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Abstract

The aim of the paper is to study the pseudoconvexity (pseudo-
concavity) of the ratio between a quadratic function and the square
of an affine function. Applying the Charnes-Cooper transformation
of variables the function is transformed in a quadratic one defined
on a suitable halfspace. The characterization of the pseudoconvexity
of such a quadratic function allows us to give necessary and sufficient
conditions for the pseudoconvexity and the pseudolinearity of the ratio
in terms of the initial data.

Keywords Pseudoconvexity, pseudolinearity, fractional programming.
2000 Mathematics Subject Classification 90C32, 26B25

1 Introduction

Pseudoconvexity and pseudolinearity of functions are widely studied in the
literature for their nice properties and for their economic applications [?, ?, ?].
In particular, these classes of functions play an important role in Optimiza-
tion because of the fundamental property that a local minimum is also global
and it is reached at an extremum point in case of pseudolinearity. Since many
applications give rise to multi-ratio fractional programs [?], some approaches
for studying pseudoconvexity and pseudolinearity for particular classes of
fractional functions have been recently suggested ([?, ?, ?, ?]). In this frame-
work, the Charnes-Cooper transformation has been shown to be an useful
tool because of its property to preserve pseudoconvexity and pseudolinearity
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([?, ?]).
In this paper we consider the ratio between a quadratic function and the
square of an affine function and we give a complete characterization of pseu-
doconvexity and pseudolinearity for it. More precisely, by means of the
Charnes-Cooper transformation, the ratio is transformed in a quadratic func-
tion defined on a suitable halfspace. The study of pseudoconvexity (pseudo-
linearity) of the transformed function allows to give a characterization of the
pseudoconvexity (pseudolinearity) of the ratio in terms of the initial data.
Based on this characterization, a procedure for testing pseudoconvexity is
given and it is illustrated by several numerical examples.

2 Statement of the problem

The aim of this paper is to study the pseudoconvexity of the function

f(x) =
1
2
xTAx+ aTx+ a0

(bTx+ b0)
2 (1)

on the halfspace S = {x ∈ <n : bTx+ b0 > 0}, b0 6= 0.
We recall that a differentiable function h defined on an open convex set X is
pseudoconvex if for x1, x2 ∈ X

h(x1) > h(x2)⇒ ∇h(x1)T (x2 − x1) < 0

In order to find conditions which ensure the pseudoconvexity of f , we first
study the pseudoconvexity of a quadratic function defined on an halfspace.
Trough the paper we will use the following notations:

• ν−(C) (ν+(C)) denotes the number of negative (positive) eigenvalues
of a matrix C;

• r(C) denotes the rank of a matrix C

• kerC denotes the kernel of C that is kerC = {v : Cv = 0};

• ImC denotes the set ImC = {z = Cv, v ∈ <s};

• v⊥ denotes the orthogonal space to the vector v, that is v⊥ = {w :
vTw = 0}.

• dimW denotes the dimension of the vector space W .
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It is well known that a quadratic function is pseudoconvex if and only if
it is convex, so that pseudoconvexity can differ from convexity only if it is
restricted on a proper subset of <n (see for instance [?]).
A necessary condition for the pseudoconvexity of f is given by the following
theorem.

Theorem 2.1 If f is pseudoconvex on S then the matrix A has at most one
negative eigenvalue.

Proof. Suppose by contradiction v−(A) > 1 and let v1 and v2 be two
linearly independent eigenvectors associated with two negative eigenvalues
of A, such that vT1 v2 = 0. Let W be the linear subspace generated by v1

and v2. Let us note that dim(kerA) ≤ n − 2 and dim(b⊥) = n − 1 so that
kerA 6= b⊥. Moreover since either W ⊂ b⊥ or dim(W + b⊥) = n, we have
dim(W ∩ b⊥) = dimW + dim b⊥ − dim(W + b⊥) = 1 and then W ∩ b⊥ 6= ∅.
Let v ∈ W ∩ b⊥, v 6= 0. Since v is a linear combination of v1 and v2, we have
vTAv < 0. Consider the line x = x0 + tv, x0 ∈ S, t ∈ < which is contained
in S since bTx + b0 = bTx0 + b0 > 0. It is easy to verify that the restriction
ϕ(t) = f(x0 + tv) is of the kind ϕ(t) = αt2 + βt + γ with α < 0 and this
contradicts the pseudoconvexity of f .

Performing the Charnes-Cooper transformation y = x
bT x+b0

, whose inverse

is x = b0y
1−bT y (see [?]), function f is transformed in the following quadratic

function
f(x (y)) = Q (y) = yTQy + qTy + q0

where:

Q =
1

2
A− abT + baT

2b0
+
a0

b20
bbT (2)

q =
1

b0

(
a− 2

a0

b0
b

)
, q0 =

a0

b20
(3)

Taking into account that the previous transformation preserves pseudocon-
vexity and pseudoconcavity [?, ?], we have the following result.

Theorem 2.2 The function f(x) is pseudoconvex (pseudoconcave) on the
halfspace S if and only if the quadratic function Q(y) is pseudoconvex (pseu-

doconcave) on the halfspace S∗ =
{
y ∈ <n : 1−bT y

b0
> 0
}

.

The following theorem characterizes the pseudoconvexity of Q(y) on the
halfspace H = {y ∈ <n : cTy + c0 > 0}.
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Theorem 2.3 The function Q(y) is pseudoconvex on the halfspace H if and
only if one of the following conditions holds:
i) ν−(Q) = 0;

ii) ν−(Q) = 1, kerQ = c⊥, q = βc, c0 ≤ ‖c‖4β
2cTQc

.

Proof. (1) In [?] it is shown that the quadratic function Q(y) defined
on the halfspace H is pseudoconvex if and only if either it is convex (i.e.
ν−(Q) = 0) or the following conditions hold:

a) ν−(Q) = 1;

b) r(Q) = r(Q|q) = 1;

c) H ⊆ A1 where A1 = {x ∈ <n : uTy+γ > 0} is the maximal domain where
Q(y) is pseudoconvex. This domain A1 can be characterized in terms
of eigenvectors and eigenvalues of Q; more precisely u is a normalized
eigenvector associated with the negative eigenvalue µ.

Furthermore when Q(y) is not convex, it can be written as follows

Q(y) = µ
(
uTy + γ

)2
+ σ. (4)

Now we prove that condition ii) is equivalent to conditions a), b), c). With
this aim, observe that condition c) is equivalent to c = ‖c‖u and c0

‖c‖ ≤ γ

and hence condition b) is equivalent to kerQ = c⊥ and q = βc. From (??)
we have that

2µγuTy = 2γµ
cTy

‖c‖
= qTy = βcTy

hence γ =
β ‖c‖

2µ
. Therefore

c0
‖c‖
≤ γ is equivalent to c0 ≤

β ‖c‖2

2µ
and the

proof is complete.

Corollary 2.1 Consider the function h(y) = yTQy. Then h(y) is pseudo-
convex on H if and only if Q is positive semidefinite or Q = µccT with µ < 0
and c0 < 0.

1A direct proof of the theorem can be found in [?].
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3 Pseudoconvexity of the function f (x)

In order to characterize the pseudoconvexity of the function f(x) in terms
of the initial data A, a, a0, b, b0, we distinguish two exhaustive cases, that is
kerA = b⊥ (Theorem ??) and kerA 6= b⊥ (Theorem ??).

Observe that condition kerA = b⊥ is equivalent to say that the matrix A
can be written as A = δbbT where δ is the unique eigenvalue different from
zero and the vector b is an associated eigenvector.

Theorem 3.1 Consider the function f(x) with A = δbbT , δ ∈ <.
Then f(x) is pseudoconvex on S = {x ∈ <n : bTx + b0 > 0} if and only if
there exists γ ∈ < such that a = γb, and one of the following conditions holds
i) δb20 − 2γb0 + 2a0 ≥ 0
ii) δb20 − 2γb0 + 2a0 < 0 and γ ≤ δb0.

Proof. It can be easily proved that if a and b are linearly independent,
conditions i) and ii) of Theorem ?? do not hold.
Since there exists γ ∈ < such that a = γb and taking into account (??)

and (??), we have Q = (1
2
δb20 − γb0 + a0)

bbT

b20
, q = (2a0

b0
− γ)(− b

b0
). Setting

c = − b
b0
, c0 = 1

b0
, from Theorem ?? f(x) is pseudoconvex on S if and only if

µ = 1
2
δb20−γb0+a0 is non negative or µ < 0 and c0 ≤ β

2µ
with β = 2a0

b0
−γ. This

last inequality is equivalent to 1
b0
≤

2a0
b0
−γ

2( 1
2
δb20−γb0+a0)

, that is γ−δb0
δb20−2γb0+2a0

≥ 0.

Since µ < 0 necessarily we have γ − δb0 ≤ 0 and the thesis is achieved.

Corollary 3.1 The function f(x) with A = δbbT , a = γb, δ, γ ∈ <, is pseu-
doconvex on the halfspace S if and only if it can be reduced in the following
canonical form

f(x) =
B

bTx+ b0
+

C

(bTx+ b0)2
+D (5)

where C ≥ 0 or C < 0 and B ≤ 0.

The following theorem gives a complete characterization of the pseudo-
convexity of f in the general case kerA 6= b⊥.

Theorem 3.2 When kerA 6= b⊥, the function f is pseudoconvex on the
halfspace S if and only if A is positive semidefinite on b⊥ and one of the
following conditions holds:

i) there exists α ∈ < such that Ab− ‖b‖
2

b0
a = αb with

α ≥ b0b
Ta− 2 ‖b‖2 a0

b20
(6)
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ii) Ab− ‖b‖
2

b0
a 6= αb for every α ∈ <, there exist a∗, b∗ ∈ <n such that Ab∗ = b,

Aa∗ = a, b∗ ∈ b⊥, bTa∗ = b0 and

a∗Ta ≤ 2a0 (7)

iii) Ab− ‖b‖
2

b0
a 6= αb for every α ∈ <, there exist a∗, b∗ ∈ <n such that Ab∗ = b,

Aa∗ = a, b∗T b 6= 0 and

a0 −
a∗Ta

2
+

1

2bT b∗
(
b0 − bTa∗

)2 ≥ 0 (8)

iv) Ab − ‖b‖
2

b0
a 6= αb for every α ∈ < and there exist µ∗ ∈ <, a∗ ∈ <n such

that a = Aa∗ + µ∗b, b /∈ ImA and

a0 − µ∗b0 −
1

2
a∗TAa∗ ≥ 0 (9)

Proof. From Theorem ??, f(x) is pseudoconvex on S if and only if the
function Q(y) is pseudoconvex on S∗ =

{
y ∈ <n : cTy + c0 > 0

}
, with

c = − 1
b0
b, c0 = 1

b0
.

The case ii) of Theorem ?? corresponds to the case kerA = b⊥, a = γb and
the characterization of the pseudoconvexity of f is given in Theorem ??.
When kerA 6= b⊥, f is pseudoconvex if and only if the matrix Q is positive
semidefinite, with Q = 1

2
A− abT +baT

2b0
+ a0

b20
bbT .

Let us note that for every u ∈ b⊥ we have uTQu = 1
2
uTAu, so that Q is

positive semidefinite on b⊥ if and only if A is positive semidefinite on b⊥.
Let <n be decomposed as the direct sum between the space generated by
vector b and its orthogonal space, so that every x ∈ <n can be written as
x = kb+ w where k ∈ < and w ∈ b⊥. We have

xTQx = k2bTQb+ k

(
Ab− ‖b‖

2

b0
a

)T

w +
1

2
wTAw (10)

where

bTQb =
1

2
bTAb− ‖b‖

2

b0
aT b+

a0

b20
‖b‖4 (11)

Consequently, the matrix Q is positive semidefinite if and only if

ϕ (k, w) = k2bTQb+ k

(
Ab− ‖b‖

2

b0
a

)T

w +
1

2
wTAw ≥ 0, ∀w ∈ b⊥,∀k ∈ <.

(12)

6



We are going to distinguish two exhaustive cases:

Case 1.
(
Ab− ‖b‖

2

b0
a
)T

w = 0 for every w ∈ b⊥.

Case 2. There exists w ∈ b⊥ such that
(
Ab− ‖b‖

2

b0
a
)T

w 6= 0.

Case 1. It is equivalent to say that there exists α ∈ <, such that(
Ab− ‖b‖

2

b0
a

)
= αb (13)

and condition (??) becomes

k2bTQb+
1

2
wTAw ≥ 0, ∀w ∈ b⊥, ∀k ∈ <. (14)

Since wTAw ≥ 0 for every w ∈ b⊥, (??) is verified ∀k ∈ < if and only if

bTQb =
1

2
bTAb− ‖b‖

2

b0
aT b+

a0

b20
‖b‖4 ≥ 0. (15)

From (??) we obtain bTAb − ‖b‖2
b0
bTa = α ‖b‖2, so that bTAb = ‖b‖2

b0
bTa +

α ‖b‖2 and consequently bTQb = 1
2
‖b‖2
b0
bTa + 1

2
α ‖b‖2 − ‖b‖2

b0
aT b + a0

b20
‖b‖4 =

1
2
‖b‖2

(
α− 1

b0
bTa+ 2a0

b20
‖b‖2

)
. So condition (??) is satisfied if and only if

α ≥ b0b
Ta− 2 ‖b‖2 a0

b20

Consequently, if A is positive semidefinite on b⊥ and
(
Ab− ‖b‖

2

b0
a
)T

w = 0

for every w ∈ b⊥, Q is positive semidefinite if and only if (??) is verified.
Case 2. Let us note that, corresponding to an element w ∈ b⊥ such that(
Ab− ‖b‖

2

b0
a
)T

w 6= 0, necessarily we have wTAw > 0, otherwise (??) is not

verified ∀k ∈ <. Furthermore, (??) is equivalent to

inf
(k,w)∈<×b⊥

ϕ (k, w) = inf
k∈<

inf
w∈b⊥

ϕ (k, w) ≥ 0.

It is well known that a convex quadratic function either has minimum value
or its infimum is equal to −∞ and consequently Q is positive semidefinite if
and only if inf

w∈b⊥
ϕ (k, w) = min

w∈b⊥
ϕ (k, w) and inf

k∈<
min
w∈b⊥

ϕ (k, w) ≥ 0.

Now, for any given k ∈ <, consider the following minimization problem{
min [ϕ (k, w) = k2bTQb+ k

(
Ab− ‖b‖

2

b0
a
)T

w + 1
2
wTAw]

bTw = 0
(16)
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Since A is positive semidefinite on the orthogonal space b⊥, w∗ is the solution
of Problem (??) if and only if there exists (w∗, λ∗) which satisfies the following
necessary and sufficient optimality conditions{

Aw∗ + kAb− k ‖b‖
2

b0
a = λ∗b (1)

bTw∗ = 0 (2)
(17)

Let us note that (??) implies w∗TAw∗ + kw∗T (Ab− ‖b‖
2

b0
a) = 0, so that

ϕ (k, w∗) = k2bTQb− 1

2
w∗TAw∗ (18)

Furthermore, from (??.1), we have

k
‖b‖2

b0
a = A (w∗ + kb)− λ∗b. (19)

We are going to distinguish the two cases: b ∈ ImA, b /∈ ImA.
If b ∈ ImA, there exists b∗ such that Ab∗ = b, so that condition (??) implies
a ∈ ImA, i.e. there exists a∗ such that Aa∗ = a. Therefore equation (??.1)
can be written as follows

A

(
w∗ + kb− λ∗b∗ − k‖b‖

2

b0
a∗

)
= 0.

As a consequence w∗ + kb− λ∗b∗ − k ‖b‖
2

b0
a∗ ∈ kerA, so that

w∗ = λ∗b∗ + k
‖b‖2

b0
a∗ − kb+ e, (20)

with e ∈ kerA. Substituting (??) and (??) in (??) and (??.2) we get

ϕ (k, w∗) =
‖b‖4

b20

(
a0 −

1

2
a∗Ta

)
k2 + λ∗

‖b‖2

b0

(
b0 − bTa∗

)
k − 1

2
λ2bT b∗ (21)

bTw∗ = λ∗bT b∗ + k
‖b‖2

b0

(
bTa∗ − b0

)
= 0 (22)

If bT b∗ = 0, from (??) bTw∗ = 0 for every k and necessarily we have(
b0 − bTa∗

)
= 0 and therefore

inf
k∈<

min
w∈b⊥

ϕ (k, w) = inf
k∈<

ϕ (k, w∗) = inf
k∈<

[
k2 1

2b20
‖b‖4

(
2a0 − a∗Ta

)]
≥ 0
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if and only if 1
2b20
‖b‖4

(
2a0 − a∗Ta

)
≥ 0. Thus, Q is positive semidefinite if

and only if ii) holds.
If bT b∗ 6= 0; from (??) we obtain

λ∗ =
k

b0

‖b‖2

bT b∗
(
b0 − bTa∗

)
and substituting λ∗ in (??) we get

ϕ (k, w∗) = k2‖b‖
4

b20

(
a0 −

a∗Ta

2
+

1

2bT b∗
(
b0 − bTa∗

)2)
Therefore inf

k∈<
min
w∈b⊥

ϕ (k, w) = inf
k∈<

ϕ (k, w∗) ≥ 0 if and only if a0 − a∗T a
2

+

1
2bT b∗

(
b0 − bTa∗

)2 ≥ 0. Consequently, Q is positive semidefinite if and only
if iii) holds.
Finally we deal with the case b /∈ ImA. From (??), system (??) has solutions
if and only if there exist a∗ ∈ <n and µ∗ such that a = Aa∗ + µ∗b and hence
equation (??.1) can be written as follows

k
‖b‖2

b0
(Aa∗ + µ∗b) = A (w∗ + kb)− λ∗b

or equivalently

A

(
w∗ + kb− k‖b‖

2

b0
a∗

)
=

(
k
‖b‖2

b0
µ∗ + λ∗

)
b

Since b /∈ ImA, the above equation holds if and only if k ‖b‖
2

b0
µ∗ + λ∗ = 0 and

hence (λ∗, w∗) is the solution of system (??) if and only if

λ∗ = −k‖b‖
2

b0
µ∗

w∗ = k
‖b‖2

b0
a∗ − kb+ e, e ∈ kerA

Therefore

ϕ (k, w∗) = k2‖b‖
4

b20

(
a0 − b0µ∗ −

1

2
a∗TAa∗

)
so that

inf
k∈<

min
w∈b⊥

ϕ (k, w) = inf
k∈<

ϕ (k, w∗) ≥ 0

if and only if a0−b0µ∗− 1
2
a∗TAa∗ ≥ 0. Consequently, Q is positive semidefinite

if and only if iv) holds and the proof is complete.
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Remark 3.1 Let us note that in ii) and iii) of Theorem ??, necessarily we
have kerA ⊂ a⊥ ∩ b⊥. In fact, Aa∗ = a, Ab∗ = b, imply zTAa∗ = zTa = 0,
zTAb∗ = zT b = 0 ∀z ∈ kerA. Consequently, relations (??) and (??) are
independent from the particular choice of a∗, b∗.
With respect to iv) of Theorem ??, let µ∗, µ∗1 ∈ < and a∗, a∗1 ∈ <n such that
a = Aa∗ + µ∗b = Aa∗1 + µ∗1b; then A(a∗ − a∗1) = (µ∗1 − µ∗)b. Since b /∈ ImA,
necessarily we have µ∗1 = µ∗ and a∗1 ∈ a∗ + kerA. As a consequence, in (??)
µ∗ is unique and a∗TAa∗ is independent from the particular choice of a∗.

4 Special cases

When the matrix A is not singular (in particular when A is positive definite)
the characterization of the pseudoconvexity of the function f assumes a very
simple form as it is stated in the following results.

Theorem 4.1 Assume that A is not singular. The function f is pseudocon-
vex on the halfspace S if and only if A is positive semidefinite on b⊥ and
one of the following conditions holds:
i) bTA−1b = 0 and 2a0 ≥ aTA−1a;

ii) bTA−1b 6= 0 and 2a0 − aTA−1a+
(b0−bTA−1a)

2

bTA−1b
≥ 0.

Proof. Let us note that case iv) of Theorem ?? does not occur since the
non singularity of A implies b ∈ ImA.
Consider case i) of Theorem ??. We have

b =
‖b‖2

b0
A−1a+ αA−1b (23)

so that

aT b =
‖b‖2

b0
aTA−1a+ αaTA−1b (24)

Substituting (??) in (??), we obtain

2a0 − aTA−1a+
α

‖b‖2
(
b20 − b0bTA−1a

)
≥ 0 (25)

If bTA−1b = 0, from (??), we have bTA−1a = b0, so that (??) becomes
2a0 − aTA−1a ≥ 0 and thus i) is verified.
If bTA−1b 6= 0, from (??), we have

α

‖b‖2
=
b0 − bTA−1a

b0bTA−1b
(26)

10



Substituting (??) in (??), we obtain condition ii).
Consider now condition ii) of Theorem ??.
We have b∗ = A−1b, a∗ = A−1a, bTA−1b = 0, bTA−1a = b0, so that (??)
reduces to condition i).
At last consider condition iii) of Theorem ??.
We have b∗ = A−1b, a∗ = A−1a, bTA−1b 6= 0, so that (??) reduces to
condition ii).

Corollary 4.1 Consider the function

h(x) =
1
2
xTAx+ a0

(bTx+ b0)2

on the halfspace S, where A is not singular. Then h is pseudoconvex if and
only if A is positive semidefinite on b⊥ and one of the following conditions
holds:
i) bTA−1b = 0 and a0 ≥ 0;

ii) bTA−1b 6= 0 and 2a0 ≥ − b20
bTA−1b

.

Theorem 4.2 Assume that A is positive definite on <n. Then the function
h is pseudoconvex on the halfspace S if and only if

2a0 − aTA−1a+

(
b0 − bTA−1a

)2
bTA−1b

≥ 0 (27)

Corollary 4.2 Consider the function

h(x) =
1
2
xTAx+ a0

(bTx+ b0)2

on the halfspace S, where A is positive definite. Then h is pseudoconvex if

and only if 2a0 ≥ − b20
bTA−1b

.

The following example shows that the function f may be not pseudocon-
vex even if A is positive definite.

Example 4.1 Consider the function

f(x1, x2) =
x2

1 + 2x2
2 + 2x1x2 + 3x1 + 2x2 + 1

(x1 + x2 + 1)2

Even if the matrix A =

[
2 2
2 4

]
is positive definite, f is not pseudoconvex

on S since (??) does not hold. The non pseudoconvexity of f on S can be
also verified performing a restriction of f on the half line x2 = 0, x1 > −1.
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The following corollaries present other cases where conditions for the
pseudoconvexity are very easy to be checked .

Corollary 4.3 Consider the function

h(x) =
aTx+ a0

(bTx+ b0)2
(28)

on the halfspace S.
Then h is pseudoconvex on S if and only if a = γb with a0− γb0 ≥ 0 or with
a0 − γb0 < 0 and γ ≤ 0.
Moreover when a = 0, h is pseudoconvex on S for every a0 ∈ <.

Corollary 4.4 Consider the function

h(x) =
1
2
xTAx

(bTx+ b0)2

on the halfspace S. Then h is pseudoconvex if and only if A is positive
semidefinite or A = δbbT with δ < 0 and b0 < 0.

5 An algorithm to test for pseudoconvexity

The results obtained in the previous sections allow to state a simple algorithm
for testing the pseudoconvexity of the function

f(x) =
1
2
xTAx+ aTx+ a0

(bTx+ b0)
2 , x ∈ S = {x ∈ <n : bTx+ b0 > 0}, b0 6= 0

Step 0. If A = δbbT go to step 8, otherwise go to step 1.
Step 1. If A is not positive semidefinite on b⊥, Stop: f is not pseudoconvex;

otherwise calculate Ab− ‖b‖
2

b0
a. If Ab− ‖b‖

2

b0
a = αb go to step 2, otherwise go

to step 3.

Step 2. If α ≥ b0bT a−2‖b‖2a0

b20
, Stop: f is pseudoconvex otherwise Stop: f is

not pseudoconvex.
Step 3. If the system Ax = b has no solutions, go to step 7, otherwise go to
step 4.
Step 4. If the system Ax = a has no solutions Stop: f is not pseudoconvex,
otherwise let a∗ such that Aa∗ = a and let b∗ such that Ab∗ = b. If bT b∗ = 0
go to step 5, otherwise go to step 6.
Step 5. If bTa∗ = b0 and aTa∗ ≤ 2a0, Stop: f is pseudoconvex, otherwise
Stop: f is not pseudoconvex.
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Step 6. If a0 − a∗T a
2

+ 1
2bT b∗

(
b0 − bTa∗

)2 ≥ 0, Stop: f is pseudoconvex,
otherwise Stop: f is not pseudoconvex.
Step 7. If there exist µ∗, a∗ such that a = Aa∗+µ∗b and a0−µ∗b0−1

2
a∗TAa∗ ≥

0, Stop: f is pseudoconvex, otherwise Stop: f is not pseudoconvex.
Step 8. If a 6= γb, Stop: f is not pseudoconvex, otherwise go to step 9.
Step 9. If δb20 − 2γb0 + 2a0 ≥ 0, Stop: f is pseudoconvex, otherwise go to
step 10.
Step 10. If γ ≤ δb0, Stop: f is pseudoconvex, otherwise Stop: f is not
pseudoconvex.
The following examples point out different cases that can occur applying the
previous algorithm.

Example 5.1 Consider the function

f(x1, x2, x3) =
1
2
x2

1 + x2
2 + 3

2
x2

3 + 2x1x2 + x1 + 2x2 + a0

(x1 + 1)2

Case i) of Theorem ?? occurs and it can be easy verified that f is pseudo-
convex for every a0 ≥ 1

2
.

Example 5.2 Consider the function

f(x1, x2, x3, x4) =
1
2
x2

1 + 2x2
2 − x2

3 + 1
2
x2

4 + 2x1x2 + x1 + 2x2 + x4 + a0

(2x1 + 4x2 − 2
√

2x3 + 2)2

Case ii) of Theorem ?? occurs and it can be easy verified that f is pseudo-
convex for every a0 ≥ 1.

Example 5.3 Consider the function

f(x1, x2, x3) =
x2

1 + x2
2 − x2

3 + 2x1x2 + x1 + x2 − x3 + 1

(x3 + b0)2

Case iii) of Theorem ?? occurs and it can be easy verified that f is pseudo-
convex for every b0 ∈ [−1

2
, 3

2
], b0 6= 0,

Example 5.4 Consider the function

f(x1, x2, x3) =
x2

1 + x2
3 + x1 + a2x2 + x3 + 1

(x2 + 1)2

Case iv) of Theorem ?? occurs and it can be easy verified that the function
f(x) is pseudoconvex for every a2 ≤ 1

2
.
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6 Pseudolinearity of the function f (x).

It is well known that a function is pseudolinear if and only if it is both
pseudoconvex and pseudoconcave. Taking into account that a function is
pseudoconcave if and only if its opposite is pseudoconvex, from Theorem ??
we obtain

Theorem 6.1 The function Q(y) is pseudoconcave on H if and only if one
of the following conditions holds:
i) ν+(Q) = 0;

ii) ν+(Q) = 1, kerQ = c⊥, q = βc, c0 ≤ ‖c‖4β
2cTQc

.

Combining i) and ii) of Theorem ?? with i) and ii) of Theorem ?? and
taking into account that ii) of Theorem ?? and ii) of Theorem ?? cannot
occur simultaneously, we achieve the following result.

Theorem 6.2 The function Q(y) is pseudolinear on H if and only if one of
the following conditions hold:
i) Q = 0;
ii) Q = µccT , µ 6= 0, q = βc, β ∈ <, c0 ≤ β

2µ
.

In terms of the data A, a, a0, b, b0, taking into account that the function
f(x) is pseudolinear on S if and only if Q(y) is pseudolinear on H (see
Theorem ??), we have the following theorem.

Theorem 6.3 The function f(x) is pseudolinear on S if and only if one of
the following conditions holds:
i) A = abT +baT

b0
− 2a0

b20
bbT ;

ii) A = δbbT , a = γb, δ, γ ∈ < with δb20 − 2γb0 + 2a0 > 0 and γ ≥ δb0 or
δb20 − 2γb0 + 2a0 < 0 and γ ≤ δb0.

Proof. Condition i) is equivalent to i) of Theorem ?? taking into account
relation (??), while ii) is equivalent to ii) of Theorem ?? taking into account
the following relationships: µ = 1

2
δb20 − γb0 + a0, β = 2a0

b0
− γ, c0 = 1

b0
.

Corollary 6.1 The function f(x) is pseudolinear on S if and only if it can
be reduced to a linear fractional function or to the following canonical form

f(x) =
B

bTx+ b0
+

C

(bTx+ b0)2
+D (29)

where C > 0 and B ≥ 0 or C < 0 and B ≤ 0.

14



Proof. Corresponding to case i) of Theorem ??, it results

f(x) = b0aT x−a0bT x+a0b0
b20(bT x+b0)

so that f(x) is a linear fractional function; the canon-

ical form (??) follows by ii) of Theorem ?? taking into account Corollary ??.

Corollary 6.2 Consider function h(x) = aT x+a0

(bT x+b0)2
. h(x) is pseudolinear on

S if and only if a = γb with γ ≥ 0 and a0−γb0 > 0 or γ ≤ 0 and a0−γb0 < 0.
Moreover when a = 0, h(x) is pseudolinear on S for every a0 ∈ <.
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