
Endogenous restricted participation

in general financial equilibrium

Laura Carosi∗, Michele Gori†and Antonio Villanacci‡

July 15, 2009

Abstract

We consider an incomplete market model with numeraire assets. Each household faces
an individual constraint on its participation in the asset market. In related literature, the
constraint is described by a function whose sole argument is the asset portfolio. On the contrary,
in our analysis the constraint depends not only on the asset portfolio, but also on asset and
good prices - hence the reference to endogenous (in contrast to exogenous) in the title.

Economies are described by endowments of commodities, utility functions, asset yield ma-
trices, and restriction functions. We study two specifications of the constraint function. The
first one is homogeneous of degree zero with respect to spot prices. The second one does not
exhibit that property. We then consistently distinguish between homogeneous and nonhomoge-
neous economies. After having established existence of equilibria for both types of economies,
we study indeterminacy for each of them and show the following results. For an open and dense
subset of the set of homogeneous economies, equilibria are finite and regular, up to innocuous
price normalizations. There exists an open and nonempty set of nonhomogeneous economies,
whose associated equilibria exhibit real indeterminacy.

JEL classification: D50; D52.
Keywords: General equilibrium; Restricted participation; Financial markets; Regularity; Deter-

minacy and indeterminacy of equilibria.

1 Introduction

The importance of restrictions on financial markets cannot be overestimated. Even a superficial
observation of everyday economic life or a hasty reading of finance papers supplies a list of examples
of such phenomenon, a list which can only be incomplete.

Asymmetric information between lender and borrower is a key reason for the need of designing
personalized contracts based on observable variables linked to the capability of honoring obligations.
Access to credit can be limited by personal expected income and wealth both in the amount and
in the structure of repayments. The presence of collateral in terms of goods or assets is a quite
standard way of easing credit restrictions.
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†Dipartimento di Matematica per le Decisioni, Università degli Studi di Firenze, E-mail: michele.gori@unifi.it.
‡Dipartimento di Matematica per le Decisioni, Università degli Studi di Firenze, E-mail: anto-
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Commodities or assets may be freely tradable within but not across countries. In international
finance, it is commonly assumed that markets are segmented, i.e., some commodities or assets are
argued to be non-tradable across countries.

Some individuals or institutions are allowed to be only on one side of the market.
Country specific credit system regulations and different degree of competitiveness of the banking

system can heavily influence the access to credit for large number of individuals.
Government credit interventions are common in most countries. Student loans, lower interest

rates for first home buyers, better credit conditions for investments in less developed areas or in
productions considered socially valuable, like renewable energy resources, are simple examples of
those interventions.

There are stocks which cannot be traded by some households or there exist limits on the fraction
of the portfolio which could be invested in some markets, say, of fast developing countries.

Some assets have intrinsic restrictions: pension funds are not available for present consumption;
human capital investments are not liquid; housing investments are also illiquid and subject to sig-
nificant transaction costs. “Together, pensions, human capital, and housing constitute a substantial
part of a typical household’s assets.”1.

Impossibility of short sales, transaction costs, information costs and obligations to carry life
insurance, or hold compensating balances or meet margin requirements are other examples of com-
monly encountered restrictions.

Empirical evidence of portfolio restrictions and the key role that pervading phenomenon plays in
financial markets have generated a large amount of contributions on this topic in finance literature.

Many papers focus on how financial constraints on asset markets affects equilibrium consump-
tion and prices, and in particular, how they are related to asset pricing puzzles (see among others
Allen and Gale (1994), Basak and Croitoru (2000), Basak and Cuoco (1998)), market crashes
(Hong and Stein (2003)) and the arbitrage opportunities for some investors (Zigrand (2006) and
related literature there).

Our goal is to study restricted participation on financial markets using a General Equilibrium
model with Incomplete financial market (GEI). Each household has to choose a consumption vector
and an asset demand as in a standard model with incomplete or even potentially complete markets,
with the additional constraint that asset demand is restricted to belong to a household specific
portfolio set.

Some contributions on the topic are indeed available in the literature. Siconolfi (1988) and, in
a multiperiod framework, Angeloni and Cornet (2006) show existence of equilibria assuming the
portfolio set is a closed, convex subset of a Euclidean space containing zero for each households
and a neighborhood of zero for some of them. Balasko, Cass and Siconolfi (1990) analyze the
case in which the portfolio constraint set is a linear subspace. Polemarchakis and Siconolfi (1997)
prove existence for a case of restricted participation when asset payoffs are denominated in multiple
commodities. In a model with numeraire asset and outside money with restrictions for both type of
assets, Carosi (2001) proves generic inefficiency of equilibria and effectiveness of monetary policy.
Martins Da-Rocha and Triki (2005) present an original proof of existence. Won and Hahn (2007)
discuss the presence of redundant assets. Hens, Herings and Predtetchinskii (2006) consider a GEI
model with one good per spot and give conditions for the existence of arbitrage possibilities when
households cannot exchange at all some assets. In the same framework, Herings and Schmedders
(2006) study the case of transaction costs proportional to the units (or values) of traded assets and
present homotopy arguments to study equilibria. Basak, Cass, Licari and Pavlova (2008) describe
the indeterminacy generating capability of participation restrictions, presenting an economy with
two goods and two households for which adding a constraint may generate additional inefficient
(and sunspot) equilibria.

The model closer to ours is that one presented in Cass, Siconolfi and Villanacci (2001), where
portfolio sets are described by restriction functions. Imposing some differentiability and regularity
properties on those functions, they show generic regularity of equilibria, if assets are of the numeraire
type. In their analysis, however, the constraint is described by a function whose sole argument is

1See Detemple and Sundaresan (1999) and Detemple and Serrat (2003).
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the asset portfolio2. On the contrary, in our analysis the constraint depends not only on the asset
portfolio, but also on asset and good prices – hence the reference to endogenous (in contrast to
exogenous) in the title.

We study two specifications of this function. In the first, households constraint sets are homoge-
neous (of degree zero) with respect to spot prices, a fact which permits the same price normalizations
as in the standard general equilibrium model with incomplete markets and numeraire assets. In the
second, we consider restrictions which do not exhibit the homogeneity property: purely nominal
changes, i.e., price changes, may affect the possibilities for participation on the asset market. We
will refer to the restriction functions with one or the other of those two specifications as homogeneous
and nonhomogeneous restriction functions, respectively. The chosen way of describing restrictions
allows to encompass in a simple manner some of the examples of restricted participation described
above - see Section 2.

We can now present the main results of the paper. We consider a pure exchange, general
equilibrium model, with two periods and a finite number of states, goods, assets, and households.
Assets bestow the right to receive a certain quantity of the numeraire commodity. Economies are
described by endowments of commodities, utility functions, asset yield matrices, and restriction
functions.

After having established existence of equilibria for both types of economies, we study indeter-
minacy for each of them. For an open and dense subset of the set of homogeneous economies, we
show that equilibria are finite and regular, up to innocuous price normalizations. On the contrary,
there exists an open and nonempty set of homogeneous economies exhibiting real indeterminacy.3

We therefore show that the presence of restricted participation in the asset market may generate
real indeterminacy even in the presence of numeraire assets. Indeterminacy is clearly an interest-
ing feature of a model. Consistently with the rational expectation assumption, all agents have to
anticipate the same equilibrium price among those associated with the given fundamentals. The
presence of “many” equilibria could be a way to explain the well known excess volatility puzzle, and
even market bubbles or crashes. Those phenomena could be interpreted as the result of expectation
driven behaviors of households attempting to select one equilibrium over another one.

As explained in some detail in Section 4.2, an interesting and, at the best of our knowledge,
original by-product of our analysis is a general and easy to use strategy to show smooth (not only
continuous) dependence of equilibria from economies in the case of infinite dimensional economy
spaces. That methodology, based on a result by Glöckner (2006), can be used to get that result in
many general equilibrium models, not last the case of pure exchange economies.

The paper is organized as follows. In Section 2 we first describe the set-up of the model and state
the existence result for arbitrary economy (Theorem 2). We then introduce the crucial homogeneity
assumption and some examples of homogenous and nonhomogeneous economies. In Section 3, we
present our determinacy and indeterminacy results. Theorem 3 shows there exists an open and dense
subset of the space of homogenous economies whose associated equilibria are finite in number, and
which depend smoothly on all elements defining economies, both finite and infinite dimensional
ones. That theorem then generalizes the main result in Cass, Siconolfi and Villanacci (2001),
when differentiably concave utility functions are considered. Theorem 4 shows that there exists
an open and nonempty set of nonhomogeneous economies, whose associated equilibria exhibit real
indeterminacy, i.e., the set of equilibrium allocations contains a smooth manifold of dimension one.
We conclude the section providing a discussion about the conjecture of existence of an open and
nonempty set of nonhomogeneous economies exhibiting determinacy of equilibria. The Appendix
contains the proofs of the three theorems stated in the previous sections.

2A sentence in Cass, Siconolfi and Villanacci (2001) describes the main goal of the present paper. “While it seems
likely that our present analysis can be sharpened to incorporate explicit dependence of the constraints on endogenous
variables other than just portfolio holdings, this question remains to be more thoroughly investigated.”

3A reasonable conjecture is that the set of nonhomogenous economies for which the associated equilibrium allo-
cation set is finite contains an open and nonempty set. However, it is hard to prove it or to find a counterexample,
as discussed at the end of Section 3.
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2 Set-up of the model and existence result

Our model is the by now very standard two-period, pure exchange economy with uncertainty and
both commodities and assets. Spot commodity markets open in the first and second periods, and
there are C ≥ 2 types of commodities traded at each spot, denoted by c ∈ C = {1, 2, ..., C}.
Asset markets open in just the first period, and there are A ≥ 1 (inside) assets traded, denoted
by a ∈ A = {1, 2, ..., A}. We will also denote spots by s ∈ S = {0, 1, ..., S}, S ≥ 1, where s = 0
corresponds to the first period, today, and s ≥ 1 the possible states of the world in the second
period, tomorrow. Finally, there are H ≥ 2 households, denoted by h ∈ H = {1, 2, ...,H}.

The time line for this model is as follows: today, households exchange commodities and assets,
and consumption takes place. Then, tomorrow, uncertainty is resolved, households honor their
financial obligations, and they again exchange and then consume commodities.

xch(s) is the consumption of commodity c in state s by household h, with parallel notation for the
endowment of commodities, ech(s). Both consumption xh = (xch(s), c ∈ C, s ∈ S) and endowment
eh = (ech(s), c ∈ C, s ∈ S) are elements of RG++, where G = (S + 1)C is the total number of goods.

Household h’s preferences are represented by a utility function uh : RG++ → R. As in most of
the literature on smooth economies we will adopt throughout

Assumption u. For all h ∈ H,

u1. uh ∈ C2(RG++);

u2. uh is differentiably strictly increasing, that is, Duh (xh)� 0;

u3. uh is differentiably strictly concave4, i.e.,

∆x 6= 0 and implies ∆xTD2uh (xh) ∆x < 0;

u4. uh has upper contour sets closed in the standard topology of RG, that is, for any x ∈ RG++,{
x ∈ RG++ : uh (x) ≥ uh (x)

}
is closed in the topology of RG .

The set of utility functions satisfying Assumption u is denoted by U and U = UH .
We will also use the following standard notation: pc(s) is the price of commodity c at spot s

and p = (pc(s), c ∈ C, s ∈ S) is the corresponding commodity price vector; qa is the price of asset
a and q = (qa, a ∈ A) is the corresponding asset price vector; ya(s) is the yield in state s of asset a
in units of the numeraire commodity, which, for specificity, we designate to be C, and

Y =



y1(1) . . . ya(1) . . . yA(1)
...

...
...

y1(s) . . . ya(s) . . . yA(s)
...

...
...

y1(S) . . . ya(S) . . . yA(S)


is the corresponding yield matrix; y (s) = (ya(s), a ∈ A) is the vector of asset yields in state s; zah
is the quantity of asset a held by household h, zh = (zah, a ∈ A) is the corresponding asset portfolio
and z = (zh, h ∈ H) ∈ RAH .

Concerning the financial side of the economy, and consistently with our restricted participation
framework, we assume that

• there exists a given set of assets which, in number and kind, may even be sufficient for complete
markets,

• each household h has only partial access, in a personalized manner to the available set of
assets.

4In fact, to show existence of equilibria, it is sufficient to assume that uh is differentiably strictly quasi-concave,
i.e., ∆x 6= 0 and Duh (xh) ∆x = 0 ⇒ ∆xTD2uh (xh) ∆x < 0.
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In other words, while there may be just a “few” or “many” assets, the market imperfection we con-
sider is not incompleteness of numbers of assets, but rather restrictions on households’ opportunities
for transacting in assets.
It greatly simplifies our analysis (but, for the reason just mentioned, is not without loss of generality)
to assume that

Assumption Y. rank Y = A ≤ S.

Let Y be the set of S ×A matrices satisfying the above assumption.

There are J ≥ 1 potential participation constraints for each household. Let J = {1, ..., J} with
generic element j. Then, the restriction function for household h is

rh : RA × RG++ × RA → RJ

(zh, p, q) 7→
(
rjh (zh, p, q) , j ∈ J

)
.

For each nonempty subset Jh ⊆ J , denote its cardinality by Jh, and let

rJh

h : RA × RG++ × RA → RJh

(zh, p, q) 7→
(
rjh (zh, p, q) , j ∈ Jh

)
.

We now introduce assumptions on restriction functions.

Assumption r.

r1. For all h ∈ H, rh is C2(RA × RG++ × RA; RJ);

r2. For all h ∈ H, j ∈ J , (p, q) ∈ RG++ × RA, rjh is quasi-concave in zh;

r3. For all h ∈ H, (p, q) ∈ RG++ × RA, rh (0, p, q) ≥ 0;

r4. For all h ∈ H, (zh, p, q) ∈ RA × RG++ × RA, Jh ⊆ J such that Jh 6= ∅,

rJh

h (zh, p, q) = 0 ⇒ rank Dzh
rJh

h (zh, p, q) = Jh;

r5. For all a ∈ A, there exists h ∈ H such that, for every (zh, p, q) ∈ RA × RG++ × RA,

Dza
h
rh(zh, p, q) = 0.

A word about each of these assumptions is in order. Assumption r1 allows to employ differ-
ential techniques, Assumptions r2 assures that the portfolio set of each household is convex and
Assumption r3 permits no participation on the asset market. Assumption r4 implies that, for each
household, changes of the asset portfolio have a nontrivial effect on the possibility of accessing the
financial market along the boundary of the portfolio set. Finally Assumption r5 requires that, for
each asset, there exists a household whose participation restrictions do not depend on that asset
demand. Note also that Assumptions r2 and r4 are needed for characterizing the solutions of house-
hold’s maximization problems in terms of Kuhn-Tucker conditions. Moreover Assumptions r4 and
r5 allow to get the desired property of the homotopy function used to prove existence of equilibria
and they are also crucial in rank computations related to generic determinacy and indeterminacy
of equilibria.

LetR be the set of restriction functions satisfying Assumptions r1-r5 above, with generic element
r = (rh)Hh=1. An economy is E = (e, u, Y, r) ∈ RGH++ × U × Y ×R = E .

For given (p, q, E) ∈ RG++ × RA × E , household h ∈ H maximization problem is as follows.
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Problem (Ph)
max

(xh,zh)
uh(xh) s.t.

p (0)xh (0) + qzh ≤ p (0) eh (0)

p (s)xh (s)− pC (s) y (s) zh ≤ p (s) eh (s) s ∈ {1, ..., S}

rh(zh, p, q) ≥ 0

(1)

Denote the constraint set of the above problem by Ch (p, q, E).
Observe that normalizations of spot by spot prices are not possible because of the dependence

of the restriction functions on (p, q). In fact, nominal changes of prices may in general affect the
constraint set of some household’s maximization problem. Therefore the appropriate definition of
equilibrium is as follows.

Definition 1
(
(xh, zh)h∈H , p, q

)
∈
(
RG++ × RA

)H × RG++ × RA = Θ is an equilibrium for the
economy E ∈ E if for each h, (xh, zh) solves Problem (Ph) at (p, q, E) and (x, z) solves market
clearing conditions at e

H∑
h=1

(xh − eh) = 0,

H∑
h=1

zh = 0.
(2)

The set of equilibria and the set of equilibrium allocations for economy E are denoted by Θ(E)
and X(E), respectively. Moreover, for every E ∈ E , we define the set of the normalized equilibria
as

Θn(E) =
{(

(xh, zh)h∈H , p, q
)
∈ Θ(E) : ∀s ∈ S, pC(s) = 1

}
,

and the associated set of equilibrium allocations as Xn(E).
An indispensable preliminary result in every general equilibrium model is existence of equilibria.5

Theorem 2 For every E ∈ E, Θn(E) 6= ∅.

As discussed in the Introduction, the possibility of normalizing prices is linked to a crucial
property of restriction functions. In fact, they may or may not exhibit a homogeneity property.
Throughout the paper we will consider the following general form of homogeneity.

Assumption r6.6 r is such that for all h ∈ H, (p, q, e, u, Y ) ∈ RG++ × RA × RGH++ × U × Y and
δ ∈ RS+1

++ ,
Ch (p, q, e, u, Y, r) = Ch (δ�p, δ (0) q, e, u, Y, r) , (3)

where δ�p =
(
δ (s) p (s) ∈ RC++, s ∈ S

)
.

In the following we denote byRho the subset ofR whose elements satisfy Assumption r6, as well.
We call them homogeneous restriction functions. Eho = RGH++×U×Y×Rho is the set of homogeneous
economies and Rnh = R\Rho and Enh = RGH++ × U × Y × Rnh are the sets of nonhomogeneous
restriction functions and economies, respectively. Before proceeding in our analysis, we provide some

5Proofs of all theorems are deferred to the Appendix.
6Assumption r6 is strictly more general than any of the following two, and in fact, Assumption r6’ is strictly more

general than r6”.

r6’. r is such that for all h ∈ H, (p, q) ∈ RG
++ × RA and δ ∈ RS+1

++ ,

{zh ∈ RA : rh(zh, p, q)} = {zh ∈ RA : rh(zh, δ�p, δ(0)q)}.

r6”. r is such that for all h ∈ H, (zh, p, q) ∈ RA × RG
++ × RA and δ ∈ RS+1

++ ,

rh(zh, δ�p, δ (0) q) = rh(zh, p, q).
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examples of exogenous and endogenous restriction functions. We informally describe household h’s
restriction function through inequalities.7

Impossibility of short sales
zah ≥ 0 (4)

and constraints on borrowing
zah ≥ −m (5)

with m > 0, are clearly exogenous. Observe that some apparently exogenous restriction functions
like (5) can be easily thought as endogenous. In fact m could be assumed to be fixed today and
in a near future, but it would change in a quite different economic situation (described in terms of
prices and fundamentals). All the examples presented below describe economies with restrictions
explicitly depending on prices.

Limits on the fraction of the portfolio that could be invested in some “markets” can be written
as ∑

a′∈A′
qa
′
za
′

h ≤ α
∑
a/∈A′

qazah +m (6)

whereA′ ⊆ A, α ∈ (0, 1) and m ≥ 0 is a sort of minimal amount of “anyway admissible investment”.
The restriction function does not satisfy (3) if and only if m > 0.

Constraints on borrowing in the first period and on the amount of future obligations can be
described by the following inequalities,

−qzh ≤ α (0) p (0) eh (0)

−pC (s) y (s) zh ≤ α (s) p (s) eh (s) s ∈ {1, .., S}
(7)

where (α (s))s∈S ∈ (0, 1)S+1. Inequalities in (7) simply say that amount borrowed today and
debts tomorrow cannot exceed a proportion of individual wealth in the corresponding spot. The
restriction function resulting from (7) is clearly nonhomogeneous.

Other simple examples with straightforward interpretation are given by

−qzh ≤ f
(
p (0) eh (0)

)
−qzh ≤ g

(
p (0) eh (0) , . . . , p (S) eh (S)

)
where f : R++ → (0, 1) and g : RS+1

++ → (0, 1) are smooth, and smooth versions of

−qzh ≤ min
{
αs p (s) eh (s) : s = 0, . . . , S

}
max

{
−qzh,−pC (0) y (0) zh, . . . ,−pC (S) y (S) zh

}
≤ min

{
αs p (s) eh (s) : s = 0, . . . , S

}
.

Summarizing to get nonhomogeneity, it suffices that either a restriction function nontrivially de-
pends on different spot prices or it is nonlinear in any of them. In general, nonhomogeneous
constraints are more common if there are forms of imperfect price indexation of the “rules” defining
the extent of access to markets.

3 Determinacy and indeterminacy of equilibria

In this section, we provide two results: generic determinacy of normalized equilibria for homogenous
economies and a robust example of indeterminacy for nonhomogeneous economies. Then, we briefly
discuss how determinacy of equilibria is hard to be shown in the nonhomogeneous case.

For every δ = (δ(s))s∈S ∈ RS+1
++ , r ∈ R and E = (e, u, Y, r) ∈ E , define rδ ∈ R as

7Since Assumptions r1-r6 deal with the all vector (rh)h∈H, we assume that restriction functions of not explicitly
mentioned households are chosen in order to satisfy the needed requirements.
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rδh(zh, p, q) = rh(zh, δ�p, δ(0)q) ∀h ∈ H,
and Eδ = (e, u, Y, rδ) ∈ E . Defined 1 = (1, ..., 1) ∈ RS+1, of course, E1 = E. Observe that, for
every E ∈ E , we have

Θ(E) =
⋃

δ∈RS+1
++

{(
(xh, zh)h∈H , δ�p, δ(0)q

)
∈ Θ :

(
(xh, zh)h∈H , p, q

)
∈ Θn(Eδ)

}
(8)

and
X(E) =

⋃
δ∈RS+1

++

Xn(Eδ). (9)

For every E ∈ Eho, we have that

Θ(E) =
⋃

δ∈RS+1
++

{(
(xh, zh)h∈H , δ�p, δ(0)q

)
∈ Θ :

(
(xh, zh)h∈H , p, q

)
∈ Θn(E)

}
(10)

and
X(E) = Xn(E). (11)

Roughly speaking, equalities (9) and (11) say what follows. For arbitrary economy E, equilib-
rium allocations can be found looking at normalized equilibrium allocations for Eδ, for all possible
value of δ. For homogeneous economies, equilibrium allocations are normalized equilibrium alloca-
tions. What the above observations suggest and which is investigated in the paper is if for each
E ∈ Enh

δ1 6= δ2 ⇒ Xn(Eδ1) 6= Xn(Eδ2),

and then X (E) contains an infinite number of equilibrium allocations.
In fact, we are going to show that typically in the space of homogeneous economies, associated

normalized equilibria are finite (and smoothly depend on economies) - see Theorem 3 below. On
the other hand, there exist robust examples of nonhomogeneous economies for which equilibrium
allocations exhibit indeterminacy - see Theorem 4 below. The intuition of both results can be given
in terms of a simple count of significant equations and variables in the two cases.

In the homogeneous case, S + 1 Walras’ laws hold and S + 1 price normalizations are possible.
Therefore, the number of significant equations (market clearing conditions) and the number of
significant variables ((pc (s) , s ∈ S, c 6= C) , q) are the same and equal to G+A− (S + 1).

In the general case price normalizations are not possible. Since Walras’ laws still hold, there are
S+1 extra price variables, which can potentially cause real indeterminacy. In fact, rescaling of spot
prices changes households’ constraint sets, via the restriction constraints. That change may affect
households’ demands and therefore equilibrium prices and allocations, as long as those constraints
are effectively binding for at least some households. It is then natural to conjecture that nontrivial
effects on households’ demand do arise at least for some economies.

We are now ready to state our main results.
Consider the Hausdorff topological vector space

T = RGH++ ×
[
C2(RG++)

]H ×MS×A ×
[
C2(RA × RG++ × RA; RJ)

]H
, (12)

endowed with the product topology of the natural topologies on the spaces RGH++ ,
[
C2(RG++)

]H ,

MS×A, i.e., the space of S × A matrices and
[
C2(RA × RG++ × RA; RJ)

]H . In the following, we
endow E , Eho ⊆ T with the topologies induced by T .

Theorem 3 There exists an open and dense set D ⊆ Eho such that, for every E ∈ D,

Θn(E) = {θi}ki=1, (13)

where k ∈ N and depends on E. Moreover, there exist an open neighborhood V (E) ⊆ Eho of E and,
for every i ∈ {1, . . . , k}, an open neighborhood O(θi) ⊆ Θ of θi and gi : V (E)→ O(θi) such that:
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1. gi is C1, gi(E) = θi, and O(θi) ∩O(θj) = ∅ if i 6= j,

2. {(E, θ) ∈ V (E)×O(θi) : θ ∈ Θn(E)} = graph gi,

3. {(E, θ) ∈ V (E)×Θ : θ ∈ Θn(E)} =
⋃k
i=1 graph gi.

Theorem 4 There exists an open and nonempty set O ⊆ E such that, for every E ∈ O, X(E)
contains a C1-manifold of dimension 1. In particular O ⊆ Enh.

We conclude the section with a discussion about determinacy of equilibria for nonhomogeneous
economies. A reasonable conjecture is that the set of those economies for which the associated
equilibrium allocation set is finite contains an open and nonempty set of E . An attempt to construct
such a set could be the following one.

Consider the incomplete market model and, to simplify matters, an economy for which there
exists a unique equilibrium. Add restriction functions “far away from that equilibrium”. Then the
initial equilibrium will not be affected by those “insignificant” restrictions. Using regularity would
then allow to get the desired openness result.

The problem with the argument above is that while the added restriction do not disturb the
equilibrium under consideration, they may create other equilibria. A simple Edgeworth-Bowley box
diagram can illustrate that situation in the case of a standard two households, two goods exchange
economy. Take an arbitrary equilibrium (p∗, x∗). Then add to household 1’s maximization problem
the “insignificant” constraint

x1
1 ≤ α (14)

with α > x1∗
1 . In this new model, the old equilibrium survives, but as illustrated in the picture

below, the new different equilibrium (p∗∗, x∗∗) arises: x1∗∗
1 = α 6= x1∗

1 . Observe also that the new
equilibrium is not Pareto Optimal and therefore it is different from any equilibrium of the model
without the added constraint (14) .

The above observation can be rephrased in terms of a simple “count of equations and unknowns”
approach. Take the system defining equilibria in an incomplete market economy. Adding a restric-
tion function r1

1 to household 1’s constraints means adding a “new” variable µ1
1, i.e., the multiplier

associated with r1
1, and a “Kuhn-Tucker equation” of the type min

{
r1
1, µ

1
1

}
= 0. Observe that µ1

1

appears in other “old” equations, and “old” variables p, q are arguments of r1
1. Clearly, adding an

equation and a variable to a given system may change the solution set in an arbitrary manner.

4 Appendix

In the present appendix, we introduce some preliminary definitions and then prove the three theorem
stated in the previous sections.

First of all observe that in Definition 1 of equilibrium, S + 1 Walras’ laws do hold. It is then
useful to define x\h(s) = (xch (s) , c 6= C), x\h =

(
x
\
h(s), s ∈ S

)
and similarly e\h(s) = (ech (s) , c 6= C),

e
\
h =

(
e
\
h(s), s ∈ S

)
. Then, the significant market clearing conditions at e are in fact

H∑
h=1

(
x
\
h − e

\
h

)
= 0,

H∑
h=1

zh = 0.
(15)

Moreover define
p\(s) = (pc (s) , c 6= C) , p\ =

(
p\(s), s ∈ S

)
,

p(s) =
(
p\(s), 1

)
, p = (p(s), s ∈ S) .
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We are going to study normalized equilibria in terms of the system of equations of Kuhn-Tucker
conditions associated with households’ maximization problems, and market clearing conditions.
Define then

Ξ = RGH++ × RAH × R(S+1)H
++ × RJH × RG−(S+1)

++ × RA

with generic element

ξ =
(

(xh, zh, λh, µh)h∈H , p
\, q
)

=
(
x, z, λ, µ, p\, q

)
.

Consider then E ∈ E and δ ∈ RS+1
++ . It is immediate to prove that if(

(xh, zh)h∈H , p, q
)
∈ Θn(Eδ)

then there exists (λh, µh)h∈H = (λ, µ) ∈ R(S+1)H
++ × RJH such that

ξ =
(

(xh, zh, λh, µh)h∈H , p
\, q
)

solves the system F∆(ξ, δ, E) = 0 where

F∆ : Ξ× RS+1
++ × E → Rdim Ξ,

F∆

(
x, z, λ, µ, p\, q, δ, E

)
=

(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s)

(h.2.0)
h∈H

−p (0) (xh (0)− eh (0))− qzh

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− eh (s)) + y (s) zh

(h.3.a)
h∈H,a∈A

−λh (0) qa +
S∑
s=1

λh (s) ya(s) +
J∑
j=1

µjhDza
h
rjh (zh, δ�p, δ (0) q)

(h.4.j)
h∈H,j∈J

min
{
µjh, r

j
h (zh, δ�p, δ (0) q)

}
(M.x)

H∑
h=1

(
x
\
h − e

\
h

)
(M.z)

H∑
h=1

zh



(16)

Moreover, if
ξ =

(
(xh, zh, λh, µh)h∈H , p

\, q
)

solves the system F∆ (ξ, δ, E) = 0, then(
(xh, zh)h∈H , p, q

)
∈ Θn(Eδ).

Finally, define F (ξ, E) = F∆(ξ,1, E).

4.1 Existence of equilibria

Theorem 2 is a consequence of the following fact.

Theorem 5 For every E ∈ E, there exists ξ ∈ Ξ such that F (ξ, E) = 0.

Theorem 5 is proved applying the following well known result8.
8A proof of Theorem 6 can be found, for instance, in Villanacci et al. (2002), Chapter 7.
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Theorem 6 Let M and N be two C2 boundaryless manifolds of the same dimension, y ∈ N and
F,G : M → N be continuous functions. Assume that G is C1 in an open neighborhood U of G−1 (y),
y is a regular value for G restricted to U , #G−1 (y) is odd and there exists a continuous homotopy
H : M × [0, 1]→ N from F to G such that H−1 (y) is compact. Then F−1 (y) 6= ∅.

Proof of Theorem 5. 9Observe preliminarily that it is possible to prove that for every h ∈ H
there exists a continuous function z̃h : RG++ × RA → RA such that, for every (p, q) ∈ RG++ × RA,
rh(z̃h(p, q), p, q) � 0. Let E = (e, u, Y, r) ∈ E be fixed. Then it is well known that there exists a

Pareto optimal allocation x∗ for u such that
H∑
h=1

x∗h =
H∑
h=1

eh. Define

F (ξ) = F (ξ, E), ∀ ξ ∈ Ξ,

and consider the system in the unknowns ξ = (x, λ, z, µ, p\, q) ∈ Ξ and τ ∈ [0, 1], given by

(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s) = 0

(h.2.0)
h∈H

−p (0) (xh (0)− ((1− τ) eh(0) + τx∗h(0)))− qzh = 0

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− ((1− τ) eh(s) + τx∗h(s))) + y (s) zh = 0

(h.3.a)
h∈H,a∈A

−λh (0) qa +
S∑
s=1

λh (s) ya(s) +
J∑
j=1

µjh (1− τ)Dza
h
rjh ((1− τ) zh + τ z̃h(p, q), p, q) = 0

(h.4.j)
h∈H,j∈J

min
{
µjh, r

j
h ((1− τ) zh + τ z̃h(p, q), p, q)

}
= 0

(M.x)
H∑
h=1

(
x
\
h −

(
(1− τ) e\h + τx

∗\
h

))
= 0

(M.z)
H∑
h=1

zh = 0

(17)
Define now

H : Ξ× [0, 1]→ Rdim Ξ

(ξ, τ) 7→ left hand side of system (17),

and
G : Ξ→ Rdim Ξ, ξ 7→ H (ξ, 1) .

Observe that
H (ξ, 0) = F (ξ) .

It is then possible to verify that all assumptions of Theorem 6 are satisfied.
Both in the endogenous and exogenous settings, Assumptions r1-r4, consistently defined, rule out

economies where some households are excluded from the trade of some assets. Roughly speaking,
zah = 0, written as zah ≥ 0 and −zah ≥ 0, violates Assumption r410. On the other hand, the strategy
of proof we follow can easily accommodate those kinds of restrictions11.

4.2 Generic regularity of normalized equilibria for homogeneous economies

The goal of this section is to prove that there exists an open and dense subset of homogeneous
economies for which associated normalized equilibria are finite in number and depends smoothly
on the economies themselves, a so-called generic regularity result. Two main difficulties arise
to accomplish the desired result. The presence of nonnegative constraints implies the function
describing the equilibria is not C1. Using a now standard argument due to Cass, Siconolfi and

9See Carosi, Gori and Villanacci (2009) for a detailed proof of Theorem 5.
10More precisely, if Assumptions r1-r4 are satisfied, the admissible portfolio set has nonempty interior, as it follows

from the property of ez described in the proof of above Theorem 5.
11See Carosi, Gori and Villanacci (2009).
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Villanacci (2001) that problem is solved. Moreover, we do need a smooth dependence of equilibrium
variables on all elements defining economies, both finite and infinite dimensional ones. A general
implicit function theorem allows to get the desired result and it is presented below.

Mas Colell (1986), among others, shows that there exists a continuous dependence of equilibria
on economies. In the paper, we present a general and relatively simple method to address the
analysis of smooth dependence. We use a version of the implicit function theorem presented by
Glöckner (2006) and described below. Once the generic regularity result is obtained for the finite
dimensional part of the economy space, Glöckner’s Theorem provides the desired result for the
whole space if it is shown that the equilibrium function is “smooth”. As described in Lemma 9,
verifying that smoothness condition is straightforward if the equilibrium function is the left hand
side of the so called “extended” system of Kuhn-Tucker and market clearing conditions. The above
described strategy of proof can be easily applied to a variety of general equilibrium models. The
proof of Theorem 3 goes through the following steps: brief description of the needed version of the
implicit function theorem; construction of two suitable open and dense sets D1 and D2; proof that
D1 ∩ D2 is the desired set.

Let T be a topological Hausdorff vector space, V ⊆ T be an open set and f : V → Rn. We say
f ∈ C0(V ; Rn) if f is continuous while f ∈ C1(V ; Rn) if it is continuous, there exists the limit

df(v, w) = lim
t→0

f(v + tw)− f(v)
t

, ∀v ∈ V,w ∈ T,

and the function df : V × T → Rn is continuous.
Given now any (not necessarily open) set X ⊆ T , and f : X → Rn, we say f ∈ C0(X,Rn) if f
is continuous with respect to the topology on X induced by T , while, as in the finite dimensional
setting, f ∈ C1(X; Rn) if for all v0 ∈ X there exists an open neighborhood of v0 in T , say V (v0),
and a function f : V (v0)→ Rn such that f ∈ C1(V (v0); Rn) and f(x) = f(x), for all v ∈ V (v0)∩X.
Those definitions allow to state the following implicit function theorem which is a simplified version
of Theorem 2.3 in Glöckner (2006).

Theorem 7 Let us consider f : O × V → Rn, where O is an open subset of Rn and V is an open
subset of a topological Hausdorff vector space T . Assume f ∈ C1(O×V ; Rn) and let (x0, v0) ∈ O×V
such that f(x0, v0) = 0 and

df((x0, v0), (·, 0)) : Rn → Rn, w 7−→ lim
t→0

f((x0, v0) + t(w, 0))− f(x0, v0)
t

is invertible. Then there exist O(x0) ⊆ O open neighborhood of x0, V (v0) ⊆ V open neighborhood
of v0 and g : V (v0)→ O(x0) such that

1. g ∈ C1(V (v0);O(x0)),

2. g(v0) = x0,

3. {(x, v) ∈ O(x0)× V (v0) : f(x, v) = 0} = {(x, v) ∈ O(x0)× V (v0) : x = g(v)}.

Note that if f ∈ C1(O × V ; Rn) then, for all v ∈ V , fv : O → Rn defined as fv(x) = f(x, v)
belongs to C1(O,Rn). Moreover, since O is an open set of a euclidean space, df((x, v), (·, 0)) can
be identified with the Jacobian matrix Dx(fv)(x). Then in Theorem 7 the condition

df((x0, v0), (·, 0)) : Rn → Rn is invertible,

is equivalent to require the n× n matrix Dx(fv0)(x0) to be nonsingular.

Lemma 8 The set

D1 =
{
E ∈ Eho : ∀ξ ∈ (FE)−1 (0) ,∀h ∈ H,∀j ∈ J either µjh > 0 or rjh(zh, p, q) > 0

}
is open and dense in Eho.
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Proof. First of all observe that F is continuous on Ξ× Eho and

proj : F−1 (0)→ Eho, (ξ, E) 7−→ E (18)

is proper. Then openness follows. Density is showed in the remaining part of the proof.
It is sufficient to show that for all (u, Y, r) ∈ U × Y ×Rho the set

D1(u, Y, r) =
{
e ∈ RGH++ : (e, u, Y, r) ∈ D1

}
is dense in RGH++ . Fix (u, Y, r) and define

G : Ξ× RGH++ → Rdim Ξ,

as
G(ξ, e) = F (ξ, e, u, Y, r).

Given now (ξ, e) ∈ G−1 (0), for all h ∈ H, we consider the following partition of J :

J 1
h (ξ, e) = {j ∈ J : rjh(zh, p, q) > 0, µjh = 0},
J 2
h (ξ, e) = {j ∈ J : rjh(zh, p, q) = 0, µjh > 0}, (19)

J 3
h (ξ, e) = {j ∈ J : rjh(zh, p, q) = 0, µjh = 0}.

Obviously

D1 (u, Y, r) =
{
e ∈ RGH++ : ∀ξ ∈ (Ge)

−1 (0) and ∀h ∈ H, J 3
h (ξ, e) = ∅

}
.

Let us call Qh the family of all possible tri-partitions Qh =
{
Q1
h,Q2

h,Q3
h

}
of the set J and

Qih = #Qih for i ∈ {1, 2, 3}. Define then Q = ×h∈HQh, with generic element Q = (Qh, h ∈ H), and

Q∗ = {Q ∈ Q : ∃h ∈ H such that Q3
h 6= ∅}.

Fixed Q ∈ Q∗, define
GQ : Ξ× RGH++ → Rdim Ξ+k(Q),

where k (Q) =
∑
h∈HQ

3
h > 0, as

GQ(x, λ, z, µ, p\, q, e) =

(h.1)
h∈H

Dxh
uh(xh)− λhΦ(p)

(h.2)
h∈H

−Φ(p)(xh − eh) +
[
−q
Y

]
zh

(h.3)
h∈H

λh

[
−q
Y

]
+ µhDzh

rh(zh, p, q)

(h.4.j)
h∈H,j∈Q1

h∪Q
3
h

µjh

(h.5.j)
h∈H,j∈Q2

h∪Q
3
h

rjh(zh, p, q)

(M.x)
H∑
h=1

(x\h − e
\
h)

(M.z)
H∑
h=1

zh


We are going to show that for every Q ∈ Q∗, 0 is a regular value for GQ - see below. If that is the
case from the transversality theorem (see, for example, Hirsch (1976), Theorem 2.7, page 79) the
set

EblQ (u, Y, r) =
{
e ∈ RGH++ : ∃ξ ∈

(
GQ
e

)−1
(0)
}
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has zero measure. Defining then

Ebl (u, Y, r) =
{
e ∈ RGH++ : ∃ξ ∈ (Ge)

−1 (0) such that ∃h such J 3
h (ξ, e) 6= ∅

}
we have

Ebl (u, Y, r) ⊆ ∪Q∈Q∗EblQ (u, Y, r) .

The inclusion holds because given e ∈ Ebl (u, Y, r) and ξ ∈ (Ge)
−1 (0), it suffices to take Q′ =(

J ih (ξ, e) , i = 1, 2, 3 and h ∈ H
)
∈ Q to get GQ′(ξ, e) = 0.12 Then

D1 (u, Y, r) = RGH++ \Ebl (u, Y, r)

and since Ebl (u, Y, r) has measure zero D1 (u, Y, r) has full measure in RGH++ and then, in particular,
it is dense.

Let us finally prove that, for all Q ∈ Q∗, 0 is a regular value for GQ. Observe that from
Assumption r4, if there exists h such that Q2

h ∪Q3
h > A then

(
GQ
)−1 (0) = ∅. Therefore in what

follows we assume that for all h ∈ H it is Q2
h ∪Q3

h ≤ A. By reordering the equations of the system
GQ (ξ, e) = 0 to simplify our argument, we have

(h.1)
h∈H

Dxh
uh (xh)− λhΦ (p) = 0

(h.2)
h∈H

−Φ (p) (xh − eh) +
[−q
Y

]
zh = 0

(h.3)
h∈H

λh
[−q
Y

]
+ µhDzh

rh(zh, p, q) = 0

(h.4′.j)
h∈H,j∈Q1

h

µjh = 0

(h.5.j)
h∈H,j∈Q2

h∪Q
3
h

rjh(zh, p, q) = 0

(M.x)
H∑
h=1

(
x
\
h − e

\
h

)
= 0

(M.z)
H∑
h=1

zh = 0

(h.4′′.j)
h∈H,j∈Q3

h

µjh = 0

(20)

The computation of the Jacobian matrix of the function GQ (ξ, e) is presented in the table below.
(a) The components of the functions are listed in the first column, the variables with respect to

which derivatives are taken are listed in the first row, and in the remaining bottom right corner the
corresponding partial Jacobian is displayed.

(b) The ∗ next to a matrix indicates that it is a full row rank matrix.
(c) The desired full rank result is obtained as follows. In each super-row, use the starred matrix

to clean up that super-row, being sure that in that super-column there are only zero matrices. An
order in which the appropriate elementary (super) column operations have to be performed is that
one indicated in the last column of the table.

The above three step procedure will be used in some other rank computations below.
Observe that DrQ

2
h∪Q

3
h

h has full row rank because of Assumption r4 and that the elementary

12Observe that the opposite inclusion does not hold because in the definition of GQ negative values of rj
h (for

j ∈ Q1
h) and of µj

h (for j ∈ Q2
h) are allowed.
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column operation for the super-row (M.z) is performed using Assumption r5.

xh λh zh

(
µjh

)
j∈Q1

h∪Q
2
h

(
µjh

)
j∈Q3

h

e
\
h e·h

(h.1)
h∈H

D2uh∗ −Φ (p)T 3

(h.2)
h∈H

−Φ (p)
[−q
Y

]T
Φ\(p) I∗ 1

(h.3)
h∈H

[−q
Y

]T ∗ }
[
Dr
Q1

h∪Q
2
h

h

]T [
Dr
Q3

h

h

]T
4

(h.4′.j)
h∈H,j∈Q1

h

I∗ 6

(h.5.j)
h∈H,j∈Q2

h∪Q
3
h

Dr
Q2

h∪Q
3
h

h ∗ 7

(M.x) Î −I∗ 2
(M.z) I∗ 5

(h.4′′.j)
h∈H,j∈Q3

h

I∗ 8

(21)
where the symbol } indicates a nonzero matrix whose values are insignificant for our argument, I
is an identity matrix of appropriate dimension, e·h =

(
eCh (s), s ∈ S

)
,

Φ (p) =

 p1 (0) . . . pC−1 (0) 1
. . .

p1 (S) ... pC−1 (S) 1


(S+1)×G

Φ\ (p) =

 p1 (0) . . . pC−1 (0)
. . .

p1 (S) ... pC−1 (S)


(S+1)×(G−(S+1))

and

Î =

 IC−1 0
. . .

IC−1 0


(G−(S+1)×G)

Let us introduce now the following objects by using a generality which will be useful later. Call
Ph the family of all possible bi-partitions Ph =

{
P1
h,P2

h

}
of the set J . Define P = ×

h∈H
Ph, with

generic element P = (Ph, h ∈ H). Fixed P, consider

FP
∆ : Ξ× RS+1

++ × T → RdimΞ,

FP
∆(x, λ, z, µ, p\, q, δ, e, u, Y, r) =

(h.1)
h∈H

Dxh
uh(xh)− λhΦ(p)

(h.2)
h∈H

−Φ(p)(xh − eh) +
[
−q
Y

]
zh

(h.3)
h∈H

λh

[
−q
Y

]
+ µhDzh

rh(zh, δ�p, δ(0)q)

(h.4.j)
h∈H,j∈P1

h

µjh

(h.5.j)
h∈H,j∈P2

h

rjh(zh, δ�p, δ(0)q)

(M.x)
H∑
h=1

(x\h − e
\
h)

(M.z)
H∑
h=1

zh



.
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where T is defined in (12).

Lemma 9 For all P ∈ P, FP
∆ ∈ C1(Ξ× RS+1

++ × T,RdimΞ).

Proof. Of course FP
∆ is continuous. We have to show that

dFP
∆ : (Ξ× RS+1

++ × T )× (Rdim Ξ × RS+1 × T )→ RdimΞ

is well defined and is continuous. Consider then

(ξ, δ, E) ∈ Ξ× RS+1
++ × T, (ξ∗, δ∗, E∗) ∈ Rdim Ξ × RS+1 × T,

It suffices to show that

lim
t→0

FP
∆(ξ + tξ∗, δ + tδ∗, E + tE∗)−FP

∆(ξ, δ, E)
t

exists and it is continuous and that can be easily done.
It then follows that for all P ∈ P,

FP : Ξ× Eho → RdimΞ, FP(ξ, E) = FP
∆(ξ,1, E),

is C1 .

Lemma 10 The set

D2 =
{
E ∈ Eho : ∀ξ ∈ (FE)−1 (0) ,∀P ∈ P, FP (ξ, E) = 0⇒ detDξF

P (ξ, E) 6= 0
}

is open and dense in Eho.

Proof. Openness follows from continuity. To show density, it is sufficient to show that for all
(u, Y, r) ∈ U × Y ×Rho the set

D2(u, Y, r) =
{
e ∈ RGH++ : (e, u, Y, r) ∈ D2

}
is dense in RGH++ . Fix (u, Y, r) and P ∈ P and define

GP : Ξ× RGH++ → Rdim Ξ,

GP(ξ, e) = FP(ξ, e, u, Y, r) =

(h.1)
h∈H

Dxh
uh(xh)− λhΦ(p)

(h.2)
h∈H

−Φ(p)(xh − eh) +
[
−q
Y

]
zh

(h.3)
h∈H

λh

[
−q
Y

]
+ µhDzh

rh(zh, p, q)

(h.4.j)
h∈H,j∈P1

h

µjh

(h.5.j)
h∈H,j∈P2

h

rjh(zh, p, q)

(M.x)
H∑
h=1

(x\h − e
\
h)

(M.z)
H∑
h=1

zh



(22)

Define also

Ereg (u, Y, r) =
{
e ∈ RGH++ : ∀P ∈ P, 0 is a regular value for GP(·, e)

}
.
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From an argument very similar to the one proposed in Lemma 8, we can prove that, for all P ∈ P

Ereg,P (u, Y, r) =
{
e ∈ RGH++ : 0 is a regular value for GP(·, e)

}
,

is a full measure set. Since D2 (u, Y, r) ⊇ Ereg (u, Y, r) = ∩P∈PEreg,P (u, Y, r), we get the desired
result.

Proof of Theorem 3. Define
D = D1 ∩ D2.

Of course, D is open and dense in Eho and D is the set of economies E ∈ Eho such that for all ξ ∈ Ξ
such that F (ξ, E) = 0 the following conditions hold:

∀h ∈ H,∀j ∈ J either rjh(zh, p, q) > 0 or µjh > 0, (23)

F (·, E) is C1 in a neighborhood of ξ, (24)

detDξF (ξ, E) 6= 0. (25)

We are then left with showing that for any E ∈ D∗ all conditions in Theorem 3 are satisfied.
From the existence result (Theorem 2) and properness of the projection defined in (18), we get

{ξ ∈ Ξ : F (ξ, E) = 0} = {ξi}ki=1, (26)

where k ∈ N and depends on E. Then, from Theorem 7, there exist an open neighborhood V (E) ⊆
Eho of E and, for every i ∈ {1, . . . , k}, an open neighborhood O(ξi) ⊆ Ξ of ξi and ϕi : V (E)→ O(ξi)
such that:

1. ϕi ∈ C1(V (E);O(ξi)), ϕi(E) = ξi, O(ξi) ∩O(ξj) = ∅ if i 6= j,

2. {(ξ, E) ∈ O(ξi)× V (E) : F (ξ, E) = 0} = {(ξ, E) ∈ O(ξi)× V (E) : ξ = ϕi(E)},

3. {(ξ, E) ∈ Ξ× V (E) : F (ξ, E) = 0} =
⋃k
i=1 {(ξ, E) ∈ Ξ× V (E) : ξ = ϕi(E)}.

(27)

Of course, (26) and (27) imply the desired conditions.

4.3 Indeterminacy of equilibria for an open set of nonhomogeneous economies

In this section we prove Theorem 4. To do so, we preliminarily present some simple facts about
incomplete and complete markets.

Define
Σ =

(
RG++ × RS+1

++ × RA++

)H × RG−(S+1) × RA

with generic element
σ =

(
(xh, λh, zh)Hh=1 , p

\, q
)
,

and the function
F IM : Σ× RGH++ × U × Y → Rdim Σ

F IM (σ, e, u, Y ) =

(IM.h.1)
h∈{1,...,H}

Dxh
uh (xh)− λhΦ (p)

(IM.h.2)
h∈{1,...,H}

−Φ (p) (xh − eh) +
[−q
Y

]
zh

(IM.h.3)
h∈{1,...,H}

λh
[−q
Y

]
(M.x)

H∑
h=1

(
x
\
h − e

\
h

)
(M.z)

H∑
h=1

zh


(28)
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F IM (σ, e, u, Y ) = 0 is the system of Kunh-Tucker conditions and market clearing conditions
for the incomplete market model (when A < S) or for the complete market model (when A = S)
associated with (e, u, Y ).

Lemma 11 There exist u∗ ∈ U , Y ∗ ∈ Y, α∗ ∈ R++ and an open and nonempty set D∗ ⊆ RGH++

such that, for every e ∈ D∗, there exists a unique σ ∈ Σ solution to F IM (σ, e, u∗, Y ∗) = 0. Moreover
σ is such that z1

1 > α∗.

Proof. Consider u∗ = (u∗h)h∈H ∈ U where, for every h ∈ H, u∗h is a Cobb-Douglas utility function
and define the set Y0 ⊆ Y as follows:

Y0 =
{
Y ∈MS×A : Y =

[
Y ′

0

]
, Y ′ ∈MA×A, det(Y ′) 6= 0

}
if A < S,

Y0 = Y if A = S.

It is immediate to verify that, for every e ∈ RGH++ and Y ∈ Y0, there is a unique σ ∈ Σ solution to
F IM (σ, e, u∗, Y ) = 0. If financial markets are complete, uniqueness of equilibria is a well know fact;
if financial markets are incomplete, that property immediately follows from the results on complete
markets due to the special structure of the set Y0.

Fix now Y ∗ ∈ Y0. A very standard application of transversality theorem allows to prove there
exists e∗ ∈ RGH++ such that, if σ∗ is the unique solution to F IM (σ, e∗, u∗, Y ∗) = 0 then

DσF
IM (σ∗, e∗, u∗, Y ∗) has full row rank

and z∗11 6= 0. Moreover, up to replacing Y ∗ with −Y ∗, we may assume z∗11 > 0. The proof of the
lemma then follows as a consequence of the implicit function theorem.

Let O be the set of economies E∗ ∈ E such that there exists (ξ∗, δ∗) ∈ Ξ × RS+1
++ having the

following properties:
F∆ (ξ∗, δ∗, E∗) = 0, (29)

∀h ∈ H,∀j ∈ J either rjh (zh, δ�p, δ (0) q) > 0 or µjh > 0 at (ξ, δ) = (ξ∗, δ∗) , (30)

DξF∆ (ξ∗, δ∗, E∗) has full rank, (31)

and there exist h∗ ∈ H and j∗ ∈ J such that

rj
∗

h∗ (zh∗ , δ�p, δ (0) q) = 0 and µj
∗

h∗ > 0 at (ξ, δ) = (ξ∗, δ∗) (32)

Dδr
j∗

h∗ (zh∗ , δ�p, δ (0) q) 6= 0 at (ξ, δ) = (ξ∗, δ∗) . (33)

We provide the proof of Theorem 4 as a consequence of the following two lemmas.

Lemma 12 O is open and nonempty.

Proof. Conditions (29) and (30) imply that F∆ is C1 in a neighborhood of (ξ∗, δ∗, E∗) (Lemma 9)
and therefore condition (31) is well defined. That condition and Theorem 7 imply that the set O is
open.

Define r∗ ∈ Rnh as follows

r∗jh (zh, p, q) =
{
pC (0)− z1

h if h = j = 1,
1 otherwise.

Consider D∗, u∗, Y ∗ and α∗ described in Lemma 11 and the system

F∆(ξ, (α∗, 1, . . . , 1), e, u∗, Y ∗, r∗) = 0, (34)

in the unknown ξ ∈ Ξ, with e ∈ D∗ and (α∗, 1, . . . , 1) ∈ RS+1
++ . Observe that from Theorem 5,

system (34) admits a solution, since

∀ (ξ, δ, E) ∈ Ξ× RS+1
++ × E , F∆ (ξ, δ, E) = F

(
ξ, Eδ

)
.
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Let us prove now that if ξ ∈ Ξ solves (34) then

µjh > 0 if (h, j) = (1, 1), µjh = 0 if (h, j) ∈ (H×J ) \ (1, 1).

If (h, j) 6= (1, 1), r∗jh is identically equal to one and then µjh = 0. Assume now µ1
1 = 0. Then the

vector σ ∈ Σ obtained from ξ erasing multipliers µ solves F IM (σ, e, u∗, Y ∗) = 0 and from Lemma
11 we have z1

1 > α∗, contradicting that the restriction function r∗ implies that z1
1 ≤ α∗.

Then, for every (ξ, e) ∈ Ξ×D,

F∆(ξ, (α∗, 1, . . . , 1), e, u∗, Y ∗, r∗) = 0 ⇒ FP∗

∆ (ξ, (α∗, 1, . . . , 1), e, u∗, Y ∗, r∗) = 0

where P∗ = (P∗h, h ∈ H) and

P∗h =
{
{J \ {1}, {1}} if h = 1,
{J ,∅} if h 6= 1.

Then, for every (ξ, e) ∈ Ξ×D∗ such that F∆(ξ, (α∗, 1, . . . , 1), e, u∗, Y ∗, r∗) = 0, we have that

F∆(ξ, (α∗, 1, . . . , 1), e, u∗, Y ∗, r∗) = FP∗

∆ (ξ, (α∗, 1, . . . , 1), e, u∗, Y ∗, r∗)

in a neighborhood of (ξ, e). A simple rank computation shows that 0 is a regular value for

FP∗

∆ ( · , (α∗, 1, . . . , 1), · , u∗, Y ∗, r∗) : Ξ×D∗ → RdimΞ,

and then there exists e∗ ∈ D∗ such that 0 is regular for

FP∗

∆ ( · , (α∗, 1, . . . , 1), e∗, u∗, Y ∗, r∗) : Ξ→ RdimΞ.

In particular, for every ξ∗ ∈ Ξ such that F∆(ξ, (α∗, 1, . . . , 1), e∗, u∗, Y ∗, r∗) = 0,

DξF∆(ξ∗, (α∗, 1, . . . , 1), e∗, u∗, Y ∗, r∗) has full row rank.

It is now immediate to verify that E∗ = (e∗, u∗, Y ∗, r∗) belongs to O. In fact, E∗ satisfies con-
ditions defining O with respect to (ξ∗, δ∗), where δ∗ = (α∗, 1, . . . , 1) and ξ∗ is any solution to
F∆(ξ, (α∗, 1, . . . , 1), e, u∗, Y ∗, r∗) = 0, and h∗ = j∗ = 1.

Lemma 13 For every E∗ ∈ O, X (E∗) contains a C1-manifold of dimension 1. In particular
O ⊆ Enh.

Proof. Given E∗ ∈ O we say that (ξ∗, δ∗) ∈ O(E∗) if it satisfies all the properties defining O
with respect to E∗. From condition (31) and from the implicit function theorem, we can find two
neighborhoods N(ξ∗) and N(δ∗) of ξ∗ and δ∗, respectively, and a C1 function

ξ : N (δ∗)→ N(ξ∗), (35)

such that ξ (δ∗) = ξ∗ and F∆ (ξ (δ) , δ, E∗) = 0, for each δ ∈ N (δ∗). Let us consider now the
function

Γ : Ξ→ RGH++ , ξ 7−→ x.

First, we prove that condition

rank
[
D(ξ,δ) (F∆,Γ) (ξ∗, δ∗, E∗)

]
(dim Ξ+GH)×(dim Ξ+S+1)

≥ dim Ξ + 1 (36)

implies X(E∗) contains a C1-manifold of dimension 1. Then, we show condition (36) does hold
true.

Given the composition

(Γ ◦ ξ) : N(δ∗)→ RGH++ , δ 7−→ Γ (ξ (δ)) , (37)
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from the implicit function theorem we get

Dδ (Γ ◦ ξ) (δ∗) = −DξΓ (ξ∗) · [DξF∆ (ξ∗, δ∗, E∗)]−1 ·DδF∆ (ξ∗, δ∗, E∗) .

Since [
D(ξ,δ) (F∆,Γ) (ξ∗, δ∗, E∗)

]
=
[
DξF∆ DδF∆

DξΓ 0

]
by simple matrix algebra, we obtain,

rank
[
D(ξ,δ) (F∆,Γ)

]
= rank [DξF∆] + rank

[
−DξΓ · [DξF∆]−1 ·DδF∆

]
= rank [DξF∆] + rank [Dδ (Γ ◦ ξ)] .

The equality rank [DξF∆] = dim Ξ and (36) imply

rank [Dδ (Γ ◦ ξ) (δ∗)]GH×(S+1) ≥ 1,

and we can find s ∈ S such that [
Dδ(s) (Γ ◦ ξ) (δ∗)

]
GH×1

6= 0.

Then we can find a suitable open neighborhood Ns(δ∗(s)) of δ∗(s) such that the function

γ : Ns(δ∗(s))→ γ (Ns(δ∗(s))) ⊆ RGH++ , δ(s) 7→ γ(δ(s)) = (Γ ◦ ξ)(δ∗−s, δ(s)),

where δ∗−s = (δ∗(s′), s′ 6= s), is a diffeomorphism. Since, from (9), for all δ(s) ∈ Ns(δ∗(s)),
γ(δ(s)) ∈ X(E∗), we obtain that X(E∗) contains a C1-manifold of dimension 1.

We are left with showing that condition (36) holds true. Fix E∗ ∈ O, (ξ∗, δ∗) ∈ O(E∗) and
(h∗, j∗) according to the definition of O. In a neighborhood of (ξ∗, δ∗, E∗), the function (F∆,Γ) has
the following form 

(h.1)
h∈H

Dxh
uh(xh)− λhΦ(p)

(h.2)
h∈H

−Φ(p)(xh − eh) +
[
−q
Y

]
zh

(h.3)
h∈H

λh

[
−q
Y

]
+ µhDzh

rh(zh, δ�p, δ (0) q)

(h.4.j)
h∈H,j∈P1

h

µjh

(h.5.j)
h∈H,j∈P2

h

rjh(zh, δ�p, δ (0) q)

(M.x)
H∑
h=1

(x\h − e
\
h)

(M.z)
H∑
h=1

zh

(h.γ)
h∈H

xh



(38)

where, for every h ∈ H, {P1
h,P2

h} is a partition of J . We know j∗ ∈ P2
h∗ and from (33), there exists

s ∈ S such that
Dδ(s)r

j∗

h∗ (zh∗ , δ�p, δ (0) q) 6= 0 at (ξ, δ) = (ξ∗, δ∗) .

We prove (36) showing that

rank
[
D(ξ,δ(s)) (F∆,Γ) (ξ∗, δ∗, E∗)

]T
(dim Ξ+1)×(dim Ξ+GH)

(39)
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has full row rank. The matrix in (39) is described in the following table

(h.1) (h.2) (h.3) (h.4) (h.5) (M.x) (M.z) (h.γ)
xh D2uh −Φ (p)T ÎT I∗ 1
λh −Φ (p) ∗

[−q
Y

]
2

zh
[−q
Y

]T ∗ } Dzh
r′′Th I 4

µ′h } I∗ 5
µ′′h Dzh

r′′h∗ 8
p\ −ΛTh ∗ } } Dp\r

′′T
h 3

q [−zh0] −λh (0) I +W q
h∗ Dqr

′′T
h 6

δ(s) W
δ(s)
h Dδ(s)r

′′T
h ∗ 7

(40)
where for all h ∈ H,

µ′h =
(
µjh

)
j∈P1

h

, µ′′h =
(
µjh

)
j∈P2

h

, r′ =
(
rjh

)
j∈P1

h

, r′′ =
(
rjh

)
j∈P2

h

,

ΛTh =

 λh (0) IC−1 0
. . .

λh (S) IC−1 0


[G−(S+1)]×G

as in (21) the symbol } indicates a nonzero matrix whose values are insignificant for our argument,
W q
h and W δ(s)

h are the transpose of the partial Jacobians of the left hand side of equations (h.3) in
(38) with respect to q and δ(s), respectively.

The proof of the desired rank condition is obtained following step (c) in the “three steps proce-
dure” described in the proof of Lemma 8. The elementary column operations in the before the last
super-row are performed by using Assumption r5, which implies that for every asset a there exists
a household h such that the a-th columns of Dza

h
rh, W q

h , W δ(s)
h are zero. The last super-row can be

“cleaned up” since condition (33) holds. In fact the ∗ in the last two super-rows means just that
the two matrices [

−λ1 (0) I +W q
1 . . . −λH (0) I +W q

H

]
and [

Dδ(s)r
′′
1 . . . Dδ(s)r

′′
H

]
have full row rank.

Finally the inclusion O ⊆ Enh immediately follows from Theorem 3.
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