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ABSTRACT  44 

 45 

BACKGROUND. Although combined antiretroviral therapy (cART) has saved millions of lives, it 46 

is incapable of full immune reconstitution and virus eradication. The Transactivator of transcription 47 

(Tat) protein is a key human immunodeficiency virus (HIV) virulence factor required for virus 48 

replication and transmission. Tat is expressed and released extracellularly by infected cells also 49 

under cART and in this form induces immune dysregulation, and promotes virus reactivation, entry 50 

and spreading. Of note, anti-Tat antibodies are rare in natural infection and, when present, correlate 51 
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with asymptomatic state and reduced disease progression. This suggested that induction of anti-Tat 52 

antibodies represents a pathogenesis-driven intervention to block progression and to intensify 53 

cART. Indeed Tat-based vaccination was safe, immunogenic and capable of immune restoration in 54 

an open-label, randomized phase II clinical trial conducted in 168 cART-treated volunteers in Italy. 55 

To assess whether B-clade Tat immunization would be effective also in patients with different 56 

genetic background and infecting virus, a phase II trial was conducted in South Africa. 57 

METHODS. The ISS T-003 was a 48-week randomised, double-blinded, placebo-controlled trial to 58 

evaluate immunogenicity (primary endpoint) and safety (secondary endpoint) of B-clade Tat (30 59 

μg) given intradermally, 3 times at 4-week intervals, in 200 HIV-infected adults on effective cART 60 

(randomised 1:1) with CD4+ T-cell counts ≥200 cells/µL. Study outcomes also included cross-clade 61 

anti-Tat antibodies, neutralization, CD4+ T-cell counts and therapy compliance. 62 

RESULTS. Immunization was safe and well-tolerated and induced durable, high titers anti-Tat B-63 

clade antibodies in 97% vaccinees. Anti-Tat antibodies were cross-clade (all vaccinees tested) and 64 

neutralized Tat-mediated entry of oligomeric B-clade and C-clade Envelope (Env) in dendritic cells 65 

(24 participants tested). Anti-Tat antibody titers correlated positively with neutralization. Tat 66 

vaccination increased CD4+ T-cell numbers (all participants tested), particularly when baseline 67 

levels were still low after years of therapy, and this had a positive correlation with HIV 68 

neutralization. Finally, in cART non-compliant patients (24 participants), vaccination contained 69 

viral load rebound and maintained CD4+ T-cell numbers over study entry levels as compared to 70 

placebo. 71 

CONCLUSIONS. The data indicate that Tat vaccination can restore the immune system and 72 

induces cross-clade neutralizing anti-Tat antibodies in patients with different genetic backgrounds 73 

and infecting viruses, supporting the conduct of phase III studies in South Africa. 74 

TRIAL REGISTRATION. ClinicalTrials.gov NCT01513135, 01/23/2012. 75 

KEY WORDS: Tat, HIV, AIDS, clinical trials, vaccine, cross-clade antibodies, neutralization, 76 

CD4+ T cells, cART, therapy intensification. 77 
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 78 

BACKGROUND  79 

South Africa is severely affected by human immunodeficiency virus (HIV) infection (1). The HIV 80 

counselling and testing campaign (HCT) launched by the National Department of Health has 81 

steadily increased the proportion of HIV-infected patients on combined antiretroviral therapy 82 

(cART). However, access to therapy and care of millions of people living with HIV is posing an 83 

enormous challenge to the public health system by means of a growing work overload and 84 

economic burden. This is going to be further complicated by the expected implementation of the 85 

new World Health Organization (WHO) guidelines that recommend starting therapy at the time of 86 

the first positive HIV testing ("test and treat") (2). However, despite vast access to cART, the rates 87 

of HIV morbidity/mortality are still high, with a 14% annual increase of HIV drug resistance related 88 

to insufficient treatment compliance, which hampers an effective suppression of virus replication, a 89 

prerequisite to reduce virus transmission (3). Further, late therapy initiation is still frequent in South 90 

Africa limiting the extent of CD4+ T cell recovery and immune restoration (4,5). Similarly, 91 

persistent immune activation, particularly when associated with poor immunological response to 92 

therapy, leads to disease progression even under HIV suppression (6-8). These are causes of 93 

increasing co-morbidities, hospitalization, deaths and costs for the National Health Systems. In this 94 

context, an effective therapeutic vaccine, in conjunction with existing strategies, may represent a 95 

relevant, cost-effective intervention to intensify cART (9).  96 

The Transactivator of transcription (Tat) is a key HIV virulence factor playing pivotal roles in virus 97 

gene expression, replication, transmission and disease progression (reviewed in 10 and 11). Tat is 98 

produced very early upon infection (12-16) and continues to be expressed under cART (17, 18), is 99 

released extracellularly (19-21), accumulates in tissues (22, 23), and exerts effects on both the virus 100 

and the immune system (17, 24-52) that make it an optimal candidate for therapeutic immunization 101 

and cART intensification (53-58). In particular, by promoting an excessive and improper immune 102 

stimulation, Tat prepares target cells for virus propagation, while disabling an effective immune 103 
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control (17, 24-52). This leads to the chronic loss of immune homeostasis observed in HIV-infected 104 

patients, which is only partially reverted by cART (59-63). Further, extracellular Tat, which is 105 

present on virions (64), binds the Envelope (Env) spikes forming a virus entry complex that favors 106 

infection of dendritic cell (DC) and T cells, key components of the virus reservoir (65). Of note, by 107 

binding the Env C-C chemokine receptor 5 (CCR5) co-receptor binding sites, Tat shields Env from 108 

anti-HIV antibodies (Abs), thus inhibiting virus neutralization, which, however, is restored by anti-109 

Tat Abs (65). Notably, anti-Tat Abs are uncommon in natural infection and, when present, correlate 110 

with the asymptomatic state, higher CD4+ T-cell number, lower viral load, and reduced disease 111 

progression (66-70). This suggested that the induction of effective anti-Tat Abs represents a 112 

pathogenesis-driven intervention to block progression and to intensify cART efficacy.  113 

After completion of randomised, placebo-controlled, double-blinded phase I trials with the 114 

biologically active HIV-1 B-clade Tat protein in HIV-infected and uninfected individuals in Italy 115 

(54-56), an open-label randomised exploratory phase II trial with Tat was conducted in 168 HIV-116 

infected anti-Tat Abs negative, virologically suppressed cART-treated (mean of 6 years) adult 117 

subjects in Italy (ISS T-002, ClinicalTrials.gov NCT00751595) (53, 57). The endpoints were to 118 

evaluate immunogenicity and safety of B-clade Tat protein administered at 7.5 or 30 µg, given 3 or 119 

5 times monthly, and to investigate immunological and virological disease biomarkers. The vaccine 120 

was safe and well tolerated and induced anti-Tat Abs in most patients (79%), with the highest 121 

frequency and durability in the Tat 30 µg groups (89%), particularly when given 3 times (92%). 122 

Vaccination promoted a durable and significant restoration of T, B, and natural killer (NK) cell 123 

numbers, increased CD4+ and CD8+ central memory subsets, and upregulated the expression of 124 

human leukocyte antigen-D related (HLA-DR+) on CD8+ killer T cells, a phenotype found to be 125 

increased in elite controllers and to contribute to HIV containment (71, 72). Moreover, a significant 126 

reduction of blood proviral DNA was seen after 3 years from the first immunisation, particularly 127 

under protease inhibitor (PI)-based regimens and with Tat 30 µg given 3 times (30 μg, 3x), reaching 128 

a predicted 70% decay with a half-life of 88 weeks (57). This decay was significantly associated 129 
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with anti-Tat immunoglobulin (Ig) M and IgG Ab titers and neutralization of Tat-mediated entry of 130 

oligomeric Env in DC. Neutralization predicted HIV-1 DNA decay (57). 131 

Based on these data, a 48-week randomised, double-blinded, placebo-controlled phase II study was 132 

conducted in cART-treated South African adult volunteers to verify the immunogenicity and safety 133 

of the B-clade Tat vaccine in a population with a different genetic background and mainly infected 134 

with a C clade virus. Anti-Tat Abs were further characterised to explore cross-clade recognition and 135 

their capability of cross-neutralising Tat-mediated oligomeric Env entry in DC. CD4+ T-cell counts 136 

were monitored for the entire trial, and the relationship between neutralization and CD4+ T-cell 137 

counts, as well as between anti-Tat and anti-Env Ab titers and neutralization, were also examined. 138 

 139 

Methods 140 

Production and purification of the recombinant biologically active HIV-1 Tat protein for human 141 

use. The biologically active recombinant clade B HIV-1 Tat, selected as vaccine candidate for 142 

human use, is the 86 amino acid-long protein derived from the HTLV-IIIB strain (BH-10 clone) 143 

(Supplementary Figure 1). The protein was produced under Good Manufacturing Practice (GMP) 144 

conditions by Diatheva-Avitech APU Srl, Fano (PU), Italy. Tat vialing, packaging and batch release 145 

was performed by Injectalia Srl, Rome, Italy. Briefly, the Tat protein is obtained from a lysate of E. 146 

coli cells engineered with the pET-tat plasmid, constructed for Tat expression. The pET system is 147 

based on the T7 promoter-driven system originally developed by Studier and colleagues (73-75), 148 

and provides vector-host combinations that enable tuning of basal expression levels to optimize 149 

target gene expression (75). The GMP protein is then purified by diethylaminoethyl (DEAE) 150 

chromatography followed by heparin sepharose chromatography. Following purification, the Tat 151 

protein is formulated in potassium phosphate saline buffer, pH 7.4, containing 1% sucrose and 1% 152 

human serum albumin (HSA). This formulation was defined in order to maintain the biological 153 

activity of the protein in a liquid form, stored at -80 °C in the absence of light over 3 years. 154 

 155 
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Study design and conduction. The ISS T-003 (ClinicalTrials.gov NCT01513135) was a phase II, 156 

randomised, double-blinded, placebo-controlled, clinical trial with the recombinant biologically 157 

active HIV-1 B-clade Tat protein conducted at the MeCRU, University of Limpopo, Medunsa 158 

Campus (now Sefako Makgatho Health Sciences University), South Africa (ISS T-003 Study 159 

Protocol, Supplementary Material). The study was designed to evaluate Tat protein immunogenicity 160 

and safety in HIV-1-infected, cART-treated, anti-Tat Ab-negative adult South Africans, and to 161 

explore CD4+ T-cell numbers and anti-Tat cross-clade neutralizing activity after immunization. The 162 

study duration was 48 weeks including an 8-week treatment phase and a 40-week follow-up phase. 163 

The allowed window for patients’ screening was 35 days long. 164 

Patients were recruited at the public Health Facilities located in the MeCRU catchment area 165 

(Tshwane District). Patients received cART at the Health Facilities throughout the trial. Procedures 166 

for patients' recruitment, access to medical records, referral to the Health Facilities for intervening 167 

medical conditions were implemented under the coordination of the South African National 168 

Department of Health and the Department of Health of the Gauteng Province, South Africa. A 169 

community involvement program was implemented at MeCRU with the support of the South Africa   170 

AIDS Vaccine Initiative, a lead program of the South Africa Medical Research Council. MeCRU 171 

and local community advisory board and groups implemented community education strategies on 172 

HIV/AIDS awareness, participation in clinical trials, recruitment and retention strategies. A 173 

Contract Research Organization monitored study conduct, data quality and performed safety data 174 

analyses, which were periodically evaluated by the Local Medical Monitor and Data Safety 175 

Monitoring Board. The Local Medical Monitor was a blinded sponsor’s representative expert in 176 

HIV/AIDS clinical management. He reviewed safety data, assisted the Investigator in assessing 177 

adverse events (AEs) severity and causality, and forwarded quarterly reports to the Data Safety 178 

Monitoring Board. Data Safety Update Reports were submitted to the Competent Authorities as 179 

required.  180 

 181 
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Endpoints. The primary endpoint of the study (immunogenicity) was measured by the induction, 182 

magnitude and persistence of anti-Tat IgM, IgG and IgA in sera. The secondary endpoint (safety) 183 

was assessed by collecting all AEs during the trial, which included vital signs and any clinically 184 

significant change in haematological, biochemical and coagulation parameters. All the recorded 185 

AEs were classified according to Medical Dictionary for Regulatory Activities (MedDRA) 186 

preferred terms and system organ class, and on the basis of drug relationship and grade of severity. 187 

 188 

Study participants. Two hundred adult cART-treated patients were recruited and randomised 1:1 to 189 

receive Tat vaccine or placebo. Main criteria for enrolment were the following: age 18-45 years 190 

(inclusive), current cART-treatment and chronically suppressed HIV-1 infection as indicated by a 191 

HIV-1 plasma viremia <400 copies/mL and a CD4+ T-cell count ≥200 cells/µL at screening, and 192 

documented at least once during the 12-month period prior to screening irrespective of the pre-193 

cART CD4+ nadir, B-clade anti-Tat Ab-negative, willingness and ability to provide informed 194 

consent, and no acute illness at study start. Female participants of childbearing potential were 195 

required to have a negative pregnancy test at screening and immediately before each vaccination 196 

and to use an acceptable method of contraception for at least 3 weeks prior to the first vaccination 197 

and for all duration of the trial. 198 

 199 

Study procedures. All participants were randomized to receive the Tat vaccine (30 μg dose) or 200 

placebo (vaccine formulation buffer), administered intradermally 3 times at 4-week intervals (ISS 201 

T-003 Study Protocol, Supplementary Material). Randomisation was performed in block sizes of 202 

four. Participants were allocated to a randomisation number consisting of a 3-digit sequential 203 

number pre-fixed by a 1-digit unique site identifier. Upon screening completion and immediately 204 

prior to vaccine administration, volunteers were randomly assigned to the next available treatment 205 

number according to the randomisation schedule, which was generated by the Contract Research 206 

Organization using the SAS® procedure PROC PLAN with a randomisation ratio of 1:1. 207 
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Participants and clinical and laboratory staff, project management personnel and anyone involved in 208 

data management or analysis and the sponsor were blinded to treatment assignment. Each 209 

investigational product (Tat vaccine/placebo) vial was packaged in one kit-box constituted of three 210 

vials with the same label for vaccine or placebo, according to the “Guide to Good Manufacturing 211 

Practice for Medicines in South Africa, Version 4.01 March 2009”. Kits were provided to the 212 

clinical site in a blinded fashion by the sponsor. 213 

The evaluations performed at each of the 12 study visits varied according to the schedule provided 214 

in the supplementary material (ISS T-003 Study Protocol). General laboratory assessments, 215 

including CD4+ T-cell number and HIV plasma viral load were performed by a centralized 216 

laboratory (South African National Health Laboratory Service at the Dr. George Mukhari, Ga-217 

Rankuwa, Pretoria). CD4+ T-cell counts were performed according to standard national laboratory 218 

measurements. HIV-1 viral load was determined with the Abbott Real Time HIV-1 assay (lower 219 

limit of detection 40 RNA copies/mL). Blood samples were collected and transferred according to 220 

protocol-specific procedures, and tested within 3 hours from sample withdrawal. Anti-Tat binding 221 

and neutralizing Abs were assessed on cryopreserved specimens shipped by a certified courier to 222 

the designated Core Laboratory (Core Laboratory of Immunology and Virology, San Gallicano 223 

Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy) according to Standard Operating Procedures. 224 

 225 

Measurement of serum Abs against Tat proteins. The Tat proteins used for anti-Tat Ab 226 

determination and for anti-Tat Ab cross-clade analysis were, respectively, from HIV-1 B clade 227 

(GenBank accession n.: AAA44199.1); C clade (GenBank accession n.: AAL06113.1); A clade 228 

(GenBank accession n.: AAP33775.1);  D clade (GenBank accession n.: AAP33758.1) (amino acid 229 

sequences are shown in Supplementary Figure 1) and were purchased from Diatheva. All proteins 230 

were biologically active as determined by the rescue assay with HLM-1 cell line carrying a Tat-231 

defective HIV provirus (19, 20), and/or by Tat uptake by monocyte-derived DC (MDDC) evaluated 232 

http://www.ncbi.nlm.nih.gov/protein/16554985
http://www.ncbi.nlm.nih.gov/protein/16554985
http://www.ncbi.nlm.nih.gov/protein/37693985
http://www.ncbi.nlm.nih.gov/protein/37693950
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by intracellular staining for Tat in flow cytometry (35), a potency test that is used to release the Tat 233 

vaccine clinical lots. 234 

Serum IgM, IgA and IgG against B-, A-, C-, and D-clade Tat were assessed by enzyme-linked 235 

immunosorbent assay (ELISA), as previously described (76). Briefly, 96-well microplates (Nunc-236 

Immuno Plate MaxiSorp Surface; Nunc) were coated with Tat (100 ng/well) in 200 µL of 0.05 237 

mol/L carbonate-buffer (pH 9.6), and incubated overnight at 4°C. Wells were washed 5 times with 238 

phosphate-buffered solution (PBS), pH 7.4, containing 0.05% Tween-20, by an automatic plate 239 

washer (Asys Hitech flexi wash). Wells were then saturated with PBS containing 1% bovine serum 240 

albumin (BSA) and 0.05% Tween-20 (Sigma) (blocking buffer) for 90 min at 37 °C and then 241 

washed again as above. One hundred µL of patient serum samples [diluted at 1:100 (for anti-Tat 242 

IgG) or at 1:25 (for anti-Tat IgM or IgA detection) in blocking buffer] were added to the wells and 243 

incubated at 37 °C for 90 min. To correct for unspecific binding, each sample was assessed in 244 

duplicate against Tat and singly against the buffer in which Tat had been re-suspended. After 245 

washing, wells were saturated again with blocking buffer for 15 min at 37 °C, washed again and 246 

then a goat anti-human IgG, IgM, or IgA horseradish peroxidase-conjugated secondary Ab (100 247 

µL/well) (PIERCE-Thermo Scientific) was added to each well, and incubated for an additional 90 248 

min at 37 °C. Antigen-bound Abs were revealed by the addition of ABTS [2,2'-azino-bis(3-249 

ethylbenzothiazoline-6-sulphonic acid)] solution (Roche Diagnostics) for 60 min at 37 °C. 250 

Absorbance was measured at 405 nm using a microplate reader (BIO-TEK Instruments EL800). 251 

The assay was considered valid only when both the positive and negative controls were within 252 

±10% of variation of the absorbance values recorded in previous 50 assays. For the cut-off 253 

calculation, both the optical density (OD) readings at 405 nm of the wells coated with Tat and the 254 

delta (Δ) value were utilized. The Δ value was obtained by subtracting the OD reading of the well 255 

coated with the buffer alone from the average of the OD values of the two wells coated with the Tat 256 

protein. Serum samples were considered positive when both the sample OD at 405 nm and Δ values 257 

were ≥0.350 and ≥0.150, respectively. The 0.350 and 0.150 OD values had been previously 258 
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calculated as 3 standard deviations (99% confidence interval) above the mean of each of the 259 

absolute and Δ OD values obtained with sera from 89 Italian HIV-negative blood donors and 34 260 

South African HIV-negative individuals. If the sample scored positive, the titer value was 100 for 261 

IgG, 25 for IgM and IgA. However, if the OD reading of the sample exceeded both the absolute and 262 

Δ OD values by 50%, serial two-fold dilutions of the sample were performed to determine the 263 

endpoint titers. Endpoint titers were determined as the reciprocal of the last sample dilution that still 264 

had ≥0.350 and ≥0.150 OD values for absolute and Δ parameters. For Tat cross-clade analysis, OD 265 

values obtained with the different proteins in the same ELISA test, on the same sample, at the same 266 

dilution, were compared.  267 

 268 

Measurement of serum Abs against the Env protein. The same ELISA protocol and criteria for cut-269 

off determination were applied for measurement of anti-Env Abs and their titer definition (70). The 270 

ΔV2-Env (Novartis Vaccine & Diagnostics) from the HIV-1 C-clade TV1 strain was used. Only 271 

IgG Abs were tested, starting from a 1:100 dilution.  272 

 273 

Anti-Tat neutralizing Ab responses. Anti-Tat neutralizing activity in sera was assessed by Tat-274 

mediated Env entry in DC as described (35). Briefly, MDDC from blood of healthy donors were 275 

cultured and induced to maturation as described (35, 36). Purity of  MDDC was always ≥99%. Sera 276 

were diluted 1:30 in PBS and incubated for 60 min at 37 °C with B- or C-clade trimeric Env (0.4 277 

μM in monomer) (Novartis) previously mixed for 10 min at 25 °C with B- or C-clade Tat (0.4 μM) 278 

or degassed PBS (control). Samples were then added to MDDC (2x105 cells/mL) to a 1:5 final 279 

dilution and incubated for 10 min at 37 °C. Cells were then washed with cold medium and treated 280 

for 10 min at 37 °C with ethylene diamine tetra-acetic acid (EDTA) (Life Technologies) to remove 281 

any externally bound protein. After fixation and permeabilization, DC were stained with rabbit anti-282 

gp120 polyclonal Abs (Chem Progress) or purified rabbit-IgG control Abs (Sigma-Aldrich), 283 

followed by fluorescein isothiocyanate (FITC)-conjugated anti-rabbit Ig (Pierce). Fluorescence was 284 
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measured by flow cytometry and results expressed as the percentage of Env-positive cells as 285 

compared to isotype-stained samples. Sera were defined as “neutralizing” when capable of 286 

inhibiting Env entry into DC in the presence of Tat by at least 50% as compared to baseline sera 287 

values (ND50). 288 

 289 

Sample size calculation. Sample size for this study was powered for immunogenicity evaluation. 290 

The immunogenicity was assumed to be 80% for vaccinees and 60% for placebos, with alpha set at 291 

0.05 (2-tailed). According to this assumption, a sample size of 91 per group had 80% power of 292 

showing statistical significance (p<0.05). The assumed response rate for vaccinees was based on the 293 

results of studies conducted at the time of protocol preparation. The response rate in placebos was 294 

set in the absence of reference-controlled studies and was therefore very conservative. The actual 295 

power of the study, given the percentage of spontaneous seroconversion, is 99%. 296 

 297 

Statistics. Two populations were considered for statistical analyses: the immunogenicity population 298 

(199 subjects), representing all randomised individuals who received at least 2 immunizations, and 299 

the safety population (200 subjects), representing all randomised subjects who received at least one 300 

immunization. Subjects with at least one positive anti-Tat Ab response at any given time point 301 

during the study were defined as “responders”. Ninety-five % confidence intervals were estimated 302 

for the primary endpoints; comparison between treatment groups was performed using the Chi-303 

Square test. Kaplan-Meier method was used to assess the cumulative probability of anti-Tat Ab 304 

persistence, by treatment groups, and compared by the Log-Rank test. Anti-Tat Ab titers and the 305 

percentage of DC internalizing Env were compared between vaccinees and placebos by the 306 

Student’s t-test after log10 transformation to normalize the data distribution. Wilcoxon signed-rank 307 

test was used to assess the intensity of cross-clade anti-Tat Abs (measured as OD units) after 308 

immunization. Longitudinal analysis for repeated measures was applied for analysis of CD4+ T-cell 309 

number, after controlling normality assumption of variable distribution (Saphiro-Wilk test). The 310 
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relationship between Tat-mediated Env entry in DC and anti-Tat or anti-Env Ab-binding titers or 311 

CD4+ T-cell number was assessed by the longitudinal regression model using the generalized 312 

estimating equations method. Wilcoxon signed-rank test was used to assess changes from baseline 313 

of CD4+ T-cell number in subjects not compliant to cART, while Wilcoxon-Mann-Whitney test was 314 

performed in order to evaluate differences between non-CART-compliant vaccinees and placebos at 315 

each visit. Statistical analyses were carried out at two-sided with a 0.05 significance level, using 316 

SAS (Version 9.2, SAS Institute Inc., Cary, NC, USA). 317 

 318 

Ethics. The ISS T-003 was authorized by the South Africa Medicines Control Council and the 319 

Sefako Makgatho University Research Ethics Committee (approval number: MREC/P/221/2010). 320 

The study was conducted in accordance with the current Declaration of Helsinki and International 321 

Conference on Harmonization Good Clinical Practice guidelines. 322 

Patients gave written approval to perform the study-specific procedures, including access to source 323 

medical data (demography, diagnosis, cART compliance). 324 

 325 

Results 326 

Patients accrual and demographic data. Seven-hundred-seventy cART-treated patients were 327 

assessed for eligibility (Figure 1). Two hundred participants were enrolled between February 27, 328 

2012 and 13 June, 2013. Study was completed in June 2014. Participants were randomised 1:1 to 329 

one of the two treatment groups. Ninety-seven percent of enrolled participants completed the study. 330 

All individuals were analyzed for safety. One subject who received only one immunization was 331 

excluded from the immunogenicity population (Figure 1). Thirteen volunteers were excluded from 332 

the “Per Protocol” analysis for major protocol non-compliance (Figure 1). Baseline demographic 333 

and clinical characteristics of participants are shown in Table 1. Twenty-six percent of participants 334 

were male and 74% female; all were black, except one volunteer. At the study entry the mean age 335 

was 36 years for both vaccinees and placebos. In vaccinees, the mean CD4+ T-cell count was 510 336 
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cells/µL, 95% of them had undetectable HIV RNA, the mean years from HIV diagnosis was 5.0, 337 

while the mean time on cART was 3.5 years, with 97% on non-nucleoside reverse-transcriptase 338 

inhibitors (NNRTI) or nucleoside reverse transcriptase inhibitors (NRTI)-based and 3% on PI-based 339 

regimens. In placebos, the mean CD4+ T-cell count was 563 cells/µL, HIV RNA was undetectable 340 

in 96% of them, the mean years from HIV diagnosis was 4.9 years, while the mean time on cART 341 

was 3.3, with 98% on NNRTI or NRTI-based and 2% on PI-based regimens. 342 

 343 

HIV-1 B-clade Tat vaccine safety and tolerability. Tat immunization was safe and well tolerated 344 

without relevant differences between vaccinees and placebos. In particular, 190 patients (96 345 

vaccinees and 94 placebos) experienced at least one AE during the study, mainly of mild intensity 346 

(Table 2). General disorders and administration site conditions were the most frequent AEs related 347 

to study treatment both in vaccinees (73%) and placebos (58%), followed by nervous system 348 

disorders (mainly headache events), which had higher incidence in placebos (38%) than vaccinees 349 

(27%) (Table 3). No serious AEs (SAE) related to study treatment or suspected unexpected adverse 350 

reactions were reported. The non-serious AEs related to study drug were mostly mild and local. 351 

Most clinically relevant abnormal laboratory events were reported with a similar frequency in both 352 

the treatment groups and were considered unrelated, since they are findings typically associated 353 

with HIV-1 infection (i.e. low haemoglobin, low neutrophil and white cell counts, increased viral 354 

load). Eight participants (2 placebos and 6 vaccinees) reported at least one SAE (unrelated to study 355 

treatment). In particular, 1 placebo underwent hysterectomy and 1 was diagnosed with type-II 356 

diabetes mellitus. Among the vaccinees, 2 participants were diagnosed with pulmonary 357 

tuberculosis, 1 patient was admitted to the hospital for respiratory tract infection, bronchiectasis-358 

empyema thoracis and abdominal pain, 1 patient underwent hysterectomy, and intentional self-359 

injury was reported in 2 participants. All these SAE resolved completely, except the type II diabetes 360 

mellitus. 361 
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Since no “important safety events” or “significant findings” emerged during the study, the Data 362 

Safety Monitoring Board concluded that the Tat vaccine is safe and well tolerated. 363 

 364 

HIV-1 B-clade Tat vaccine induces durable anti-Tat Abs of all subclasses. Tat immunization 365 

induced anti-Tat B-clade Abs in 97% of vaccinees, whereas 20% of placebos developed 366 

spontaneously anti-Tat Abs (all immunogenicity population evaluated). Anti-Tat Ab responses 367 

detected in vaccinees and placebos were significantly different (Chi-Square test, p<0.0001, both for 368 

total Abs and Ig subclasses). In particular, 81% of vaccinees developed anti-Tat B-clade IgM, 96% 369 

IgG, and 76% IgA, as opposed to 10% IgM, 13% IgG, and 6% IgA of placebos, respectively 370 

(Figure 2A). As shown in Table 4 and Figure 2B, 69% of vaccinees developed anti-Tat Abs of all Ig 371 

subclasses, 28% developed one or two Ig subclasses, and 3% of vaccinees had no detectable anti-372 

Tat Abs. In contrast, 1% of placebos developed anti-Tat Abs of all three Ig subclasses, 19% of one 373 

or two subclasses, and 80% had no detectable anti-Tat Abs (Chi-Square test, p< 0.0001, Figure 2B). 374 

Anti-Tat B-clade Ab mean titers peaked between week 8 and week 12 for all Ig subclasses and 375 

statistically significant differences for IgG titers between vaccinees and placebos were observed 376 

since week 12 (weeks 12-24, p <0.0001; week 48 p=0.0004) (Figure 2C). Moreover, anti-Tat Ab 377 

responses persisted significantly longer in vaccinees as compared to placebos (Log-Rank test, 378 

p=0.0019) (Figure 3A). Further, Ab persistence was longer in vaccinees and placebos with 2 or 3 379 

Ab subclasses as compared to those with 1 subclass (Figure 3B and C). The “Per Protocol” analysis 380 

confirmed the results from the immunogenicity population, in particular, 88/91 (97%) and 20/96 381 

(21%) of vaccinees and placebos, respectively, developed anti-Tat Abs (p<0.0001). 382 

  383 

Vaccination with the HIV-1 B-clade Tat protein elicits Abs also recognizing Tat from A, C and D 384 

clades. The presence of anti-Tat Abs against clades other than B (i.e. C, D, A) was evaluated in the 385 

99 vaccinees. Fifty-one patients that were negative at baseline also for Abs against Tat from A, C, 386 
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or D clade, after immunization with the B-clade Tat protein developed anti-Tat Abs recognizing Tat 387 

from one or more of these other clades (Table 5), in addition to Tat B clade. 388 

At baseline (Figure 4A), 29 vaccinees, although negative for anti-Tat Abs against B-clade Tat, had 389 

Abs against Tat of one or more of the other clades tested (76% C clade, 41% A clade, 14% D 390 

clade). After vaccination, all of them experienced a statistically significant increase of intensity of 391 

these responses (Figure 4B). In particular, changes of intensity from baseline levels were similar for 392 

IgM and IgA for all clades, while for IgG changes were higher for C and D clades. 393 

 394 

Vaccination with the HIV-1 B-clade Tat protein induces cross-clade neutralizing anti-Tat Abs. The 395 

neutralization of  B-clade Tat-mediated entry of oligomeric B-clade Env in DC was used to 396 

investigate anti-Tat Ab functional activity in 24 participants. This assay permits measuring HIV 397 

neutralization even in the presence of cART (57, 65), which interferes with traditional infection 398 

assays (77). At baseline, entry of Env in the absence of Tat was comparable for all sera (Figure 5A, 399 

left panel) and did not change after immunization (Figure 5A, right panel). As shown previously 400 

(57), Tat increased entry of Env with all sera prior to immunization (baseline) (Figure 5B, left 401 

panel), whereas sera from vaccinees strongly reduced Env entry (more than 60%) (week 20 and 48, 402 

p<0.0001). This occurred to a lesser extent also with sera from anti-Tat Ab-positive placebos (about 403 

37% reduction) (Figure 5B, right panel). No changes were observed in Ab-negative placebos 404 

(Figure 5B, right panel). Differences between vaccinees and anti-Tat Ab-negative placebos were 405 

statistically significant at both time points examined (week 20 and week 48 p=0.0009 and 406 

p=0.0003, respectively). Further, differences in reaching 50% neutralization (ND50) of Env entry 407 

were observed between vaccinees (11/13, 85%) and the anti-Tat Ab-positive placebos (2/6, 33%) 408 

(Fisher's Exact Test, p=0.0460). Neutralization of Tat-mediated Env entry in DC was also analyzed 409 

for C clade Tat and Env. As shown in Figure 6, anti-Tat Abs elicited by vaccination with the B-410 

clade Tat protein induced cross-clade neutralizing Abs against B and C clade Tat/Env complex 411 

entry in DC (p<0.0001 for both clades).  412 
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 413 

Anti-Tat but not anti-Env Abs correlate with neutralization of Env entry in vaccinees. To evaluate 414 

the role of both anti-Tat and anti-Env humoral responses on the neutralization of Tat-mediated entry 415 

of oligomeric Env in DC, anti-Env Abs were also tested (all immunogenicity population evaluated). 416 

At baseline, all subjects had anti-Env Abs (geometric mean Ab-titers 72,408, range 200-409,600) 417 

with titers that did not change significantly during the follow-up (data not shown) and correlated 418 

positively with the levels of Tat-mediated Env entry in DC (r=0.42, p=0.0214) indicating lack of 419 

neutralization. In contrast, after immunization, vaccinees showed a significant inverse relationship 420 

between anti-Tat IgM or IgG Ab titers (p= 0.0853 and p= 0.0039, respectively) or anti-Env IgG 421 

titers (p=0.0015) and the levels of Tat-mediated Env entry in DC (Table 6), indicating correlation 422 

with neutralization of Env entry. Of note, anti-Env Ab titers did not correlate with neutralization of 423 

Env entry in anti-Tat Ab-negative placebos, indicating that anti-Env Abs require anti-Tat Abs to 424 

inhibit the Tat/Env complex formation and virus entry, as shown earlier both in vitro and in vivo 425 

(65, 70, 78). 426 

 427 

Tat vaccination induces CD4+ T cell number increases, which correlate with neutralization. 428 

Compared to placebos, CD4+ T-cell counts increased significantly and progressively in vaccinees 429 

(Figure 7) up to week 24 when they peaked (mean gain of 60 cells/µL p=0.0015), whereas at the 430 

end of the study (week 48) the mean gain compared to baseline values was of 28 cells/µL. In 431 

contrast, placebos showed a slower kinetics and lower, and not statistically significant, increases 432 

(mean gain of 11 cells/µL), which peaked at 48 weeks with a mean value of 17 cells/µL as 433 

compared to baseline. CD4+ T-cell counts were also analyzed by treatment groups over time by 434 

applying a random-effect regression model. The increase from baseline of CD4+ T cells up to week 435 

24 was 2.2 cells/µL (95% CI 1.1; 3.2, p<0.0001) per week in vaccinees and 0.1 cells/µL (95% CI 436 

0.7; 3.4) per week in the placebo group, respectively. The difference between the coefficients of 437 
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regression was statistically significant (p=0.0031). The comparison between the two arms showed 438 

statistically significant changes from baseline at week 20 (p=0.0466) and week 24 (p=0.0250).  439 

To evaluate the effect of vaccination on the increase of CD4+ T cells according to their levels at 440 

study entry, baseline values were stratified by quartiles. Increases up to about 90 cells/µL were 441 

detected in vaccinated subjects in Q1, Q2, and Q3, while no significant changes were observed in 442 

Q4, indicating that vaccination had major effects in subjects with lower CD4+ T cell number at 443 

baseline (Figure 8). Placebos showed significant CD4+ T-cell increases only in Q1 (up to 84 444 

cells/µL). Of note, the gaining in CD4+ T-cell counts in Q1 was lower (up to 58 cells/µL) in 445 

placebos negative for anti-Tat Abs, who also experienced a significant CD4+ T-cell decay in Q3 at 446 

week 20 (Figure 8). 447 

Further, CD4+ T-cell increases correlated significantly with neutralization of Env entry in DC in 448 

vaccinees (n= 19) (p=0.0023) as compared to placebos (n=11) (Table 7).  449 

 450 

Tat vaccination maintains CD4+ T cells and contains viral load rebound in patients non-compliant 451 

to therapy. Compliance was always verified at each study visit. However, despite counseling for 452 

adherence to therapy, medical records showed poor compliance (i.e. missing doses up to prolonged 453 

interruptions) in 24 volunteers, particularly between week  20 and 48 after the first immunization. 454 

Of them, 18 were vaccinees and 6 were placebos (1 anti-Tat Ab-positive and 5 anti-Tat Ab-455 

negative). None of the vaccinees non-compliant to cART therapy experienced a decay of CD4+ T 456 

cells which, instead, increased above study entry levels (median increase of 50 cells/µL at week 16, 457 

p= 0.0814, 57 cells/µL at week 20, p= 0.0987 and 30 cells/µL at week 48, as compared to baseline). 458 

In contrast, the anti-Tat Ab-negative placebos had CD4+ T-cell decreases below study entry levels 459 

(median of -33 cells/µL at week 12, p=0.0625 and -60 cells/µL at week 48 versus baseline levels). 460 

Comparison between vaccinees and anti-Tat Ab negative placebos showed significant differences at 461 

week 8 and week 12 (p=0.0859 and p=0.0336, respectively) (Fig. 9). 462 
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With regard to viral load, plasma viremia remained undetectable at week 48 in 12/18 (67%) 463 

vaccinees, and in 3/5 (60%) of anti-Tat Ab-negative placebos. In addition, in patients with 464 

detectable viral load at week 48, the geometric mean levels were lower in vaccinees (1,090 465 

copies/mL), as compared to anti-Tat Ab-negative placebos (3,179 copies/mL) (Fig. 10).  466 

 467 

Discussion 468 

The development of therapeutic vaccination strategies for treating people already infected with 469 

HIV-1 has been recently accelerated, with an increasing number of vaccine candidates being tested 470 

in clinical trials, either in drug-naïve patients or in association with cART. In drug-naïve patients, 471 

therapeutic vaccines are expected to contain infection (i.e., low to undetectable plasma viral load 472 

and CD4+ T cell preservation), preventing progression to disease as well as virus transmission, 473 

while in cART-treated patients therapeutic vaccination is expected to intensify the efficacy of 474 

cART, thus supporting a more effective immune restoration and virological control, particularly in 475 

poor immunological responders or cART non-compliant patients, preventing progression to AIDS-476 

related as well as non AIDS-related diseases and virus transmission. 477 

No therapeutic vaccines are currently market approved. However, the rapidly expanding HIV/AIDS 478 

therapeutic vaccine field portraits a variety of approaches, which differ sensibly in many aspects, 479 

the most relevant being the antigen chosen (unlike preventative vaccines, regulatory and accessory 480 

genes are frequently targeted; in some cases almost the entire HIV genome is targeted), and the 481 

delivery systems, which range from simple subcutaneous, intradermal, or intramuscular vaccine 482 

administration to reinfusion of autologous DCs loaded ex vivo with the selected antigen(s) (9, 79-483 

89). In most vaccine trials conducted in treated patients cART therapy was interrupted to assess the 484 

potency of the immunological control of infection provided by vaccination, while they were not 485 

aimed at evaluating the immunological recovery, with the exclusion of CD4+ T cell counts, which, 486 

however, did not appear to go beyond the restoration provided by cART alone (9, 79).  487 
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Our approach has focused on Tat, a key HIV virulence factor, which is released extracellularly in a 488 

biologically active form also under cART, and promotes virus reactivation, replication and 489 

spreading while inducing immune activation and disabling the host immune defense (reviewed in 490 

25). Thus, induction of effective anti-Tat Abs may represent a pathogenesis-driven therapeutic 491 

intervention to block disease progression as indicated by the effects of long-lasting, high titers anti-492 

Tat Abs in natural infection (9, 79) or after vaccination with Tat, which induced CD4+ T cell 493 

recovery, immune restoration, as well as reduction of immunoactivation and of proviral DNA in 494 

Italian subjects (ISS T-002 trial) (57). 495 

The results of the present study indicate that B-clade Tat immunization is safe and well tolerated 496 

also in South African individuals infected with a different virus subtype. Further, vaccination 497 

induced anti-Tat Abs in almost all vaccinees. Abs were durable, at high titers and of multiple 498 

subclasses. Remarkably, B-clade Tat vaccination induced cross-clade (A, C, D) Tat-binding Abs, 499 

which were capable of neutralizing Tat-mediated entry in DC of oligomeric HIV Env from B and C 500 

clade, suggesting that the B-clade Tat protein used in our vaccine program may be used for a cross-501 

clade HIV vaccine approach.  502 

A natural humoral anti-Tat Ab response developed in a small number of placebos, a finding 503 

expected from previous studies conducted in Italy and South Africa (53, 54, 69, 70). Indeed, as 504 

compared to the  other HIV proteins which elicit Abs  virtually in all infected patients, production 505 

of anti-Tat Abs is seen only in about 20% of the HIV-infected subjects present in all cohorts we 506 

have investigated. Surprisingly, although Tat is released extracellularly, only a small percentage of 507 

individuals recognizes and mounts an Ab response against this protein. One reason could be its 508 

molecular mimicry for extracellular matrix proteins such as fibronectin (FN) and vitronectin (VN) 509 

(90-92). As for Tat, FN and VN possess a similar basic region and RGD sequence binding to the 510 

α5β1, αVβ3 and αVβ5 integrins (93, 94). 511 

In vaccinees, neutralization correlated positively with anti-Tat IgM and IgG Ab titers, whereas Env 512 

entry was not neutralized by anti-Env Abs in the absence of anti-Tat Abs (57, 65). Indeed, anti-Env 513 
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Abs measured prior to immunization both in vaccinees and placebos had a positive correlation with 514 

increased levels of Tat-mediated Env entry in DC. This reproduces what has been seen earlier with 515 

sera from Italian vaccinees (ISS T-002 trial) or in monkey studies (65). In particular, by forming a 516 

complex with Env, Tat increases virus entry in DC and blocks neutralization by anti-Env Abs, 517 

which is restored and further increased only in the presence of anti-Tat Abs (65). 518 

Tat vaccination was associated with significant increases of CD4+ T cells above baseline levels, 519 

whereas placebos showed a slower kinetics and lower, and not statistically significant, increases, as 520 

expected in individuals on cART for a mean of about 3 years. Increases of CD4+ T cells in 521 

vaccinees correlated significantly with neutralization. Of note, CD4+ T cells increased particularly 522 

in vaccinees with lower CD4+ T cell counts at baseline. This is of particular relevance since poor 523 

immunological response to therapy is frequent either in patients starting cART late, even if 524 

virologically suppressed (4-8), or in patients with persistent immune activation (95-99) or low 525 

compliant (100-103). A poor CD4+ T cell recovery (˂500 T cells/μl) is associated with disease 526 

progression, co-morbidities, hospitalization and death (104-107). These patients are those that most 527 

require ART intensification. 528 

While in the ISS T-002 trial conducted in Italy patients were highly compliant to therapy, 529 

compliance was lower in the ISS T-003 study, a finding particularly frequent in Southern Africa 530 

where scarce adherence to cART therapy represents a relevant clinical problem since it is associated 531 

with disease progression, virus drug resistance and transmission (108-111). Of interest, none of the 532 

vaccinees non-compliant to cART therapy experienced a decay of CD4+ T cells, and in most of 533 

them plasma viremia remained undetectable at week 48 while, in those with detectable viremia, 534 

viral load levels were low. In contrast, the anti-Tat Ab-negative placebos had CD4+ T-cell decreases 535 

below entry levels, and in most of them plasma viremia rebounded to geometric mean levels higher 536 

than those recorded in non-compliant vaccinees. Although these results are only descriptive, since 537 

the groups are too small to draw any firm conclusion, they indicate the need of ad hoc studies to 538 

address whether cART intensification by Tat  therapeutic immunization may mitigate the effects of 539 
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low adherence to therapy. To this end, structured therapy interruption studies after cART 540 

intensification by the Tat vaccine are being planned.  541 

The results of the ISS T-003 trial are highly consistent with those of the ISS T-002 (53, 57), 542 

although the two trials were conducted in individuals with different genetic background, infected 543 

with HIV from different subtypes (B versus C clade), and on cART for different periods of time 544 

(i.e., mean of 6 years in the ISS T-002 trial versus about 3 years in the ISS T-003 trial). Indeed, 545 

safety and immunogenicity results were remarkably similar, sometimes identical, as were the CD4+ 546 

T-cell increments, particularly in subjects with lower levels at baseline (53, 57), suggesting that 547 

poor immunological responders to therapy could greatly benefit from Tat immunotherapy. 548 

The results from the Italian trial (ISS T-002) clearly indicate that proviral DNA reduction (as 549 

opposed to CD4+ T cell increase) is a late event, particularly under NNRTI-based drug regimens 550 

requiring 108 weeks for detecting a significant proviral reduction (57). Indeed, no significant 551 

reductions of proviral DNA are seen at week 48 in both (ISS T-002 and ISS T-003) trials (data not 552 

shown). Furthermore, it appears that time on effective cART is also relevant, in that proviral DNA 553 

decay plateau after about 4-5 years of successful therapy (112, 113). Thus, unlike the Italian trial in 554 

which vaccinees had been on therapy on average for 6 years, subjects enrolled in the South African 555 

study had been on cART for around 3 years. Altogether these data indicate that longer periods of 556 

time are required to see an effect on proviral DNA in NNRTI-treated South African subjects, which 557 

represent 97% of the trial population.  558 

Therefore, similarly to the ISS T-002 trial, a roll-over observational study (ISS T-003 EF-UP) has 559 

been initiated for the South African trial to ensure the extended follow-up of the volunteers, in order 560 

to evaluate the persistence of vaccine-induced immune responses as well as the immunological and 561 

virological effects of Tat immunization. In particular, proviral DNA will be monitored to verify 562 

whether Tat vaccination is capable of reducing it, as observed for the ISS T-002 trial after 3 years 563 

from vaccination (57). 564 

 565 
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Conclusions 566 

These data indicate that immunization with B clade Tat induced functionally effective cross-clade 567 

anti-Tat Abs and CD4+ T-cell increases and reinforce the notion that B clade Tat is a suitable 568 

candidate for therapeutic immunization against different HIV clades in different geographical areas, 569 

thus supporting the future conduct of phase III studies in South Africa.  570 
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Table 1. Baseline characteristics of study participants  1072 

 n Vaccinees n Placebo 

Gender 

Male 

Female 

 

32 

68 

 

32.0% 

68.0% 

 

20 

80 

 

20.0% 

80.0% 

Race     

Black 100 100.0% 99 99.0% 

Caucasian 0 0.0% 0 0.0% 

Mixed 0 0.0% 1 1.0% 

Age 

Mean  s.d.a 

Range 

 

100 

 

36.1  5.6 

21.1-45.8 

 

100 

 

36.0  6.2 

19.6-45.4 

CD4+ (cells/l) 

Mean  s.d. 

Range 

 

99 

 

510  229 

137-1530 

 

100 

 

563  195 

242-1252 

CD4+ (%) 

Mean  s.d. 

Range 

 

99 

 

28 8 

7-49 

 

100 

 

29  7 

17-42 

HIV RNA (copies/mL)     

<40 (assay cut-off) 94 95.0% 96 96.0% 

≥ 40 5 5.0% 4 4.0% 

Years from HIV 

diagnosis  

 
 

 
 

Mean  s.d. 

Range 

100 5.0  3.0 

1.0-14.0 

100 4.9  3.3 

1.0-19.0 

Years from cART 

initiation 

 
 

 
 

Mean  s.d. 

Range 

100 3.5  2.0 

0.7-8.2 

100 3.3  2.1 

0.6-8.9 

cART regimen  

NNRTI or NRTI-based  

PI-based 

 

97 

3 

 

97.0% 

3.0% 

 

98 

2 

 

98.0% 

2.0% 

Previous Tuberculosis 29 29.0% 34 34.0% 

n indicates the number of individuals; aStandard deviation 1073 



45 

 

Table 2. Total adverse events observed in study participants reported by relationship to study drug and intensity 1074 

 Treatment group  

 Tat vaccine Placebo Total 

     n  (m)    %      n (m)     %     n (m)    % 

Number of subjects in safety population 100   100   200   

          

Number of subjects with at least one 

adverse event 
96 (883) 96.0 94 (581) 94.0 190 (1464) 95.0 

          

Relationship with study medication          

 Certain 72 (541) 72.0 59 (250) 59.0 131 (791) 65.5 

 Probable 14 (35) 14.0 23 (38) 23.0 37 (73) 18.5 

 Possible 25 (45) 25.0 28 (56) 28.0 53 (101) 26.5 

 Unlikely 41 (80) 41.0 37 (63) 37.0 78 (143) 39.0 

 Not related 76 (182) 76.0 74 (174) 74.0 150 (356) 75.0 

 Not assessable 0 (0)  0 (0)  0 (0)  

 Not known 0 (0)  0 (0)  0 (0)  

          

Intensity          

 Mild 94 (774) 94.0 91 (522) 91.0 185 (1296) 92.5 

 Moderate 42 (90) 42.0 28 (48) 28.0 70 (138) 35.0 

 Severe 15 (17) 15.0 9 (10) 9.0 24 (27) 12.0 

 Not applicable 1 (1) 1.0 0 (0)  1 (1) 0.5 

 Not known 1 (1) 1.0 1 (1) 1.0 2 (2) 1.0 

          

Serious adverse events  6 (8) 6.0 2 (2) 2.0 8 (10) 4.0 

 Related 0 (0) 0.0 0 (0) 0.0 0 (0) 0.0 

 Not related 6 (8) 6.0 2 (2) 2.0 8 (10) 4.0 

_________________________________________________________________________________________________________________ 

n=number of subjects, (m)=number of mentions, %=all percentages are expressed as the percentage of the number of subjects in the safety 

population in each treatment group. 
 1075 
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Table 3. Incidence of related adverse events by system organ class and relationship to study treatment 1076 

 Treatment group  

 Tat vaccine Placebo  
MedDRA system organ class Related¹ Not related² Related¹ Not related² Total 

  n (m) %  n (m)   % n (m)   % n (m)  % n (m)  % 

Number of subjects 100   100   100   100   200   

                
Number of subjects with at least one adverse event 77 (621) 77.0 85 (262) 85.0 72 (344) 72.0 81 (237) 81.0 190 (1464) 95.0 
General disorders and administration site conditions 73 (520) 73.0 8 (10) 8.0 58 (199) 58.0 11 (12) 11.0 133 (741) 66.5 
Infections and infestations 1 (1) 1.0 50 (77) 50.0 2 (2) 2.0 56 (88) 56.0 107 (168) 53.5 
Nervous system disorders 27 (40) 27.0 19 (24) 19.0 38 (67) 38.0 10 (13) 10.0 81 (144) 40.5 
Musculoskeletal and connective tissue disorders 16 (25) 16.0 14 (16) 14.0 17 (31) 17.0 15 (28) 15.0 54 (100) 27.0 
Gastrointestinal disorders 9 (12) 9.0 20 (25) 20.0 14 (18) 14.0 13 (19) 13.0 49 (74) 24.5 
Skin and subcutaneous tissue disorders 10 (12) 10.0 15 (15) 15.0 10 (18) 10.0 13 (16) 13.0 47 (61) 23.5 
Reproductive system and breast disorders 0 (0)  22 (24) 22.0 0 (0)  22 (27) 22.0 44 (51) 22.0 
Investigations 2 (3) 2.0 19 (28) 19.0 2 (2) 2.0 8 (10) 8.0 30 (43) 15.0 
Blood and lymphatic system disorders 7 (7) 7.0 7 (9) 7.0 5 (6) 5.0 3 (3) 3.0 21 (25) 10.5 
Injury, poisoning and procedural complications 0 (0)  10 (12) 10.0 0 (0)  5 (7) 5.0 15 (19) 7.5 

Vascular disorders 1 (1) 1.0 6 (6) 6.0 0 (0)  3 (3) 3.0 10 (10) 5.0 

Respiratory, thoracic and mediastinal disorders 0 (0)  2 (2) 2.0 0 (0)  4 (5) 4.0 6 (7) 3.0 

Eye disorders 0 (0)  3 (3) 3.0 0 (0)  2 (2) 2.0 5 (5) 2.5 

Metabolism and nutrition disorders 0 (0)  3 (3) 3.0 0 (0)  1 (1) 1.0 4 (4) 2.0 

Renal and urinary disorders 0 (0)  2 (2) 2.0 0 (0)  1 (1) 1.0 3 (3) 1.5 

Surgical and medical procedures 0 (0)  2 (2) 2.0 0 (0)  1 (1) 1.0 3 (3) 1.5 

Psychiatric disorders 0 (0)  2 (4) 2.0 0 (0)  0 (0)  2 (4) 1.0 

Cardiac disorders 0 (0)  0 (0)  1 (1) 1.0 0 (0)  1 (1) 0.5 

Immune system disorders 0 (0)  0 (0)  0 (0)  1 (1) 1.0 1 (1) 0.5 
___________________________________________________________________________________________________________________________ 

n= number of subjects, (m)= number of mentions, %= all percentages are expressed as the percentage of subjects in the safety population in each 

treatment group. Adverse event data were coded using the MedDRA dictionary version 15.0. 
¹ Related refers to events whose relationship to the study treatment was regarded as certain, probable or possible. 
² Not related refers to events whose relationship to the study treatment was regarded as unrelated or unlikely related. 
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Table 4. Anti-Tat Ab response by Ig subclasses in vaccinees and placebos 

 Vaccinees (n = 99) Placebos (n = 100) 

 n Percentage n Percentage 

IgM+ 1 1.0 5 5.0 

IgG+ 9 9.1 5 5.0 

IgA+ 0 0.0 2 2.0 

IgM+IgG+ 11 11.1 4 4.0 

IgM+IgA+ 0 0.0 0 0.0 

IgG+IgA+ 7 7.1 3 3.0 

IgM+IgG+IgA+ 68 68.7 1 1.0 

Ab-negative 3 3.0 80 80.0 

n indicates the number of subjects. Percentage of subjects positive for 1, 2 or 3 anti-Tat Ab 

subclasses at any given time point after the first immunization 

 

Table 5. Induction of anti-Tat cross-clade Abs after immunization in vaccinees negative at 

baseline for any anti-Tat Abs 

HIV Clades n % 

C 5 9.8 

D 7 13.7 

A 4 7.8 

C+D 12 23.5 

C+A 1 2.0 

D+A 7 13.7 

C+D+A 15 29.4 

Total 51 100.0 
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Sera from 51 vaccinees negative at baseline also for anti-Tat Abs against C, D and A clades were 

tested between week 12 and week 24 (99 tested) after immunization with the B-clade Tat protein. 

All patients mounted anti-Tat Ab responses against A, C, and/or D clade. 

 

Table 6. Relationship between anti-Tat or anti-Env Ab titers and Tat-mediated Env entry in 

DC in vaccinees  

aConfidence interval. A longitudinal analysis for repeated measures by generalized estimating 

equation method was used for the analysis. Vaccinees anti-Tat Ab-positive n=19 (86 observations), 

Placebos anti-Tat Ab-negative n=5 (30 observations). 

 

Table 7. Longitudinal analysis of Tat-mediated Env entry in DC versus CD4+ T-cell counts 

Treatment  Estimate 95% CIa p-value 

Vaccinees -127 -208 -45 0.0023 

Placebo -72 -194 51 0.2515 

aConfidence interval. A significant inverse relationship was observed between CD4+ T cells and the 

Tat-mediated Env entry in DC in the presence of sera from vaccinees (n=19) but not from placebo 

(n=11) indicating a positive relationship of CD4+ T-cell increases with neutralization of Env entry 

Parameter Estimate 95% CIa p-value 

Vaccinees     

anti-Tat IgM (log10 titers) -0.15 -0.31 0.02 0.0853 

anti-Tat IgG (log10 titers) -0.12 -0.20 -0.04 0.0039 

anti-Tat IgA (log10 titers) -0.02 -0.12 0.08 0.7579 

anti-Env IgG (log10 titers) -0.06 -0.09 -0.02 0.0015 

Placebos      

anti-Env IgG (log10 titers) 0.00 -0.02 0.02 0.9471 
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in DC. A longitudinal analysis for repeated measures by generalized estimating equation method 

was used for the analysis. 

 

Figure Legends 

Figure 1. CONSORT flow diagram. The number of participants screened, enrolled, randomized, 

followed-up and analyzed is shown for vaccine and placebo groups. Two hundred participants were 

randomised to one of the two treatment groups and analyzed for safety (safety population). One 

subject who received only one immunization was excluded from the immunogenicity population 

(Total = 199). Thirteen volunteers were excluded from the “Per protocol” analysis: 4 received less 

than three immunizations, 4 did not complete three or more visits of follow-up and 5 had major 

protocol non-compliance (Total = 187). 

Figure 2. Anti-Tat humoral immune response elicited in study participants. (A) Percentage of 

responders for anti-Tat Abs (see Methods) in vaccinees (n=99) or placebos (n=100). The absolute 

number of vaccines/placebos developing anti-Tat Ig subclasses are reported on the top of each 

histogram. Statistical significant differences were detected between vaccinees and placebos for each 

Ig and for total response (p<0.0001, Chi-Square test). (B) Percentage of responders for anti-Tat Abs 

stratified according to the presence of one or more Ab isotype in vaccinees (n=99) or placebos 

(n=100). The absolute number of vaccines/placebos developing one or more Ab isotype are 

reported on the top of each histogram. Statistical significant differences were detected between 

vaccinees and placebos (p<0.0001, Chi-Square test). (C) IgM, IgG and IgA Ab mean titers (with 

standard error) in responders (vaccinees: n=79 for IgM, n=95 for IgG and n=75 for IgA; placebos: 

n=9 for IgM, n=12 for IgG and n=6 for IgA). Significant differences were detected between 

vaccinees and placebos for anti-Tat IgG Abs from week 12 to week 48 (Student’s t-test). 

Figure 3. Anti-Tat Ab durability in responders. (A) Kaplan-Meier estimates showing the 

cumulative probability of anti-Tat Ab durability during follow-up in responders (see Methods) 

(vaccinees: n=96; placebos: n=18). Anti-Tat Abs persisted significantly longer in vaccinees as 
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compared to the placebo group (p=0.0019, Log-Rank test). (B) Kaplan-Meier estimates showing the 

cumulative probability of anti-Tat Ab durability during follow-up in vaccinees (left panel) or 

placebo (right panel) responders, according to the number of anti-Tat Ab isotypes (vaccinees: 1 

subclass n=10, 2 or 3 subclasses n=86; placebo: 1 subclass n=10, 2 or 3 subclasses n=8). 

Figure 4. Increase of cross-clades anti-Tat Abs elicited in vaccinees. (A) baseline OD values of 

anti-Tat IgM, IgG and IgA against clades C, D and A in vaccinees prior to immunization (n=29, 

76% C clade, 41%  A clade, 14% D clade). (B) Changes from baseline of IgM, IgG and IgA Ab 

responses (OD) against Tat from other clades (C, D and A) after vaccination. Testing was 

performed at the peak of Ab responses (between 12 and 24 weeks). Statistical analysis was 

performed using the Wilcoxon signed-rank test. P-values assess the increase from baseline.  

Figure 5. Neutralization of Tat/Env complex entry in DC. Baseline values (left panels) and 

changes from baseline after immunization (right panels) of B-clade Env entry in DC in the absence 

(A) or presence (B) of B-clade Tat in anti-Tat Ab-positive (n=13) vaccinees, and anti-Tat Ab-

positive (n=6) or anti-Tat Ab-negative (n=5) placebos at week 20 and 48 from the first 

immunization. Reduction of Env entry in DC by sera indicates neutralization. Student’s t-test was 

applied to evaluate the changes from baseline within and between treatment groups. 

Figure 6. Neutralization of B- and C-clade Tat/Env complex entry in DC in vaccinees. 

Neutralization of B- (n=13) and C- (n=10) clade Env entry in DC in the presence or absence of (B- 

or C-clade) Tat by sera of Ab-positive vaccinees, measured at week 20 or week 48 after 

immunization. Data are presented as mean values with standard errors. Student's t-test for paired 

data was used for the analyses. 

Figure 7. Changes from baseline of CD4+ T-cell number in vaccinees and placebos. Baseline 

values (left panel) and changes from baseline (right panel) of CD4+ T-cell counts in vaccinees 

(n=99) and placebos (n=100). Data are presented as mean values with standard errors. Longitudinal 

analysis for repeated measures by the generalized estimating equations method was applied for the 

analysis. P-values assess the changes from baseline within and between treatment groups.  
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Figure 8. CD4+ T-cell numbers up to week 48 in vaccinees and placebo stratified by quartiles 

according to baseline values. Baseline values (left panels) and changes from baseline (right 

panels) of CD4+ T cells in (A) vaccinees (n=98), (B) placebo (n=100) and (C) anti-Tat Ab-negative 

placebo (n=80). Data are presented as mean values with standard errors. Longitudinal analysis for 

repeated measures was used. P-values assess the changes from baseline within each treatment 

group.  

Figure 9. Changes from baseline of CD4+ T-cell number in vaccinees and placebos non 

compliant to therapy. Baseline values (left panel) and changes from baseline after immunization 

(right panel) of CD4+ T-cell counts in vaccinees (n=18) and placebos (n=5). Data are presented as 

box plots. Wilcoxon signed rank sum test for paired data and Wilcoxon-Mann-Whitney test were 

used for the analyses. P-values assess the changes from baseline within and between treatment 

groups.  

Figure 10. Plasma viremia up to week 48 in vaccinees and placebo non compliant to therapy. 

Percentage of vaccinees and anti-Tat Ab-negative placebos non-compliant to cART with detectable 

plasma viremia (upper panel), and plasma viremia values (log10 copies/mL) in patients with 

detectable viral load at each study visit (lower panel).  
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Legends to Supplementary Figures 

Supplementary  Figure 1. B, C, A and D Tat clades sequences and GeneBank accession numbers. 

Based on data published in Hemelaar J et al (AIDS 2011, 2:679-689), which refer to the time period 

2004-2007, a frequency of 0.98%, 27.28%, 11.54%, and 3.61% for HIV-1 subtypes B, C, A and D, 

respectively, was calculated for the African continent. 
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