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Abstract. Reaction systems are a qualitative formalism for modeling systems of biochemical reac-
tions. They describe the evolution of sets of objects representing biochemical molecules. One of
the main characteristics of Reaction systems is the non-permanency of the objects, namely objects
disappear if not produced by any enabled reaction. Reaction systems execute in an environment
that provides new objects at each step. Causality properties of reaction systems can be studied by
using notions of formula based predictor. In this context, we define a notion of opacity that can be
used to study information flow properties for reaction systems. Objects will be partitioned into high
level (invisible) and low level (visible) ones. Opacity ensures that the presence (or absence) of high
level objects cannot be guessed observing the low level objects only. Such a property is shown to be
decidable and computable by exploiting the algorithms for minimal formula based predictors.

1. Introduction

Reaction systems [1, 2] were introduced by Ehrenfeucht and Rozenberg and are based on two different
mechanisms, namely facilitation and inhibition. Facilitation means that a reaction can occur only if all
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its reactants are present, while inhibition means that the reaction cannot occur if any of its inhibitors is
present. A rewrite rule of a reaction system (called reaction) is hence a triple (R, I, P ), where R, I and
P are sets of objects representing reactants, inhibitors and products of the modeled biochemical reaction.
A reaction system is represented by a set of reactions having such a form, together with a (finite) support
set S containing all of the objects that can appear in the reactions. The state of a reaction system T
is a finite subset of S, describing the molecules that are present in the real system being modeled at a
given time. In particular, the presence of an object in the state expresses the fact that the corresponding
biological entity, in a real system which is being modeled, is present at a given time in a number of
copies as much as needed. This is the threshold supply assumption and characterizes reaction systems as
a qualitative modeling formalism.

A reaction system evolves by means of the application of its reactions. A reaction is applicable if
its reactants are present and its inhibitor are not present in the current state of the system. The threshold
supply assumption ensures that reactions having reactants in common never compete for application.
Namely, the quantity of available reactants is always assumed to be as much as needed to apply all
reactions at the same time. The result of the application of a set of reactions results in the introduction of
all of their products in the next state of the system. Reaction systems assume the non permanency of the
elements, namely unused elements are never carried over to the next state.

The behavior of a reaction system model is driven by the (set of) contextual elements which are
provided by the external environment at each step. Such elements join the current state of the system and
can enable or disable reactions. The computation of the next state of a reaction system is a deterministic
procedure. Consequently, if the contextual elements provided to the system at each step are known, then
the whole execution of the system is determined. On the other hand, if the contextual elements provided
at each step are not known, the description of the overall system dynamics becomes non deterministic.

Addressing causal relationships among the actions performed by a system is a very relevant issue in
system biology (see e.g. [3, 4, 5, 6, 7, 8]). Brijder, Ehrenfeucht and Rozenberg initiated an investigation
of causalities in reaction systems [9], i.e. the ways by which the entities of a reaction system influence
each other, introducing the idea of predictor. Given an object s ∈ S, predictors can be used to investigate
whether s will be present in the state after n steps of execution of the reaction system. Since the only
source of non-determinism are the contextual elements received at each step, knowing in advance which
objects will be received at each step makes it possibile to determine whether s will be produced after n
steps. In [10] the study of causal dependencies was enhanced by introducing the new notion of formula
based predictor. A formula based predictor consists of a propositional logic formula to be satisfied by the
sequence of (sets of) elements provided by the environment. Satisfaction of the logic formula precisely
discriminates the cases in which s will be produced after n steps from those in which it will not. Minimal
formula based predictors exist (for a given object s and n) and can be effectively computed. However,
traditional predictors do not assume any knowledge of elements provided by the environment, even if
often the sequences of sets of objects provided by the environment follow specific patterns. For this
reasons, in [11, 12], the notion of formula based predictors was specialized in order to take into account
the subset of context sequences that the environment could actually provide. Also in this case, minimal
formulas exist and can be effectively computed.

Suppose that we have a real biochemical or biological system which is formally described by a re-
action system. Then we can simulate its behavior by means of reactions and observe a presence or an
absence of objects. We can compare modeled behavior with a real one and hence validate the quality of
our model. In many cases, an external observer cannot see all objects or its detection could be costly,
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complex or time consuming. So the validation of the model is problematic. On the other site, sometimes
even an expert in the field is not sure about all objects which are involved in a reaction i.e. his/her infor-
mation is somehow incomplete and hence also the resulting model is incomplete. In the both cases we
still want to evaluate the model with respect to the modeled system as well as to study systems behavior
under such circumstances. To overcome all these problems we study reaction systems with two types of
objects: those that are visible by an external observer, called low level (L) objects, and those that are not
visible, called high level (H) objects. We have borrowed names of objects as well as research method-
ology from the security theory. We investigate detectability of H-objects as a complementary problem
to their privacy (one can detect those objects, whose presence is not secure with respect to its privacy
and vice versa). More precisely, we investigate how much information on the presence (or absence) of
H-objects can an observer obtain just by observing the presence of L-objects. This problem, called infor-
mation flow (see [13]), is widely studied in security theory and has found many formalizations. Among
them, opacity is one of the most universal ([14, 15]). It can be defined for various types of security prop-
erties and requirements (see [16, 17, 18, 19] ) and hence it is suitable for our goals. Here, we reformulate
opacity for reaction systems and use formula based predictors in order to characterize the causal depen-
dences between low level and high level objects. This characterization of opacity properties in terms of
dynamic causalities (i.e., predictors) provides effective and efficient methods to prove information flow
properties in reactions systems.

2. Reaction Systems

In this section we recall the basic definition of the reaction systems [1, 2]. Let S be a finite set of symbols,
called objects. A reaction is formally a triple (R, I, P ) with R, I, P ⊆ S, composed of reactants R,
inhibitors I , and products P . We assume reactants and inhibitors to be disjoint (R ∩ I = ∅), otherwise
the reaction would never be applicable. Reactants and inhibitors R ∪ I of a reaction are collectively
called resources of such a reaction. The set of all possible reactions over a set S is denoted by rac(S).
Finally, a reaction system is a pair A = (S,A), with S being the finite background set, and A ⊆ rac(S)
being its set of reactions.

The state of a reaction system is described by a set of objects T . Let a = (Ra, Ia, Pa) be a reaction
and T be a set of objects. The result resa(T ) of the application of a to T is either Pa, if T separates Ra

from Ia (i.e. Ra ⊆ T and Ia∩T = ∅), or the empty set ∅ otherwise. The application of multiple reactions
at the same time occurs without any competition for the used reactants (threshold supply assumption).
Therefore, each reaction for which no inhibitor is present in the current state can be applied, and the
result of application of multiple reactions is cumulative. Formally, given a reaction system A = (S,A),
the result of application of the set of reactions A to a set T ⊆ S is defined as resA(T ) =

⋃
a∈A resa(T ).

Moreover, given A = (S,A), with denote with resA(T ) = resA(T ).
The dynamics of a reaction system is driven by the contextual objects, namely the objects which are

supplied to the system by the external environment at each step. An important characteristic of reaction
systems is the assumption about the non-permanency of objects. Under such an assumption the objects
carried over to the next step are only those produced by reactions.

Formally, the dynamics of a reaction system A = (S,A) is defined as an interactive process π =
(γ, δ), with γ and δ being finite sequences of sets of objects called the context sequence and the result
sequence, respectively. The sequences are of the form γ = C0, C1, . . . , Cn and δ = D0, D1, . . . , Dn for
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some n ≥ 1, with Ci, Di ⊆ S, and D0 = ∅. Each set Di, for i ≥ 1, in the result sequence is obtained
from the application of reactions A to a state composed of both the results of the previous step Di−1 and
the objects Ci−1 from the context; formally Di = resA(Ci−1 ∪ Di−1) for all 1 ≤ i ≤ n. Finally, the
state sequence of π is defined as the sequence W0,W1, . . . ,Wn, where Wi = Ci ∪Di for all 1 ≤ i ≤ n.
In the following we say that γ = C0, C1, . . . , Cn is a n-step context sequence.

3. Preliminaries on Predicate Logic

In order to describe conditions (causes) on the presence and absence of objects that lead to a given
product, we use objects of reaction systems as propositional symbols of formulas. Formally, we introduce
the set FS of propositional formulas on S defined in the standard way: S ∪ {true, false} ⊆ FS and
¬f1, f1 ∨ f2, f1 ∧ f2 ∈ FS if f1, f2 ∈ FS .

The set FS of propositional formulas are interpreted with respect to subsets of the objects C ⊆
S. Intuitively, s ∈ C denotes the presence of element s and therefore the truth of the corresponding
propositional symbol. The complete definition of the satisfaction is as follows.

Definition 3.1. Let C ⊆ S for a set of objects S. Given a propositional formula f ∈ FS , the satisfaction
relation C |= f is inductively defined as follows:

C |= s iff s ∈ C, C |= true,

C |= ¬f ′ iff C 6|= f ′, C |= f1 ∨ f2 iff either C |= f1 or C |= f2,

C |= f1 ∧ f2 iff C |= f1 and C |= f2

where C 6|= f denotes the negation of C |= f .

In the following ≡l stands for the logical equivalence on propositional formulas FS . Moreover, given
a formula f ∈ FS we use atom(f) to denote the set of propositional symbols that appear in f and
simpl(f) to denote the simplified version of f . The simplified version of a formula is obtained by
applying the standard formula simplification procedure of propositional logic converting a formula to
Conjunctive Normal Form. We recall that for any formula f ∈ FS the simplified formula simpl(f)
is equivalent to f , it is minimal with respect to the number of propositional symbols and unique up to
commutativity and associativity. Thus, we have f ≡l simpl(f) and atom(simpl(f)) ⊆ atom(f) and
there exists no formula f ′ such that f ′ ≡l f and atom(f ′) ⊂ atom(simpl(f)).

The causes of an object in a reaction system are defined by a propositional formula on the set of
objects S. First of all we define the applicability predicate of a reaction a as a propositional logic
formula on S describing the requirements for applicability of a, namely that all reactants have to be
present and inhibitors have to be absent. This is represented by the conjunction of all atomic formulas
representing reactants and the negations of all atomic formulas representing inhibitors of the considered
reaction.

Definition 3.2. Let a = (R, I, P ) be a reaction withR, I, P ⊆ S for a set of objects S. The applicability
predicate of a, denoted by ap(a), is defined as follows: ap(a) =

(∧
sr∈R sr

)
∧
(∧

si∈I ¬si
)
.

The causal predicate of a given object s is a propositional formula on S representing the conditions
for the production of s in one step, namely that at least one reaction having s as a product has to be
applicable.
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Definition 3.3. LetA = (S,A) be a reaction system and s ∈ S. The causal predicate of s inA, denoted
by cause(s,A) (or cause(s), when A is clear from the context), is defined as follows1: cause(s,A) =∨
{(R,I,P )∈A|s∈P} ap ((R, I, P )) .

We introduce a simple reaction system as running example.

Example 3.4. Let A1 = ({A, . . . , G}, {a1, a2, a3}) be a reaction system with

a1 = ({A}, {}, {B}) a2 = ({C,D}, {}, {E,F}) a3 = ({G}, {B}, {E}) .

The applicability predicates of the reactions are ap(a1) = A, ap(a2) = C ∧D and ap(a3) = G ∧ ¬B.
Thus, the causal predicates of the objects are

cause(A) = cause(C) = cause(D) = cause(G) = false,

cause(B) = A, cause(F ) = C ∧D, cause(E) = (G ∧ ¬B) ∨ (C ∧D).

Note that cause(A) = false given that A cannot be produced by any reaction. An analogous reasoning
holds for objects C, D and G.

4. Formula Based Predictors and Specialized Formula Based Predictors

We introduce the notion of formula based predictor, originally presented in [10]. A formula based
predictor for an object s at step n+1 is a propositional formula satisfied exactly by the context sequences
leading to the production of s at step n + 1. Minimal formula based predictors can be calculated in an
effective way.

Given a set of objects S, we consider a corresponding set of labelled objects S × N. For the sake of
legibility, we denote (s, i) ∈ S × N simply as si and we introduce Sn =

⋃n
i=0 Si where Si = {si | s ∈

S}. Propositional formulas on labelled objects Sn describe properties of n-step context sequences. The
set of propositional formulas on Sn, denoted by FSn , is defined analogously to the set FS (presented in
Sect. 3) by replacing S with Sn. Similarly, the set FSi can be defined by replacing S with Si. Given a
formula f ∈ FS , a corresponding formula labelled(f, i) ∈ FSi can be obtained by replacing each s ∈ S
in f with si ∈ Si.

A labelled object si represents the presence (or the absence, if negated) of object s in the i-th ele-
ment Ci of the n-step context sequence γ = C0, C1, . . . Cn. This interpretation leads to the following
definition of satisfaction relation for propositional formulas on context sequences.

Definition 4.1. Let γ = C0, C1, . . . Cn be a n-step context sequence and f ∈ FSn a propositional
formula. The satisfaction relation γ |= f is defined as

{si | s ∈ Ci, 0 ≤ i ≤ n} |= f .

As a running example, let us consider the context sequence γ = C0, C1 where C0 = {A,C} and
C1 = {B}. We have that γ satisfies the formula A0 ∧ B1 (i.e. γ |= A0 ∧ B1) while γ does not satisfy
the formula A0 ∧ (¬B1 ∨ C1) (i.e. γ 6|= A0 ∧ (¬B1 ∨ C1)).

The latter notion of satisfaction allows us to define formula based predictor.
1We assume that cause(s) = false if there is no (R, I, P ) ∈ A such that s ∈ P .
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Definition 4.2. (Formula based Predictor)
Let A = (S,A) be a reaction system, s ∈ S and f ∈ FSn a propositional formula. We say that f
f-predicts s in n+ 1 steps if for any n-step context sequence γ = C0, . . . , Cn

γ |= f ⇔ s ∈ Dn+1

where δ = D0, . . . , Dn is the result sequence corresponding to γ and Dn+1 = resA(Cn ∪Dn).

Note that if formula f f-predicts s in n + 1 steps and if f ′ ≡l f then also f ′ f-predicts s in n + 1.
More specifically, we are interested in the formulas that f-predict s in n + 1 and contain the minimal
numbers of propositional symbols, so that their satisfiability can easily be verified. This is formalised by
the following approximation order on FSn .

Definition 4.3. (Approximation Order)
Given f1, f2 ∈ FSn we say that f1 vf f2 if and only if f1 ≡l f2 and atom(f1) ⊆ atom(f2).

In [10] it is shown that there exists a unique equivalence class of formula based predictors for s in n+1
steps that is minimal with respect to the order vf .

We now define an operator fbp that allows formula based predictors to be effectively computed.
Operator fbp is based on a recursive function fbs that constructs a propositional formula by substituting
at each step each object with its causal predicate.

Definition 4.4. Let A = (S,A) be a reaction system and s ∈ S. We define a function fbp : S × N →
FSn as follows: fbp(s, n) = fbs(cause(s), n), where the auxiliary function fbs : FS × N → FSn is
recursively defined as follows:

fbs(s, 0) = s0 fbs(s, i) = si ∨ fbs(cause(s), i− 1) if i > 0

fbs((f ′), i) = (fbs(f ′, i)) fbs(f1 ∨ f2, i) = fbs(f1, i) ∨ fbs(f2, i)
fbs(¬f ′, i) = ¬fbs(f ′, i) fbs(f1 ∧ f2, i) = fbs(f1, i) ∧ fbs(f2, i)
fbs(true, i) = true fbs(false, i) = false

The function fbp gives a formula based predictor that, in general, may not be minimal with respect to the
approximation order vf . Therefore, the calculation of a minimal formula based predictor requires the
application of the standard expression simplification on boolean formulas, here called simply simpl(),
to the obtained logic formula.

Theorem 4.5. Let A = (S,A) be a reaction system. For any object s ∈ S,

• fbp(s, n) f-predicts s in n+ 1 steps;

• simpl(fbp(s, n)) f-predicts s in n+ 1 steps and is minimal w.r.t. vf .

Example 4.6. Let us consider again the reaction system A1 of Ex. 3.4. We are interested in the produc-
tion of E after 4 steps. Hence, we calculate the logic formula that f-predicts E in 4 steps applying the
function fbp:

fbp(E, 3) = fbs
(
(G ∧ ¬B) ∨ (C ∧D), 3

)
=
(
fbs(G, 3) ∧ ¬fbs(B, 3)

)
∨
(
fbs(C, 3) ∧ fbs(D, 3)

)
=
(
(G3) ∧ ¬(B3 ∨ fbs(A, 2))) ∨ (C3 ∧D3)

=
(
G3 ∧ ¬B3 ∧ ¬A2

)
∨ (C3 ∧D3)

)
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A context sequence satisfies fbp(E, 3) iff the execution of the reaction system leads to the production of
object E after 4 steps. Furthermore, in this case the obtained formula is also minimal w.r.t. vf . This is
because simpl(fbp(E, 3)) = fbp(E, 3). Indeed, the formula fbp(E, 3) cannot further simplified and
any literal cannot be canceled without obtaining a non equivalent formula.

There might be cases where we are interested only in sets of context sequences sharing some common
properties. If we have some knowledge on the class of environments we are interested in, we can compute
a specialized predictor that precisely characterize the causal dependences for the environments of interest.

In [11, 12, 20], Barbuti et al. proposed specialized formula based predictors. A specialized for-
mula based predictor is a propositional logical formula that predicts the production of an object after
a given number of steps, by considering only the subset of the context sequences that already satisfy
the properties we know to hold for the environments of interest. The properties on the behaviour of the
environment can be expressed by temporal logic formulas on context sequences. In the temporal logic,
propositional formulas describe the properties of single contexts (i.e. the symbols that can/cannot appear
in an element of a context sequence). Hence, such formulas play the role of state formulas in traditional
temporal logics. Temporal properties are expressed by variants of the usual next and until operators, and
by derived eventually and globally operators.

In this paper we consider a standard form for the properties on the behaviour of the environment.
In particular, let fI and fC be logic formulas each expressed as a conjunctions of literals, namely basic
propositional symbols (atoms) and their negation. We assume that the environment provides a set of
initial objects satisfying formula fI and that at all subsequent steps it provides a set of objects always
satisfying the conjunctive formula fC .

Example 4.7. Let S = {A,B,C} be the set of objects of a reaction system. With fI = A ∧ ¬B we
express that the first element C0 of every possible context sequence contains for sure A, does not contain
B and may or may not contain C. Similarly, with fC = ¬A we express that all the other elements
C1, C2, . . . of every possible context sequence does not contain A, but may contain B or C.

Definition 4.8. (Specialized Formula based Predictor)
Let A = (S,A) be a reaction system, s ∈ S an object and f ∈ FSn a propositional formula. Given the
conjunctions fI , fC ∈ FS , we say that f f-predicts s in n+ 1 steps with respect to fI and fC iff for any
n-step context sequence γ = C0, . . . , Cn such that γ |= labelled(fI , 0) ∧

∧
1≤i≤n labelled(fC , i), we

have that
γ |= f ⇔ s ∈ Dn+1

where δ = D0, . . . , Dn is the result sequence corresponding to γ and Dn+1 = resA(Cn ∪Dn).

It should be clear that any formula f that f-predicts s in n+1 steps also f-predicts s in n+1 steps with
respect to any possible pair of formulas fI and fC . However, we are interested in the minimal formula
that f-predicts s in n + 1 steps with respect to any conjunctions fI and fC . Theorem 4.10 provides a
method to compute the minimal specialized predictor for fI and fC . First let us formally define the
simplification procedure of a boolean formula f2 with respect to a conjunction of literals f1. The aim is
to simplify f2 by assuming that f1 holds.

Definition 4.9. Let f1, f2 ∈ FS and f1 be a conjunction of literals. With Simpl(f1, f2) we indicate
the standard procedure that simplifies a formula f2 according to the truth values assigned to the boolean
variables by the conjunction f1.
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The following result gives a method to compute the minimal specialized predictor for fI and fC .

Theorem 4.10. Let A = (S,A) be a reaction system, s ∈ S and f ∈ FS be a formula based predictor
of s in n+ 1 steps.

Given the conjunctions fI , fC ∈ FS ,

Simpl((labelled(fI , 0) ∧
∧

1≤i≤n
labelled(fC , i)), f)

is the minimal formula that f-predicts s in n+ 1 steps with respect to fI and fC .

Consequently, the following property holds, and it provides the method for the computation of mini-
mal specialized predictors.

Corollary 4.11. Let A = (S,A) be a reaction system, s ∈ S. Given the conjunctions fI , fC ∈ FS ,

Simpl((labelled(fI , 0) ∧
∧

1≤i≤n
labelled(fC , i)), fbp(s, n))

is the minimal formula that f-predicts s in n+ 1 steps with respect to fI and fC .

The interested reader can find the proofs of Theorems 4.5 and 4.10 as well as the proof of Corol-
lary 4.11 in [10, 12, 20].

5. Information flow

Let us consider a reaction system A = (S,A). We assume an external observer of this system who can
detect or see only some of its objects, but who wants to obtain also information on objects invisible to
her/him. To formalize this situation we borrow techniques developed for reasoning about systems secu-
rity. Namely, we employ information flow based security (see [13]). It is based on an idea that systems
are secure if by observing public behaviour an intruder cannot learn its private activities. Translated to
the presented formalism, this means that we could express which information on invisible objects can be
revealed by observing only the visible ones.

Suppose that all objects from S are divided into two groups, namely public (low level) objects L and
private (high level) objectsH . It is assumed that L∪H = S and L∩H = ∅. We assume that an observer
can see only L-objects, i.e. objects from L, but wants to know something about H-objects.

We introduce an equivalence on sets of objects and on contexts. Two sets of objects A,B are equiva-
lent with respect to the setM if they contain the same objects apart from those inM . Formally,A ≡M B
iff A\M = B \M . This can be applied to reaction system contexts: we write γ1 ≡M γ2 and δ1 ≡M δ2,
respectively. To formalize information flow between L-objects and H-objects we exploit a concept known
as opacity (see [17] for an overview paper).

5.1. Opacity

Let us consider a reaction system A = (S,A) and H ⊂ S.
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Definition 5.1. We say that A is opaque with respect to H iff for every two contexts γ, γ′ such that
γ ≡H γ′, we have δ ≡H δ′.

This says that H-objects have no influence on S\H objects, hence we can learn nothing about their
presence by looking to the low level objects S\H .

Since formula based predictors express all causal dependences of an object from all the other objects
of the reaction system, we can use it to be sure that a reaction system A is opaque.

Theorem 5.2. A reaction system A is opaque with respect to a set of high level objects H iff every
minimal predictor of an object in S\H in 1 steps does not contain any H object.

Proof:
We start by proving the right hand implication. Assume by contraddiction that the reaction system A
is opaque with respect to a set of high level objects H but that there exists a minimal predictor f of an
object in L ∈ S\H in 1 step such that atom(f) ∩H = ∅. Therefore, by Definition 4.2, we have that for
any 1-step context sequence γ = C0, γ |= f ⇔ L ∈ D1, where simpl(f) = f and atom(f) ∩H = ∅.
Choose C0 as a minimal set that satisfies f and for which the presence or absence of at least one element
of H is decisive. Note that such a C0 must exists because simpl(f) = f . Consider C ′0 ≡H C0 but such
that C ′0 6|= f . This implies that γ′ = C

′
0 6|= f . By Definition 4.2 we have that when γ′ is provvided by

the environment, L 6∈ D′1. Then we have found γ ≡H γ′ but δ 6≡H δ′. Therefore A is not opaque. This
gives a contraddiction.

For proving the left hand implication, assume, by contradiction that every minimal predictor of an
object in S\H in 1 steps does not contain any H object but that the reaction systemA is not opaque with
respect to a set of high level objects H .This implies that there exists two context sequence γ and γ′ such
that γ ≡H γ′ but δ 6≡H δ′. Let δ = D0, D1, . . . , Dn and δ′ = D′0, D

′
1, . . . , D

′
n and i be the minimal

index such that Di 6≡H D′i. Let L ∈ S\H be the object that is in Di and not in D′i or viceversa. It must
be the case that L is produced by some reaction that involves at least an element of H , that is decisive
for the production of L. Then, the minimal predictor of object L ∈ S\H in 1 steps have to contain at
least that object of H . This gives a contradiction.

ut

The following results are direct consequences of the previous theorem and of Theorem 4.5.

Corollary 5.3. A is opaque with respect to H iff

∀L ∈ S\H, {A| A0 ∈ atom(simpl(fbp(L, 0)))} ∩H = ∅.

This gives us an easy method to verify if a reaction system is opaque with respect to a set of high level
objects H . Therefore we can state the following claim.

Proposition 5.4. The property of a reaction system A to be opaque with respect to a set of high level
objects H is decidable.

Example 5.5. Let A2 = ({A, . . . ,D}, {a1, a2}) be a reaction system with

a1 = ({A,B,C}, {}, {DA}) a2 = ({B,C}, {A}, {D})
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and consider H = {A}. Note that A2 is opaque even if an high level object appears in reactions
producing a low level object. Indeed, every context sequence that contains both B and C will produce
D in the next step regardless of the presence of the high level object A. This can be also proved by
considering simpl(fbp(B, 0)) = simpl(fbp(C, 0)) = simpl(false) = false and

simpl(fbp(D, 0)) = simpl
(
fbs
(
((A ∧B ∧ C) ∨ (B ∧ C ∧ ¬A)), 0

))
= simpl((A0 ∧B0 ∧ C0) ∨ (B0 ∧ C0 ∧ ¬A0)) =

= B0 ∧ C0

Since ∀L ∈ S\H.{A| A0 ∈ atom(simpl(fbp(L, 0))} ∩ H = ∅, we can conclude that A2 is opaque
with respect to H . Assume now we add to the previous reaction system the following two reactions:

a3 = ({A}, {}, {B}) a4 = ({C}, {A}, {BA})

Now the reaction system is no longer opaque since the high level object A is now relevant for the pro-
duction of B. Imagine a context sequence that at a certain step provides object A and C and another one
that at the same step provides only object C. The former will not produce B in the next step while the
latter will. This can be proved by considering

simpl(fbp(B, 0)) = simpl
(
fbs
(
((A) ∨ (C ∧ ¬A)), 0

))
= simpl(A0 ∨ (C0 ∧ ¬A0)) =

= A0 ∨ (C0 ∧ ¬A0)

Hence, in this case, ∃B ∈ S\H.{A| A0 ∈ atom(simpl(fbp(B, 0))} ∩ H 6= ∅, therefore, by Corol-
lary 5.3, we can state that the reaction system is not opaque.

As we showed in the previous examples, opacity is a very strong property because it does not allow any
flow of information from object inH to objects in S\H . Therefore, it could be useful to consider weaker
notions of opacity.

5.2. Opacity with respect to sets of context sequences

For a reaction system, being opaque with respect to H and to every possible context sequence is a very
strong constraint. In the following we give a notion of opacity by restricting our attention to sets of
context sequences satisfying some properties. These are context sequences whose initial set satisfies a
logic formula fI and whose all subsequent sets satisfy another formula fC , with both fI and fC expressed
as conjunctions of logical literals. Formulas fI and fC should not constrain all the high level objects,
otherwise the concept of opacity would become meaningless. Formally, we assume that ((atom(fI) ∪
atom(fC)) ∩H) ⊂ H , that is, at least an element of H is left free in the environment.

Definition 5.6. We say that A is opaque with respect to H and context sequences satisfying fI and fC
iff for every two contexts sequences γ and γ′ such that γ |= labelled(fI , 0) ∧

∧
1≤i≤n labelled(fC , i),

γ′ |= labelled(fI , 0) ∧
∧

1≤i≤n labelled(fC , i) and γ ≡H γ′, we have δ ≡H δ′.

Theorem 5.7. A is opaque with respect toH and context sequences satisfying fI and fC iff ∀L ∈ S\H ,
the following holds
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1. every minimal specialized predictor of an object in S\H in 1 step with respect to fI does not
contain any H object,

2. every minimal specialized predictor of an object in S\H in 1 step with respect to fC does not
contain any H object.

Proof:
We start by proving the right hand implication. Assume A is opaque with respect to H and context
sequences satisfying fI and fC but at least one of the two conditions of the claim do not hold.

Assume the first one does not hold. This means that there exists a f minimal specialized predictor of
an object in L ∈ S\H in 1 step with respect to fI that does contain an object A ∈ H .

Consider the 1-step context sequence γ = C0 where C0 is a minimal set of objects that satisfies f
where the presence of A is relevant for the satisfaction of f .

Note that such C0 exists since the specialized predictor is minimal and, for Theorem 4.10, we have
that Simpl(labelled(fI , 0), f) = f Consider also γ′ = C

′
0 such that C ′0 coincides with C0 except for

the value of A. Note that γ ≡H γ′ but γ′ 6|= f . Moreover, we have that γ′ = C
′
0 must model fI . This is

because fI does not contain objectA, otherwiseA could be simplified (either by removing it or by substi-
tuting it with false) in f (see Theorem 4.10). Hence, we can conclude that γ′ |= labelled(fC , 0). Now
we have γ |= labelled(fI , 0) ∧

∧
1≤i≤n labelled(fC , i), γ

′ |= labelled(fI , 0) ∧
∧

1≤i≤n labelled(fC , i)
and γ ≡H γ′, but δ 6≡H δ′ since, by Definition 4.8, L ∈ D1 but L 6∈ D′1.

Hence, we can conclude that A is not opaque with respect to H and context sequences satisfying fI
and fC .

Assuming that is the second condition that does not hold, we can reason as before constructing a
context sequence that provvides the set C0 as in the previous case after one step instead than at the first
step. That is, considering γ = ∅, C0 and γ′ = ∅, C ′0.

For proving the left hand implication, assume, by contradiction that (1) and (2) of the claim hold but
that the reaction system A is not opaque with respect to a set of high level objects H and conjunctions
fI and fC .This implies that there exists two context sequences γ and γ′ both satisfying labelled(fI , 0)∧∧

1≤i≤n labelled(fC , i) but such that γ ≡H γ′ but δ 6≡H δ′. Let δ = D0, D1, . . . , Dn and δ′ =
D′0, D

′
1, . . . , D

′
n and i be the minimal index such that Di 6≡H D′i. Let L ∈ S\H be the object that

is in Di and not in D′i or viceversa. Assume first that i = 1. It must be the case that L is produced by
some reaction that involves at least an element A of H , that is decisive for the production of L. More-
over, since γ, γ′ both satisfy labelled(fI , 0) but have a different behaviour on L caused by element A,
this means that fI does not contain A. Then, the minimal specialized predictor of object L ∈ S\H in
1 steps with respect to conjunction fI have to contain object A. This gives a contradiction, since we
assumed (1) to hold.

Assume now i > 1. As before, It must be the case that L is produced by some reaction that involves
at least an element A of H , that is decisive for the production of L. Moreover, since γ, γ′ both satisfy
labelled(fC , 0) but have a different behaviour on L caused by element A, this means that c does not
contain A. Then, the minimal specialized predictor of object L ∈ S\H in 1 steps with respect to
conjunction fC have to contain object A. This gives a contradiction, since we assumed (2) to hold.

ut

The following results are direct consequences of the previous theorem and Corollary 4.11.
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Corollary 5.8. A is opaque with respect toH and context sequences satisfying fI and fC iff ∀L ∈ S\H ,
the following holds

• {A| A0 ∈ atom(Simpl(labelled(fI , 0), fbp(L, 0)))} ∩H = ∅, and

• {A| A0 ∈ atom(Simpl(labelled(fC , 0), fbp(L, 0)))} ∩H = ∅.

This gives us a method to verify if a reaction system is opaque with respect to a set of high level
objects H and context sequences satisfying fI and fC .

Proposition 5.9. The property for a reaction system A to be opaque with respect to a set of high level
objects H and context sequences satisfying fI and fC is decidable.

Example 5.10. Let A3 = ({A, . . . ,D}, {a1, a2}) be a reaction system with

a1 = ({A,B}, {}, {C,A}) a2 = ({B,D}, {A}, {C})

and consider H = {A}. Let us first consider an unconstrained environment (namely fI = fC = true).
In this case (that corresponds to the situation considered in Section 5.1) the reaction system turns out to be
not opaque. Indeed, we have simpl(fbp(C, 0)) = simpl((A0∧B0)∨(B0∧D0∧¬A0)) = B0∧(A0∨D0)
that shows a dependence of C from A.

Let us now consider fI = fC = D, namely the constraint on behavior of the environment is that it
always provides D. In this case, according to the definition, we have to simplify the formula fbp(C, 0)
under the assumption D0, that allows us to obtain (A0∧B0)∨ (B0∧¬A0), that is equivalent to B0. The
predictor in this case shows no dependence of C from A and hence the system is opaque.

5.3. Opacity at a given step with respect to sets of contexts sequences

We now give a third notion of opacity, again by restricting our attention to sets of context sequences
satisfying some properties. As before, these are context sequences whose initial set satisfies fI and
whose subsequent sets satisfy fC .

The notion of opacity we are going to define is bounded in the number of steps. A reaction system is
opaque in this case if the low level objects that are present in the system at step n do not depend on the
high level object received in the previous steps by the context.

Definition 5.11. We say that A is opaque with respect to H and context sequences satisfying fI and
fC at the n-th step iff for every two contexts sequences γ and γ′ such that |γ| = |γ′| = n − 1, γ |=
labelled(fI , 0) ∧

∧
1≤i≤n labelled(fC , i), γ

′ |= labelled(fI , 0) ∧
∧

1≤i≤n labelled(fC , i) and γ ≡H γ′,
we have Dn ≡H D′n.

This notion of opacity ensures that the low level objects in Dn are independent from the high level
object received in the previous steps. Nothing is said about the low level objects in Di with either i < n
or i > n. A notion of bounded opacity stating that if γ ≡H γ′, it holds δ ≡H δ′ with |γ| = |γ′| = n− 1
and |δ| = |δ′| = n could be trivially defined as an extension of the notion just introduced.

As in the previous cases, this third notion of opacity can be formulated in terms of formula based
predictors.
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Theorem 5.12. A is opaque with respect to H and context sequences satisfying fI and fC at the n-th
step iff ∀L ∈ S\H every minimal specialized predictor of an object in S\H in n step with respect to fI
and fC does not contain any H object.

Proof:
We start by proving the right hand implication. AssumeA is opaque respect to H and context sequences
satisfying fI and fC at the n-th step but there existsL ∈ S\H such that the minimal specialized predictor
of L in n steps with respect to fI and fC contains an object A ∈ H . Consider formula f the minimal
specialized predictor of L in n steps with respect to fI and fC . Object A is present in f , consider an
assignment of the litterals in f such that the boolean value of A is relevant for determinate the validity
of the formula f . Note that such assignment has to exists because f is minimal. Now consider γ =
C0, ...Cn−1 such that the context sequence γ contains exactly only the objects that are true under the
choosen assignment and exactly when they are required. In more details, B ∈ Ci iff Bi is true in the
considered assignment. By construction, γ |= labelled(fI , 0) ∧

∧
1≤i≤n labelled(fC , i) and γ |= f .

Observe that if Ai with i = 0 then A0 6∈ atom(fI) while if Ai appears in f with i > 0 then Ai 6∈
atom(fC). This is because otherwise Ai could be simplified (either by removing it or by substituting
it with false) in f and this would contradicts the fact that f was minimal (see Theorem 4.10). Hence
we can construct γ′ = C ′0, ...C

′
n−1 such that it is identical to γ except for the value of Ai that now is

the opposite as before. Since labelled(fI , 0) ∧
∧

1≤i≤n labelled(fC , i) cannot constraint Ai, it should
be easy to see that γ′ |= labelled(fI , 0) ∧

∧
1≤i≤n labelled(fC , i), γ ≡H γ′ but γ′ 6|= f . This gives a

problem, since by Definition 4.8, we have that L ∈ Dn+1 but L 6∈ D′n+1. Therefore we can conclude
that A is not opaque with respect to H and context sequences satisfying fI and fC at the n-th step. This
gives a contradiction.

For proving the left hand implication, assume, by contradiction that ∀L ∈ S\H every minimal
specialized predictor of an object in S\H in n steps with respect to fI and fC does not contain any
H object but that the reaction system A is not opaque with respect to a set of high level objects H
and conjunctions fI and fC at n-th step. The latter being true implies that there exists two context
sequences γ and γ′ both satisfying labelled(fI , 0) ∧

∧
1≤i≤n labelled(fC , i) but such that γ ≡H γ′ but

Dn 6≡H D′n. Assume that L ∈ Dn but L ∈ D′n. It must be the case that an element of A ∈ H is
involved in a possible way to produce L in n steps in a relevant way. Moreover, since γ, γ′ both satisfy
labelled(fI , 0) ∧

∧
1≤i≤n labelled(fC , i) but have a different behaviour on L caused by element A, this

means that neither fI nor fC can contain A. Then, the minimal specialized predictor of object L ∈ S\H
in n steps with respect to conjunctions fI and fC have to contain object A. This gives a contradiction,
since we assumed that every minimal specialized predictor of an object in S\H in n steps with respect
to fI and fC did not contain any H object.

ut

Using Corollary 4.11, we have an effective way to verify this opacity property.

Corollary 5.13. A is opaque with respect to H and context sequences satisfying fI and fC at the n-th
step iff ∀L ∈ S\H ,

{A| Ai ∈ atom(Simpl(labelled(fI , 0) ∧
∧

1≤i≤n
labelled(fC , i), fbp(L, n)))} ∩H = ∅.
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Example 5.14. Let A4 = ({A,B}, {a1, a2}) be a reaction system with

a1 = ({A}, {B}, {B}) a2 = ({B}, {}, {A})

and consider H = {A}.
Moreover, let us consider fI = ¬B and fC = ¬A ∧ ¬B, namely the environment is allowed only to

(possibly) provide an object A at the very beginning of the reaction system execution.
It is rather obvious that the system is not opaque according to the notions of opacity given in the

previous sections, since the presence of B in the system reveals that A was provided by the environment
at the beginning.

It is also easy to see that the dynamics of the system causes theB object, if produced, to continuously
appear and disappear from the system. As a consequence, an observer able to look at the system state
only at even steps (e.g at step 2 or at step 4) would not see the B object independently of whether A was
provided at the beginning or not. Another observer looking at the system state at odd steps (e.g. at step
1 or at step 3) would instead be able to determine whether A was provided or not.

As an example, we can assess opacity at step 2 by computing predictor fbp(B, 1). (Recall that
fbp(s, n) gives the predictor for s at step n+ 1.)

fbp(B, 1) = (A1 ∨B0) ∧ ¬(B1 ∨ (A0 ∧ ¬B0))

Formulas fI and fC allow us to simplify the predictor into false, that does not contain A among its
atoms.

We can also assess that the system is not opaque at step 3 by computing predictor fbp(B, 2).

fbp(B, 2) = (A1 ∨B2 ∨ (A0 ∧ ¬B0)) ∧ ¬(B1 ∨ ((A1 ∨B0) ∧ ¬(B1 ∨ (A0 ∧ ¬B0)))

This time, formulas fI and fC allow us to simplify the predictor into A that shows that the system is not
opaque.

6. Conclusions

We considered three notions of opacity for reaction systems that allow information flow properties to be
assessed. These security properties are complementary to properties like ”can be detect” or ”it could con-
tain” which are useful when formal model of real biochemical or biological system is built and verified.
We showed that opacity properties can be computed by resorting to the algorithms for the computation
of formula based predictors. As future work, we plan to complete the study of opacity notions by consid-
ering some weaker variants. The basic definition requires that H-objects have no influence on L-objects
at all, but this could be too strong. It might be sufficient to require that there always exists a context with
different H-objects, which would lead to the same L-objects (i.e., universal quantification is replaced by
the existential one). Moreover, we plan to investigate variants of opacity called initial state opacity and
final state opacity (see [17]) which describe privacy (in our case detectability of) H-objects in the initial
or finale state of execution, respectively.
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