Observe that %Cov-

erVsRandomVisits may vary greatly from one instance to the other but it is never

below 24% and it usually reaches satisfactory values. In addition, %CoverVsRan-

domVisits increases as Γ increases. Thus, since the results in Figure 7 reveal that
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Figure 8: Uncertain requests covered by robust solutions (Γ = 2)

the computational efficiency does not deteriorate too much as the value of Γ in-

creases, acting on Γ is a good lever to increase robustness. Finally, it is worthwhile

to observe that when %CoverVsRandomVisits is quite low, %CoverVsTourStructure

is however very high, thus suggesting that low rates of scheduled uncertain visits

potentially originate from the structure of the tours themselves; indeed, there are

some cases where the uncertain requests are concentrated in very few tours. This

observation is further corroborated by preliminary results in [8], showing that acting

directly on the pattern generation tool and imposing that uncertain visits are quite

spread among the robust tours is indeed a smart lever to increase robustness.

4.5 Fixing the scheduling decisions: a decomposition approach

The scheduling decisions rely on a set of patterns, which have been generated by

using the flow based method in [7]. This method determines a feasible pattern for

each patient j, that is a pattern which is compatible with the care plan of j. To

enhance their flexibility, however, both the deterministic and the robust approach

allow one to use also patterns of other patients, provided that with the same care

plan of j: this defines the pattern subset Pj introduced in Section 2.

In order to gain in efficiency, we experimented a decomposition of the robust

approach where each patient j is associated with exactly the pattern which the flow

based method has determined for j. Therefore, the scheduling decisions are fixed.

We performed some preliminary experiments on the subset of the robust instances

with 40 patients and α = 0.7. The obtained results, still preliminary, are very inter-
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Figure 9: Uncertain requests covered by robust solutions (Γ = 3)

esting. Firstly, the decomposed approach always determined an optimal solution.

Second, it was orders of magnitude faster than the robust approach. In fact, it

required 468 seconds on average, with a minimum of 9 seconds and a maximum of

2064 seconds.

Furthermore, concerning the quality of the computed robust solutions, only in

a few cases the metric Avg∆UF slightly increases (see Figure 10), whereas in the

other cases it reduces, by revealing the determination of still more balanced robust

solutions. Interestingly, the number of the uncertain requests that are selected by

the decomposed approach is greater than in the not decomposed version, as reported

in Figure 11. This phenomenon could seem counterintuitive but, indeed, since the

objective is to minimize the maximum workload, which is due to the critical tours

of the more occupied caregiver, it is reasonable that the solver tends to schedule the

uncertain requests so that a small number of them will be selected via the critical

tours. And more flexibility we allow at the scheduling decision level, more possibility

has the solver to include a small number of uncertain requests into the critical

tours. Finally, Figure 12 shows that fixing the scheduling decisions determines

a negligible deterioration in the committed approximation error. Therefore, the

suggested decomposition seems to be a solid tool to gain in efficiency, still returning

robust solutions of good quality, and so very promising to address robust Home Care

instances of larger size.
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5 Conclusions

We studied the Home Care problem where caregiver-to-patient assignment, schedul-

ing of patient requests, and caregiver routing are taken into account jointly over a

given time horizon, and patient demand is subject to uncertainty. The study has

been both methodologically and computationally oriented. In fact, we proposed a

non-standard cardinality-constrained robust approach, which however is character-

ized by a difficult inner problem. Thus, an upper approximation is studied by stating

and analysing some relevant properties induced by the suggested upper approxima-

tion. Then, we performed a wide computational experimentation, showing that the

proposed approach is able to efficiently determine solutions of good quality, with

a significant degree of robustness with respect to possible realizations of uncertain

requests. We also proposed a decomposition approach that seems to be promising

to face with even larger robust Home Care instances.

We plan to deeply study decomposition methods based on the robust approach

proposed in this paper, and to experiment them on more, and larger, robust in-

stances. We also plan to study alternative upper approximations of the cardinality-

constrained approach, both in theory and practice.
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[5] Bredström, D. and M. Rönnqvistr, “Combined vehicle routing and scheduling

with temporal precedence and synchronization constraints”, Eur. J. Oper. Res.,

191, 19–31, 2008.

[6] Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: “Rich Vehicle

Routing Problem: Survey”, ACM Computing Surveys, 47(2), article number 32,

(2015)

29



0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

Approximation Error

Decomposed Not decomposed

Figure 12: Decomposed vs not decomposed model - approximation error
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Appendix A. The linearized model

Denote with ζωd the dual variable associated with (14), and with πωdj the dual

variables associated with vωdj ≤ 1 in the linear relaxation of (13) − (15). Then the
feasible solutions to the sRHCΓ approximation can be modelled as follows:

∑
(i,j)∈A

∑
ω∈Od

xωd
ij ≤

∑
p∈Pj :p(d)≥1

zjp ∀j ∈ N,∀d ∈W (20)

∑
(i,j)∈A

∑
ω∈Od:sω≥k

xωd
ij ≥

∑
p∈Pj :p(d)=k

zjp ∀j ∈ N,∀d ∈W,∀k ∈ K (21)

∑
p∈Pj

zjp = 1 ∀j ∈ N (22)

∑
ω∈O

uωj ≤ T ∀j ∈ N (23)

xωd
ij ≤ uωj ∀(i, j) ∈ A, ∀j ∈ N, ∀d ∈W,∀ω ∈ Od

(24)

uωj ≤
∑

(i,j)∈A

∑
d∈W

xωd
ij ∀j ∈ N, ∀ω ∈ O (25)

R̄ωd
SΓ =

∑
(i,j)∈A:

i,j∈N̄+

(tij + aj) · xωd
ij +

∑
(i,j)∈A:

i∈Ñ,j∈N̄+

(tmax
j + aj) · xωd

ij + (26)

Γ · ζwd +
∑
j∈Ñ

πωd
j ≤ Dω ∀d ∈W,∀ω ∈ Od

∑
(i,j)∈A

xωd
ij =

∑
(j,i)∈A

xωd
ji ∀j ∈ N, ∀d ∈W, ∀ω ∈ Od (27)

∑
(0,j)∈A

yd0j =
∑
j∈N

∑
p∈Pj :p(d)≥1

zjp ∀d ∈W (28)

∑
(i,j)∈A

ydij −
∑

(j,i)∈A
ydji =

∑
p∈Pj :p(d)≥1

zjp ∀j ∈ N, d ∈W (29)

ydij ≤ 2n
∑

ω∈Od

xωd
ij ∀(i, j) ∈ A, d ∈W (30)

πωd
j + ζωd ≥

∑
(i,j)∈A:

i∈N̄+

(tij + aj) · xωd
ij + (31)

∑
(j,i)∈A:

i∈N̄+

(tji − tmax
i ) · xωd

ji +
∑

(i,j)∈A:

i∈Ñ

(tmax
j + aj) · xωd

ij ∀d ∈W,∀ω ∈ Od, ∀j ∈ Ñ

πωd
j ≥ 0 ∀j ∈ Ñ,∀d ∈W,∀ω ∈ Od (32)

ζωd ≥ 0 ∀d ∈W,∀ω ∈ Od. (33)
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Appendix B. Maximizing the minimum caregiver utilization fac-

tor

We formally show that the balancing objective function maxmin, which maximizes

the minimum caregiver utilization factor, cannot be used in the same form investi-

gated in [7] and [34], since the corresponding optimal value is always 1 (constraint

numbers refer to Appendix A).

Proposition 4 The optimal value of (20)-(33) under the objective function maxmin,

i.e.:

max m

(20)-(33)∑
d∈W

R̄ωdSΓ

|W |·Dω
≥ m, ∀ω ∈ O,

(34)

is always 1.

Proof: Consider the standard technique used in Robust Optimization, i.e. the one

for which each inner ILP model (13) − (15) is replaced by its Linear Programming

relaxation and so, by strong duality, by its LP dual. Such a technique fails when

addressing the maxmin objective function. In fact, in order to maximize m, the

solver assigns to the left-hand-side of each constraint (26) the maximum possible

value, i.e. Dω (instead of assigning the minimum possible value, i.e. R̄ωdSΓ, as stated

in (34)) and therefore the optimal objective function value is always 1. 2

Appendix C. Estimating the matheuristic approximation error

We provide a proof of Proposition 3.

Proof: Let C∗ be a complete set of tours representing a feasible solution to

sRHCΓ, and consider the critical tours corresponding to the complete tours in C∗.

Without loss of generality assume that, for each such critical tour, the certain nodes

precede the selected uncertain nodes within each cluster. Remember in fact that,

due to the distance structure, any permutation of a subset of patients in the same

cluster induces the same identical workload contribution to the objective function.

Now, let us evaluate the objective function value of C∗ according to the pro-

posed upper approximation. That is, by computing R̄ωdSΓ for the critical tour of

each operator ω on each day d. This is obtained by replacing, in the formula ex-

pressing the exact workload of the tour, both the exact travelling time of each arc
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(i, j) linking two selected uncertain nodes, and the exact travelling time of each

arc (i, j) not belonging to the corresponding complete tour, by the over-estimate

tmaxj . It is immediate to observe that the first group is composed by at most (Γ−1)

arcs, since the total number of selected uncertain nodes is Γ. On the other hand,

the second group is composed by at most Nc arcs, since these are arcs linking the

different clusters and, due to the inequalities (18), for each cluster, and in each

day of the planning horizon, each available operator enters each cluster at most

once. Therefore, for each critical tour, the absolute error is bounded from above by

Nc(T
max
c −Tminc ) + (Γ− 1)(Tmaxc − δ). The thesis follows by considering the overall

set of caregivers over the addressed time horizon. 2

Table 3 reports, for each instance group characterized by the same number of

clusters and patients, the maximum estimated travel time (EstMaxTT) computed

as described in Proposition 3 and the average integer-rounded travel time (AvgTT)

over all the instances of the group returned by the robust model, as Γ varies. Travel

time refers to the total travel time spent by all of the caregivers in the whole plan-

ning horizon. The parameters required to compute the absolute error are given in

columns 2-5. Observe that, with 5 clusters and Γ = 1, the ratio between AvgTT

and EstMaxTT is not greater than 0.52 independently of the number of patients

considered, i.e. 40 or 60. For 8 clusters and Γ = 1, such a ratio is smaller and

it does not exceed 0.34. When Γ = 2 is considered, these ratios tend to decrease;

specifically, they are 0.42 for Nc = 5 and 0.30 for Nc = 8.

Table 3: Estimate given by Proposition 3

Γ = 1 Γ = 2

Instance groups Tminc Tmaxc δ Nc EstMaxTT AvgTT EstMaxTT AvgTT

0106-5-40 5 19 3 5 700 352 860 362
0106-8-40 4 21 3 8 1360 395 1540 466
0106-5-60 5 21 3 5 1200 633
0106-8-60 4 21 3 8 2040 688
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