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Abstract

We determine the incentives for compatibility provision of firms that produce network goods

with different intrinsic qualities when firms do not have veto power over compatibility. When

network effects are strong, there are multiple equilibria in pricing and consumer decisions. We

show that in some equilibria, it is the high quality firm that invests in compatibility, whereas

in others, the low quality firm triggers compatibility. The socially optimal compatibility degree

is zero, except under very strong network effects, where one of the equilibria has all consumers

buying the low quality good. In this case, a partial degree of compatibility is optimal.
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1 Introduction

Since Rohlfs (1974) first described his theory of the interdependent demand for communication

services, economists have studied different aspects of the so-called network industries. These are

characterized by the existence of positive externalities in consumption, i.e. the utility of agents is

increasing in the number of users of the same good or compatible goods. The consequence of this

is that consumers choosing one such good always forego the benefits of interacting with the agents

that choose other (incompatible) goods. A possible solution for firms to increase the willingness to

pay of the consumers is to establish some degree of compatibility. Indeed, firms decide whether to

make their goods compatible with those of their rivals, thus competing in the market, or to render

them incompatible thus competing for the market.1

The objective of this paper is to determine the incentives for compatibility provision of vertically

differentiated firms operating in a network market. Our paper is the first to concentrate the

provision of partial compatibility. We also extend the literature by determining the compatibility

incentives under strong network effects, that is when the importance of the network for consumers

is so high that it induces multiple equilibria in consumption.

We can think of several examples for which our analysis could be used. These examples have

in common the existence of direct or indirect network effects in consumption and differentiated

quality of the products offered by distinct firms.2 As a first example of a good with direct network

1As Besen and Farrell (1994) put forward, ”there is no general answer to the question of whether firms will

prefer competition for the potentially enormous prizes under inter-technology competition, or the more conventional

competition that occurs when there are common standards.” An example is Microsoft and Sony Team on Digital

Entertainment Content Management System: although rivals in the gaming-console market, both companies found

mutual gains in working closely to integrate the Sony VAIO XL1 Digital Living System with Microsoft Windows XP

Media Center Edition 2005.
2It is common to distinguish between direct network effects, stemming from direct interaction of the consumers,

and indirect network effects, which stem from other externalities related to the dimension of the consumer base,
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effects we can think of Basic LEGO Bricks. This is a network good as the more compatible bricks

you and your friends have, the larger your building possibilities. While LEGO remains the most

famous bricks-maker and is perceived by consumers as a high quality good (at least for its long

history and brand recognition), there are competitors, like Mega Blocks that might offer or not

a compatible product.3 Other examples, mostly characterized by indirect network effects, are:

the game console industry, the operating systems industry and the high definition DVD industry.

These industries can be classified as two-sided markets in the sense that users of one group (game

console’s, OS’s, high definition DVD’s users) are better off as the number of users of the other

group (game, software, DVD developers) increases.4 We do not model explicitly the two-sided

market and focus on the role of (indirect) network effects. We can say that a consumer’s utility for

a particular product increases (indirectly) with the number of consumers of the same or compatible

products when the availability of components or support services increases with consumption. In

these industries, it is frequent to find that one firm is perceived by the consumers as being the

high quality firm. For instance in the case of MAC vs Microsoft Windows operating systems,

where it is often argued that Apple Macintosh is a higher quality product for example in terms

of high resolution graphics, virus detection etc., whereas, historically and also due to large price

differences, Microsoft has captured the largest market share. Another example is provided by

the high definition DVD industry. HD-DVD was produced by Toshiba and had storage potential

around 40 percent lower than the Blu-Ray DVD produced by Sony. Also, we can think about the

car industry in which consumers are better off if others buy the same type of vehicle as the supply

of customer services will be wider.

Compatibility can be achieved either by standardization, or by the introduction of a converter,

such as increased quality, services and components, etc.
3We borrow this example from Belleflamme and Peitz (2010, p. 579).
4For an analysis of competition in two-sided markets see Gabszewicz and Wauthy (2014) and Armstrong (2006).
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a device which allows consumers of one product to enjoy (partially or fully) the network of the

other product.5 Often, the converter device represents a compromise of quality, in the sense that

compatibility may be imperfect. Likewise, standardization is a costly requirement because it limits

product variety. In our model, we assume that compatibility is a feature of the product itself, a

characteristic that enhances the network effects, like a converter incorporated in the product.6

In general, the degree of compatibility that can be achieved depends on the vetoing power of

firms over compatibility and on technical specificities of the products. As pointed out by de Palma

et al. (1999), two situations can arise: i) no firm can veto the move towards compatibility, in

which case the final degree of compatibility is given by the maximum between the degrees chosen

noncooperatively by the firms; ii) both firms have veto power over compatibility, or, in other words,

the final degree of compatibility is the minimum between the degrees chosen by the firms.

For the first scenario, we can think of a firm that cannot prevent a rival from reaching com-

patibility due to the expiration of a patent. Consider again the example of Basic LEGO Bricks.

When it was invented in the 1950s, the brick was awarded patent protection, and since its expi-

ration LEGO tried to prevent competitors (like Mega Blocks) from making their building blocks

compatible with Basic LEGO Bricks. However, after a sentence of the Canadian Supreme Court

in November 2005, Mega Blocks and LEGO bricks may be interchangeable (in spite of LEGO

preferences). In this case it is not necessary that both firms contribute to compatibility, that

5For instance, in the HD-DVD/Blu-Ray case, producers of DVD discs at some point have come out with a disc

which had the HD-DVD version of the movie on one side and the Blu-Ray version on the other. Also, car producers

share the service facilities, rendering their products compatible. For instance a buyer of a Nissan sedan can enjoy

the indirect network effects of the Renault service facilities. We borrow this example from Alexandrov (2015).
6For instance, in the technology transition process from the 5.25 inch to the 3.5 inch floppy disk drives in personal

computers (from 1987 to the mid 90s when CD-ROM prevailed), computers where endowed with dual disks. Choi

(1997) analyses this process.

4



is firms’ contributions are substitutes.7 As for the second scenario, we can think of a patented

network good, so that a rival firm needs a license to reach compatibility. In this case there must

be an agreement between the firms and both have to contribute to compatibility. As such, firms’

contributions are complementary.

We here focus on the substitues case, that is we assume that no firm can veto compatibility

and we compare the private and social incentives towards compatibility.8 To this end, we develop

a two-stage game where firms first choose the degree of compatibility and then the price of their

products.

Our results are as follows: we identify the conditions under which different incentives to provide

compatibility arise as a function of the intrinsic quality differentiation and the importance of the

network effects. Under weak network effects, i.e., when the weight of the network effects relative

to the vertical differentiation is not very strong, we can observe full compatibility at equilibrium.

In this case, where both firms may remain active in the market, they are willing to provide

compatibility because an increase in the compatibility degree softens competition. However, the

low quality firm has higher incentives to provide full compatibility, in order to avoid the possibility

of being stranded out of the market. On the other hand, under strong network effects, i.e., when the

network effects dominate the vertical differentiation, we observe multiple equilibria for consumers’

demands. Namely, as consumers value very highly the network, it is possible that all consumers

buy either one of the two goods. In this case consumer expectations play a determinant role

and we observe that the consumption-price equilibria are not coalition proof. Indeed, given the

7We can find examples also in the network formation literature: Bala and Goyal (2000) refer to the phone call

where only the caller has to pay, however information can be exchanged by both parties. Also, Bloch and Dutta

(2009) model separable investment implying non complementarity in the link formation.
8We examine also the case of complementary contributions in the working paper version Garcia and Vergari

(2015).
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prices and a demand allocation, we observe that the expectation of a coordinated deviation by

consumers, would result in all consumers individually having incentive to deviate from the initial

demand allocation. Once we introduce the compatibility decisions of the firms we obtain that, in

any subgame perfect equilibrium only the high quality good is consumed, as long as it maintains its

overall quality dominance. In order for this to happen, the high quality firm may need to provide

compatibility to prevent consumers from buying the low-price low-quality good and remaining

stranded out of the market. An example of a situation in which provision of compatibility could

have changed the path of adoption is put forth by Postrel (1990).9 Our results constitute a further

rationale for the argument that network effects will not necessarily lead to market failure in the

sense of a low quality dominating the market over a higher quality.10 Also, our results are in line

with Spulber (2008a) that argues that firm’s interconnection decisions mitigate the lock-in by lower

quality goods. To sum up, we show that both firms may have incentives to provide compatibility.

In spite of that, as long as the network effects are not high enough to allow a switch in the overall

quality differential, the low quality firm is willing to pay more for compatibility. The opposite may

hold when the network effects are strong enough for the switch to occur, that is the high quality

firm may be willing to offer compatibility for a wider range of costs.

9According to Postrel (1990) quadraphonic audio systems failed to replace stereo in the 1970s, despite backing

from all the major manufacturers and recording houses and despite a higher quality. Network externalities and

consumer expectations played a significant role in this episode. In this paper, Postrel finds that the introduction of

competing incompatible quadraphonic systems hindered the development of a viable user base, which paired with a

non-sufficient quality increase and high price lead to the non adoption of quadraphonic sound. The provision of at

least partial compatibility or a better management of consumer expectations could have led to a different result for

the companies supporting the quad sound systems.
10This argument has been put forth by Liebowitz and Margolis (1994) and contrasts several theoretical models.

Among others, Farrell and Saloner (1985) and (1986) represent two examples of inefficient technology adoption due

to the so-called bandwagon effect.
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Concerning the social optimum, the welfare is maximized at a compatibility degree of zero, as

long as, under strong network effects, consumers only consume the high quality good. Comparing

the social optimum with the private provision, we find that compatibility is overprovided unless,

under very strong network effects, the consumers buy the low quality good. Indeed, in this latter

case, the social welfare is maximized by an intermediate degree of compatibility which corresponds

to the private optimum.

Related Literature

Several papers examine the issue of compatibility from different points of view, concentrating

on the weak network effects case. Baake and Boom (2001) study the decision of full or zero com-

patibility in a context of vertically differentiated products competing simultaneously in the market,

not allowing for partial compatibility, as we do in our paper. Crémer et al. (2000) consider an

extension of the seminal paper by Katz and Shapiro (1985) to study compatibility decisions in a

Cournot oligopoly with homogeneous goods and heterogeneous consumers, where firms differ in

their installed base of consumers. As most of this literature, these papers assume that compati-

bility requires the consent of both sides (contributions are complementary). The standard result

predicts that smaller firms always have higher incentives for product compatibility than bigger

firms. In particular, in Crémer et al. (2000), the larger firm (which determines the industry level

of connectivity) benefits from a better perceived relative quality when connectivity is imperfect

so that it does not take into account the impact of its interconnection decision on its rival, whose

profit increases with the level of connectivity, nor on consumers, who also benefit from an im-

proved connectivity. As a result compatibility is underprovided at equilibrium. Baake and Boom

(2001) find that the high quality firm prefers incompatibility whereas the low quality firm prefers

compatibility; however an adapter is always provided at equilibrium because the low quality firm
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can successfully prevent the incompatibility equilibrium through its quality choice. The private

outcome is also socially optimal because the network externalities consumers enjoy are greater and

the vertical differentiation is lower with the adapter than without the adapter. De Palma et al.

(1999) focus on the possibility that consumers achieve full compatibility through multi-homing in

a context where goods are homogeneous except for the dimension of the network. While most

contributions concentrate on compatibility as a mutual decision, De Palma et al. (1999) discuss

the impact of different property rights on the provision of compatibility. More recently, Doraszel-

ski et al. (2009) analyze the long run stability of compatible products when differentiation is also

derived from the size of the network alone and not from the intrinsic qualities of the products. As

for the case of strong network effects, Malueg and Schwartz (2006) extend Crémer et al. (2000)

by analyzing the compatibility incentives (as zero-one choice) of a large network facing multiple

rivals focusing on the case in which compatibility contributions are complementary. Malueg and

Schwartz allow the network effects to be strong enough for tipping to arise (all customers joining

the same network). Other papers have addressed the issue of tipping and multiplicity of equilibria

when network effects are strong. Under strong network effects, consumers expectations play a

determinant role on the equilibrium outcomes. Alexandrov (2015) focuses on the effect of differ-

ent expectations on the equilibria; also, under strong network effects, equilibria are generally not

coalition-proof, in the sense that coordinated actions by players would lead to the market tipping.

Ambrus and Argenziano (2009) use the concept of coalitional rationalizability proposed by Am-

brus (2006) to select among the possible equilibria. However, in cases in which there is no focal

network on which to coordinate, the concept does not necessarily impose successful coordination

and multiplicity still arises. Other papers focus on the consumer coordination in network indus-

tries. Spulber (2008b) addresses the multiplicity of equilibria and potential coordination failure

by allowing for coordination to arise from small to larger groups. A number of articles discuss
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the alternative path towards compatibility, which, as mentioned before, is standardization. These

include Farrell and Saloner (1985, 1992), and more recently Ostrovsky and Schwarz (2005) and

Alexandrov (2015).

Finally, it is worth mentioning a strand of the literature which focuses on firms’ compatibility

strategies towards vertically related firms. Theoretical models distinguish according to whether

each component is sold by an independent firm or each firm produces everything necessary to form

the final good (system). As an example of the first context, Church and Gandal (1992) study the

software provision decision of software firms to hardware firms. As for the case of firms supplying

all the necessary components, Matutes and Regibeau (1992) study firms’ incentives to standardize

components in industries where consumers try to assemble a number of components into a system

that meets their specific needs.

The outline of the paper is as follows. Section 2 describes the model. Section 3 provides

the results on the price competition and Section 4 analyses the compatibility choice by firms and

presents the comparison with the socially optimal compatibility degree. Section 5 concludes the

paper with a discussion of the results. The main proofs appear in the Appendix. The more

technical proofs can be found in Appendix B of the Working Paper version of the paper (Garcia

and Vergari (2015)).

2 Model

We develop a two-stage game involving two firms, A and B who produce competing goods at

constant marginal cost set to zero. These goods are vertically differentiated and characterized

by network externalities in consumption. In the first stage, the firms choose, simultaneously the

compatibility of their products. In the second stage, the firms engage in a Bertrand-Nash pricing

game. At the end of the second stage, the consumers make purchases. There is a continuum of
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consumers indexed by x, uniformly distributed on the interval [0, 1]. x represents the consumer’s

valuation of the quality. Each consumer buys either one unit of good A or one unit of good B.

We rule out the possibility of no purchase, that is we concentrate on the situation in which the

market is fully covered.11,12

Consumer x’s utility from the consumption of good i takes the following form:

Ui(x) = βix+ α [Di + τDj ]

The first term of the utility function, βix represents a stand-alone benefit which depends on the

intrinsic quality of good i, represented by βi. We assume throughout that βB > βA, i.e., the

intrinsic quality of good B is higher than that of good A. The second term in the utility represents

the network benefit. The parameter α > 0 denotes the intensity of the network effects and Di and

Dj are the demand of good i and j, respectively. The network benefit consists of the externality

stemming from the interaction with consumers that buy the same good, (Di), and the externality

resulting from compatibility, which allows consumers to partially benefit from the rival network

(τDj).

The final degree of compatibility is endogenous and given by τ ∈ [0, 1] which is a function of the

degrees of compatibility chosen by each firm, τA and τB in the following way: τ = max {τA, τB}.13

Underlying this formulation is the idea that no firm can prevent a move towards compatibility. As

such, the final compatibility is the maximum of the degrees chosen by the firms. In other words,

each firm can unilaterally provide compatibility not being necessary that both contribute. The

11We also exclude the possibility for consumers to join both networks. This could be an alternative way to achieve

compatibility as studied by de Palma et al. (1999).
12Covered markets occur in the case of mature and widespread industries, such as the software industry in developed

countries versus emerging markets where there are still consumers to be conquered. We discuss this assumption in

Section 5.
13In Garcia and Vergari (2015) we analyse both the case of τ = max {τA, τB} and the case of τ = min {τA, τB}.
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cost of providing compatibility is linear and given by cτi.
14 We assume that firms are equally

efficient in providing compatibility and thus face the same cost function.

Let k ≡ βB − βA denote the intrinsic quality differentiation. We use throughout the following

definitions:

Definition 1 There are four categories of network effects: very weak, k > 3α(1 − τ); weak,

2α(1− τ) < k ≤ 3α(1− τ); strong, α(1− τ) ≤ k < 2α(1− τ); and very strong k < α(1− τ).

Definition 2 The overall quality differential between good B and good A is defined as:

∆B,A = k + α(DB −DA)(1− τ). (1)

Definition 1 classifies four cases according to the relative importance of the network effects versus

the intrinsic quality difference. Definition 2 establishes that there are two sources of quality

differentiation between firms. One source is exogenous and is given by k and the other is endogenous

and is proportional to the difference in the networks’ size and given by α(DB −DA)(1− τ). The

endogenous source of differentiation can be manipulated by the firms through the choice of prices

and through the choice of the degree of compatibility (τ). We can interpret Definition 2 as follows:

when either the two networks have the same size (DA = DB) or compatibility is perfect (τ = 1),

consumers perceive the goods as being identical in terms of the network effects. The overall quality

of good B is higher than that of good A if the network effects are not very strong, i.e., k ≥ α(1−τ).

This means that even in the extreme case that the network benefit for firm A is the highest (DA = 1

and DB = 0), good B maintains its quality dominance. A switch in the overall differentiation takes

place only if the network effects are very strong i.e. for k < α(1− τ). In that case, the good with

low intrinsic quality (good A) becomes the good with high overall quality.

14We discuss the role of the linear costs in Section 5
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We solve the two-stage game by backward induction to obtain the subgame perfect equilibria.

In the remainder of this section we present the consumer’s choice.

Consumers choose between the goods in order to maximize their net surplus. In this maximiza-

tion problem they take the decisions of the others as given and have rational expectations about the

size of the networks, as in Katz and Shapiro (1985, 1994) or more recently Amir and Lazzati (2011).

As such, in equilibrium, we have that the expected network size coincides with the actual network

size.15 Consumer x buys good A if and only if UA (x) − pA > UB (x) − pB and UA (x) − pA > 0.

Denote x̂ the consumer type that is indifferent between the two goods and assume that the type

x = 0 has positive net utility from buying product A, i.e. UA (0) − pA = α [DA + τDB] − pA is

nonnegative.16 Demands are given by:

DB = 1− x̂,

DA = x̂.

We analyze the situation where both firms face a nonnegative demand, x̂ ∈ [0, 1]. There are three

possible market configurations.

1. DA = 1 and DB = 0, which is possible for pB − pA ≥ k − α(1− τ).

2. DA = 0 and DB = 1 which is possible for pB − pA ≤ α(1− τ).

3. DA, DB ∈ (0, 1) and DA + DB = 1. In this market configuration both firms set positive

prices and obtain positive profits.17

15As expectations play an important role in the case of multiple self-fulfilled expectations equilibria, we provide a

discussion on expectations in Section 3.2.
16The market coverage assumption in this is only possible thanks to the presence of positive network effects.

Indeed, with α > 0, consumer type zero may prefer buying because even if its valuation of the intrinsic quality is

zero he benefits from the network of consumers buying the same good or compatible goods. See Gabszewicz and

Garcia (2007) for a discussion.
17A complete analysis of the feasible price regions can be found in the Appendix (6.2).
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The indifferent consumer is:

x̂ = α(1− τ)
DA −DB

k
+
pB − pA

k
, (2)

which implies that demands, in the interior solution case (market configuration 3.), are given by:

DA =
−α (1− τ)

k − 2α (1− τ)
+

pB − pA
k − 2α (1− τ)

, (3)

DB =
k − α (1− τ)

k − 2α (1− τ)
− pB − pA
k − 2α (1− τ)

. (4)

Observing these expressions, we see that depending on the sign of k − 2α (1− τ) they are either

decreasing or increasing in own price.18 In what follows we distinguish the two cases.

• Weak and very weak network effects. DA and DB are decreasing in own price, as depicted

in Figure 1. The demands are:

DB (pA, pB) =



1, pB − pA ≤ α(1− τ)

k−α(1−τ)
k−2α(1−τ) −

pB−pA
k−2α(1−τ) , α(1− τ) < pB − pA ≤ k − α (1− τ)

0, pB − pA > k − α (1− τ)

(5)

DA (pA, pB) =



1, pB − pA > k − α (1− τ)

−α(1−τ)
k−2α(1−τ) + pB−pA

k−2α(1−τ) , α(1− τ) < pB − pA ≤ k − α (1− τ)

0, pB − pA ≤ α (1− τ)

(6)

• Strong and very strong network effects. The network benefit plays a dominant role in the

differentiation among products. As such, multiple equilibria in the consumers’ choice arise.

In particular, as illustrated in Figure 2 for good A, the demands for the network goods are

18Note that for k = 2α(1− τ) the demand in the interior solution case is not defined.
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Figure 1: Demand functions: k > 2α (1− τ) Figure 2: Demand for good A: k < 2α(1− τ)

correspondences:

DB (pA, pB) =



1, pB − pA ≤ α(1− τ)

−k+α(1−τ)
2α(1−τ)−k + pB−pA

2α(1−τ)−k , k − α (1− τ) ≤ pB − pA ≤ α(1− τ)

0, pB − pA ≥ k − α (1− τ)

(7)

DA (pA, pB) =



1, pB − pA ≥ k − α (1− τ)

α(1−τ)
2α(1−τ)−k −

pB−pA
2α(1−τ)−k , k − α (1− τ) ≤ pB − pA ≤ α(1− τ)

0, pB − pA ≤ α (1− τ)

(8)

We define a consumer partition equilibrium as a set of prices and network sizes such that given

prices and consumers expectations about the network size, the consumers choose their optimal

product and the network size that they expect must come true. For the range of prices such that

pB − pA ∈ [k−α(1− τ), α(1− τ)] there are three possible consumer partition equilibria: either all

consumers buy good A or they all buy good B or some consumers prefer good A and others prefer

good B. Notice that in the last case, demands are increasing in own price. This is due to the

fact that when deciding between A and B consumers value mostly the dimension of the network

that they will enjoy. Thus, as demand increases, also does the value of the goods and, in turn, the

consumers’ willingness to pay increases.
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In Section 3 and Section 4 we solve the model and compute the subgame perfect Nash equi-

librium candidates corresponding to each covered market configuration. Finally we provide the

parameter constellations for which the equilibrium candidates effectively yield the corresponding

covered market outcomes. The following assumption ensures market coverage and will be used

throughout the paper.19

Assumption 1. k ≤ 3α.

3 The price competition stage

3.1 Price competition under weak and very weak network effects

In the second stage of the game, firm i chooses its price pi so as to maximize its profit Πi:
20

Πi (pi, pj) = piDi (pi, pj) , with i 6= j and i, j = A,B

When k > 2α(1− τ), the demands for the network goods are well defined functions, in particular

they are linear and decreasing in own price. Given demands (5) and (6), the profits are:

ΠB =



pB, pB − pA ≤ α(1− τ)(
k−α(1−τ)
k−2α(1−τ) + pA−pB

k−2α(1−τ)

)
pB, α(1− τ) < pB − pA ≤ k − α (1− τ)

0, pB − pA > k − α (1− τ)

ΠA =



pA, pB − pA > k − α (1− τ)(
−α(1−τ)
k−2α(1−τ) + pB−pA

k−2α(1−τ)

)
pA, α(1− τ) < pB − pA ≤ k − α (1− τ)

0, pB − pA ≤ α (1− τ)

19The intuition behind this condition will become clear in Section 4, when the game is solved and we verify that

under Assumption 1, equilibrium candidates are compatible with the market coverage. Note that Assumption 1 is

a necessary but not sufficient condition for market coverage to arise.
20We forego the compatibility costs which are constant in the price-setting stage. We introduce them in the

compatibility choice stage (Section 4).

15



Figure 3: Price reaction functions for very

weak network effects

Figure 4: Price reaction functions for weak

network effects.

Price competition leads to the following results.

Proposition 1 1. When the network effects are very weak, there exists a unique Nash equi-

librium of the price game, given by: pA = 1
3k − α (1− τ) and pB = 2

3k − α (1− τ). The

corresponding equilibrium demands are DA = 1
3
k−3α(1−τ)
k−2α(1−τ) , and DB = 1

3
2k−3α(1−τ)
k−2α(1−τ) .

2. When the network effects are weak, there exists a unique Nash equilibrium of the price game,

given by pA = 0 and pB = α (1− τ), where DA = 0 and DB = 1.

Proof. Follows from the observation of the reaction functions derived in the Appendix in

Lemma 1.

The reaction functions are depicted in Figure 3 for the case of very weak network effects, and

in Figure 4 for the case of weak network effects. The computed price equilibrium is the unique

intersection of the price reactions functions in the relevant domain.

As in the classical model of vertical product differentiation the firm that produces the high

quality good charges a higher price. For very weak network effects, prices are increasing in the

degree of compatibility and in the intrinsic vertical differentiation, k. When consumers value highly
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the network, or in other words, when α is large, firms behave more competitively in order to gain

network advantage. This implies that prices are decreasing in α. This effect becomes milder in the

presence of compatible goods. Compatibility renders the network size less important for consumers

and therefore prices increase with τ .

On the contrary, when the network effects are weak, the high quality firm is the only active

firm in the market. In that case a higher valuation of the network, i.e. a higher α, allows the firm

to extract a higher consumer surplus by setting a higher price. Also, an increase in τ intensifies

price competition. In order to maintain the whole market, firm B needs to set a lower price.

3.2 Price competition under strong and very strong network effects

For the strong and very strong network effects case we need to consider the demands (7) and (8).

Profits are given by:

ΠB =



0, pB − pA ≥ k − α (1− τ) ,(
α(1−τ)−k
2α(1−τ)−k + pB−pA

2α(1−τ)−k

)
pB, k − α (1− τ) ≤ pB − pA ≤ α(1− τ),

pB, pB − pA ≤ α(1− τ)

ΠA =



0, pB − pA ≤ α (1− τ) ,(
α(1−τ)

2α(1−τ)−k −
pB−pA

2α(1−τ)−k

)
pA, k − α (1− τ) ≤ pB − pA ≤ α(1− τ),

pA, pB − pA ≥ k − α (1− τ)

Profits are nondecreasing in own price, hence firms have incentive to set prices as high as possible.

Given the market coverage assumption, prices are bounded from above. Moreover, the existence of

multiple consumer partition equilibria suggests for multiple price equilibria. In order to solve the

price competition we follow a reasoning which is similar to that developed by Grilo et al. (2001)

and we define an equilibrium of the price subgame as a price pair associated with a consumer
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partition. Proposition 2 shows that there are multiple equilibria when the network effects are

strong or very strong.

Proposition 2 1. When the network effects are strong, there exist multiple equilibria for the

price subgame. Namely, any price pair (pA, pB) such that pB = α(1 − τ) and 0 ≤ pA

≤ 2α(1− τ)− k associated with DB = 1 is an equilibrium.

2. When the network effects are very strong there exist multiple equilibria for the price subgame.

Namely, there are two sets of corner equilibria:

(a) any price pair (pA, pB) such that pB = α(1− τ) and 0 ≤ pA ≤ α(1− τ)− k associated

with DB = 1;

(b) any price pair (pA, pB) such that pA = α(1− τ)− k and 0 ≤ pB ≤ α(1− τ) associated

with DA = 1.21

Proof. See the Appendix (6.3).

In both the cases of very strong and strong network effects, consumers exhibit what is known

as strong conformity (Grilo et al. 2001). This means that consumers would like to be able to

coordinate their choices on the same good in order to enjoy the maximum network effects because

the difference in intrinsic qualities is not relevant. This is what our results predict. As long as the

overall quality of good B (∆B,A defined in (1)) is superior, i.e., k ≥ α(1 − τ), at equilibrium all

consumers buy the high quality good B. In contrast, if we let 0 < k < α(1 − τ), a switch in the

overall quality occurs when all consumers buy good A (as at the equilibrium pA = α(1 − τ) − k

21We also find the following interior equilibrium: the price pair (pA, pB) such that pA = pB = αα(1−τ
2)−kτ

2α(1−τ)−k

associated with DA = α(1−τ)
2α(1−τ)−k ∈ ( 1

2
, 1). However, we exclude this second-stage price equilibrium because it

locates in the boundary of the market coverage condition. Hence, it is safe to assume that without the market

coverage assumption this equilibrium would not exist.
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and pB ≥ 0 with DA = 1, ∆B,A = k−α(1− τ) < 0). Note that prices become decreasing in τ : the

compatibility degree is a device for firms competing for the market to be more aggressive.

It is worth noting that the two sets of corner equilibria described in Proposition 2 are not

robust to the joint deviations of the consumers to the alternative good (or to the expectations that

all consumers buy the alternative good), that is these equilibria are not coalition-proof.22,23 The

strong network effects (which dominate the quality difference in this space of parameters) justify

this feature of the equilibria. Under strong network effects, the intrinsic qualities are similar enough

that the price and the network effects play a dominant role in the choice of the consumers. This

has been recognized in the literature. Despite this, most literature on network externalities to

the exception of Ambrus and Argenziano (2009) does not provide a refinement of the equilibria

based on coalitional-proofness. Ambrus and Argenziano (2009) use the concept of coalitional

rationalizability proposed by Ambrus (2006) to select among the possible equilibria. However, in

cases when there is no focal network on which to coordinate, the concept does not necessarily

impose successful coordination and multiplicity still arises. In our analysis we assume that there

are no deviations by any group of consumers. Likewise, in the very strong network effect case,

expectations matter for the characterization of the equilibria. Figure 5 provides further intuition

22We thank the anonymous referee that pointed out this observation.
23To observe this we start from a price-demand equilibrium pair and test whether it would survive the expectation

that all consumers buy the alternative good. Consider first (pA, pB) = (α(1 − τ) − k, 0) and (DA, DB) = (1, 0).

Even though there is no individual incentive for consumers to deviate, note that there would be mutual gain to all

consumers to jointly deviate to B when presented with this price pair. Indeed, at this price pair, if instead DB = 1,

consumer x ∈ [0, 1] gets the utility βAx+ατ −α(1−τ)+k if x buys A and βBx+α−0 if x buys B. Comparing these

utilities we obtain that each consumer is better off buying B if and only if: k(x − 1) ≥ 2α(τ − 1). This condition

is most demanding for x = 0, namely: k ≤ 2α(1 − τ). We can apply the same argument to the other equilibrium

(pA, pB) = (0, α(1− τ)) and (DA, DB) = (0, 1). Indeed at this price pair, if instead, DA = 1 any consumer x ∈ [0, 1]

is better off consuming A if and only if k ≤ 2α(1− τ), which includes the range of parameters that we are analyzing.
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for Proposition 2.24

Figure 5: Characterization of potential partition equilibria under very strong network effects.

Figure 5 is obtained from the expression for the indifferent consumer, considering different ex-

pected sizes of the network of good A (denoted by De
A), either De

A = 0, or De
A = 1, or De

A ∈ (0, 1))

and the price difference. Four areas in the space (pB − pA)/(De
A ) are identified. Area I is not

bounded from below and characterized by horizontal arrows pointing to the ordinate: here, no

matter what exactly the expectations compatible with this area are, all consumers prefer to choose

product B, thus, the only expectation that can come true, given the price differences is De
A = 0,

implying all consumers buying from B. The situation in area IV (not bounded from the top)

marked with horizontal arrows to the right is equivalent: all consumers prefer product A and the

only expectation that can come true is De
A = 1, implying that all consumers buy A. In area II

and III the situation is different. Consumers are split and part of them prefers A and the other

B. However, if consumers expect a slightly smaller market share than which corresponds to this

borderline at the same price difference (inside of area II) more consumers would decide in favor

of product B than they had originally expected and their original expectations could never come

24We thank an anonymous referee for suggesting this figure.
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true. Similarly, inside of area III more consumers would finally choose product A than would

correspond to the consumers’ original expectations. As for the borderline between areas II and

III, if the consumers coordinate correctly on either of the three partitions and the firms correctly

anticipate the split, then only the two equilibria characterized in Proposition 2 can arise. Indeed,

if the firms correctly anticipate such a split, then each firm wants to increase its price, such that

a split of consumers cannot be a Nash equilibrium.

In order to solve the compatibility stage, and in turn the full game, in what follows, we need to

consider a particular price-stage equilibrium for the strong and very strong network effects case.

We analyze both sets of corner equilibria in turn:25

(i) we focus on the price-stage equilibrium such that pA = 0 and pB = α(1− τ) with DA = 0 and

DB = 1;

(ii) we focus on the price-stage equilibrium in (i) when the network effects are strong and the

price-stage equilibrium such that pA = α(1 − τ) − k and pB = 0 associated with DA = 1

when the network effects are very strong.

In the following, we develop fully the solution to the compatibility stage taking in consideration

the price-stage equilibrium described in (i). We discuss the outcome of the compatibility choice

given the equilibrium described in (ii) at the end of the next section.

4 The Compatibility stage

In this section we determine the subgame perfect Nash Equilibria of the game and study the

socially optimal choice of compatibility.

25We can exclude the price equilibria in which a firm sets a positive price when its demand is nil.
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In the first stage of the game, firms choose their compatibility degrees non-cooperatively. Given

the equilibria obtained in the price competition stage, there are different equilibrium profits de-

pending on the strength of the network effects. Accordingly, we have the three following cases for

the overall first-stage profits of firms.

Case 1 Very weak network effects: (Unique) Interior solution in prices

ΠI
A =


(α(τA−1)+ 1

3
k)

2

k−2α(1−τA) − cτA if τA ≥ τB

(α(τB−1)+ 1
3
k)

2

k−2α(1−τB) − cτA if τA < τB

(9)

ΠI
B =


(α(τA−1)+ 2

3
k)

2

k−2α(1−τA) − cτB if τA ≥ τB

(α(τB−1)+ 2
3
k)

2

k−2α(1−τB) − cτB if τA < τB

(10)

Case 2 Weak network effects: (Unique) Corner solution in prices

ΠC
A = 0− cτA (11)

ΠC
B =


α (1− τA)− cτB if τA ≥ τB

α (1− τB)− cτB if τA < τB

(12)

Case 3 Strong and very strong network effects case. In order to illustrate such a possibility

characterized by multiple price equilibria, we focus on the one where pA = 0 and pB = α(1−τ)

and all consumers buy good B which implies

ΠS
A = 0− cτA ,ΠS

B =


α (1− τA)− cτB if τA ≥ τB

α (1− τB)− cτB if τA < τB

To analyze the compatibility stage we must consider three potential regions for the parameters

as illustrated in Figure 6.

Notice that focusing on the price-stage equilibrium such that pA = 0 and pB = α(1− τ) with

DA = 0 and DB = 1 for the range of k such that 0 < k < 2α(1 − τ), then the corner solution of

the price competition coincides with the strong network effects solution of the price competition,
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Figure 6: Parameters space for the compatibility

i.e., ΠC
A = ΠS

A and ΠC
B = ΠS

B, therefore the last two regions can collapse in one. This is what we

do to solve the compatibility stage.

The following Proposition presents the results of the compatibility game for each partition of

the parameter space defined above.

Proposition 3 Given τ = max{τA, τB}, full compatibility occurs if and only if c ≤ k/9, otherwise

compatibility is zero.

Proof. See the Appendix (6.4).

Proposition 3 highlights firms’ incentives to provide compatibility. It deserves a closer analysis.

First, notice that when Assumption 1 does not hold, namely k > 3α, firms have the incentive to

choose full compatibility, as long as the cost is not too high. This is due to the fact that as

the degree of compatibility increases, the price competition softens. However, when the result is

either full or no compatibility, low consumer types prefer not to buy anything. In particular, when

compatibility is absent, the quality of good A is so low with respect to the quality of good B

that low consumer types do not buy it. On the other hand, when compatibility is full, although
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the overall differentiation decreases, the price increase prevents some consumers from buying.

Therefore when k > 3α, at equilibrium the market is not covered.

When Assumption 1 holds, we find that firms have incentive to provide full compatibility for

small levels of its cost. However, the lower intrinsic quality differentiation allows for a market

coverage equilibrium.

Values of c 0 ≤ 3α−k
3α

c = 0
τA = 1, τB ∈ [0, 1]

τB = 1, τA ∈
[
9α−4k
9α , 1

]
 τ = 1

0 < c < (4k−9α)
9

τA = 1, τB = 0

τB = 1, τA = 0

 τ = 1

(4k−9α)
9 < c < k

9 τA = 1, τB = 0} τ = 1

c > k
9 τA = 0, τB = 0} τ = 0

Table 1: Compatibility and costs

Looking at the particular behavior of each firm for different levels of c, summarized in Table 1,

we can see that as long as 0 < c < (4k−9α)
9 , the game has two Nash equilibria: (τA = 1, τB = 0)

and (τA = 0, τB = 1). This is due to the fact that reaction functions are discontinuous and have

a unique downward jump. Intuitively, when the opponent chooses a degree of compatibility high

enough (not necessarily τi = 1), the firm prefers to enjoy this degree of compatibility rather than

investing in compatibility themselves. Furthermore, when (4k−9α)
9 < c < k

9 , in equilibrium, only

the low quality firm has incentive to offer compatibility. This is so, because, otherwise, firm B

would be in a position to dominate completely the market. By offering compatibility, firm A

attracts consumers and becomes active in the market.

From Table 1, we can also notice that whenever c > 0, firms never incur in wasteful duplication

of compatibility costs. Indeed, at any equilibrium, there is only one firm providing compatibility.

In the following, we present the subgame perfect equilibrium results for all the relevant vari-
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ables. When the vertical differentiation is such that 0 < k ≤ 3α, equilibrium prices demands and

profits depend on the compatibility cost in the following way. If c < k
9 , τ = 1 and we have the

interior solution in prices given by D∗A = 1
3 , D∗B

2
3 , p∗A = k

3 and p∗B = 2k
3 Profits are then either,

Π∗A = k
9 − c and Π∗B = 4k

9 or Π∗A = k
9 and Π∗B = 4k

9 − c. Notice that also for low values of

vertical product differentiation both firms are active in the market as long as the compatibility

cost is sufficiently low. If c ≥ k
9 , τ = 0 and in we obtain the corner (or the strong network effects)

solution in prices. Namely, D∗A = 0, D∗B = 1, p∗A, and p∗B = α. The profits are Π∗A = 0, Π∗B = α.

We conclude the characterization of the compatibility equilibria by briefly discussing the pos-

sibility of the price-stage equilibrium such that pA = α(1 − τ) − k and pB = 0, associated with

DA = 1 arises for the case of very strong network effects, i.e., 0 < k < α(1 − τ). Our results

show that in this case, the outcome of the compatibility choice yields positive compatibility for a

wider range of costs, namely, for 0 < c < αk/(α − k). However, compatibility is always partial

τ = (α − k)/α. The intuition is the following. For such strong network effects, it is possible for

the low quality firm to dominate completely the market if the compatibility degree, τ , is low. As

a result, firm A prefers zero compatibility. In contrast firm B, in order to prevent the solution

in which its demand is zero, chooses partial compatibility. In this particular equilibrium the high

quality firm has, thus, a higher incentive to provide compatibility than the low quality firm. Notice

that the specific equilibrium value of τB = (α− k)/α is the boundary under which demand of B is

zero and over which it is one.26 In particular, equilibrium variables at τ = (α− k)/α are: D∗A = 0,

D∗B = 1, p∗A = 0, p∗B = kα−c(α−k)
α > 0 if and only if kα

(α−k) > c. The equilibrium profits are Π∗A = 0,

Π∗B = kα−c(α−k)
α . In other words, under very strong network effects, when firms compete for the

market, by providing partial compatibility the high quality firm is able to conquer the market: the

26The complete proof of this result follows from the proof presented in the paper and can be obtained from the

authors upon request.
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compatibility acts as a device to behave more aggressively or, as pointed out in Spulber (2008b)

and Farrell and Klemperer (2007), compatibility functions as a ”coordination device”.

Welfare In this section we investigate whether the equilibrium compatibility degree is optimal

from a social welfare point of view. That is, we let the social planner choose the compatibility

degree, τ at a cost cτ and firms compete in prices, as before.27

Define, as usual, the social welfare by the following expression:

SW (τ) =

∫ x̂

0
(UA (x)− pA) dx+

∫ 1

x̂
(UB (x)− pB) dx+ ΠA + ΠB − cτ. (13)

We need to distinguish three cases according to the price competition outcome.

• When the network effects are very weak:

SW I (τ) = βB
1

2
− 11k3−72αk2+54ατk2+153α2k−234α2kτ+81α2τ2k−108α3+252α3τ−180α3τ2+36α3τ3

18(k−2α+2ατ)2
−cτ.

• When the network effects are weak:

SWC (τ) =
1

2
βB + α− cτ.

• When the network effects are strong and very strong, the social welfare depends on the price

equilibrium selected in the second stage. Let us treat first the case in which the selected

price equilibrium has all consumers buying good B, so that the solution under strong and

very strong network effects coincides with the corner solution.

SWS (τ) = SWC (τ) =
1

2
βB + α− cτ.

Consider next the possibility that when the network effects are very strong, the price equi-

librium selected in the second stage is such that all consumers buy good A. In this case

SWS (τ) =
1

2
βA + α− cτ.

27This means that we consider a second best situation.
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Proposition 4 summarizes the results for the optimal compatibility choice of the social planner.

Proposition 4 The optimal degree of compatibility from the social point of view is zero, except if,

under very strong network effects, the price competition leads all consumers to buy the low quality

good. In this specific situation, the social planner only chooses zero compatibility for very high

costs, otherwise, the optimum occurs at an intermediate degree of compatibility.

Proof. See the Appendix (6.5).

The welfare maximizing solution differs from the private optimum in that firms overprovide

compatibility. Firms are willing to offer full compatibility, whereas from the welfare point of view

it would be better to have zero compatibility as long as all consumers buy the high quality good.

In fact, this way the network externality is maximized and society does not incur any compatibility

cost. This result is altered in case of very strong network effects and assuming that all consumers

buy the low quality good (one possible outcome of the price competition stage). In that case,

the social planner chooses an intermediate degree of compatibility, namely τ = α−k
α , if the costs

are sufficiently low, i.e. c < αk
2(α−k) . The reason for this is that by choosing this positive degree

of compatibility, the nature of price competition changes and consumers choose the high quality

instead. For high cost of compatibility, it would be better from the social point of view that no

compatibility is offered at all. This solution matches the private solution.28

28In case both firms can veto compatibility, i.e., τ = min{τA, τB}, we get similar results under weak and very

weak network effects. In these cases both firms benefit from compatibility, that is their preferences towards τ are

analogous so that compatibility is again overprovided. In contrast, under strong and very strong network effects, as

firms’ incentives are opposite, the unique equilibrium is τ = 0 so that the private solution coincides with the social

optimum as long as all consumers buy the high quality good B; whereas, if all consumers buy the low quality good

A, compatibility can be underprovided. Formal details are in Garcia and Vergari (2015).
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5 Conclusion

In this paper, we have analyzed firms’ incentives to provide compatibility between two network

goods with different intrinsic qualities. We have provided a complete analysis by studying how

the relative importance of vertical differentiation with respect to the network effects influences

the price competition as well as the compatibility choice. From the private point of view, full

compatibility arises at equilibrium for low compatibility costs: both firms gain from compatibility

as it attenuates price competition by increasing the value of both goods for consumers. Providing

full compatibility makes the two goods identical for consumers in terms of network effects. However,

the strength of the network effects matters to asses the differences in the firms’ incentives. When

network effects are not strong enough to switch the overall quality differentiation, the low quality

firm has higher incentives to provide compatibility in order to prevent the rival from dominating

the market. In contrast, under very strong network effects, the firm with lower intrinsic quality

and low price could conquer the market, and hence the high quality firm has more to gain from

compatibility. Thus, we can find conditions under which it is the high quality firm that drives

compatibility. Esser and Leruth (1988) provide an example about the compact disc industry in the

1980s. In their words (page 268) “it may have been the case that Philips (the high quality firm)

knew it could do better than the Japanese (the low quality firm) in terms of quality but much less

so in terms of economies of scale. So, in order to avoid the risk of being defeated by the Japanese

in terms of ‘actual’ quality, Philips may have preferred compatibility.” A further example that

may support our result is the failure of quadraphonic sound that was introduced as an alternative

to stereo sound for playing audio recordings in the early 1970s. As pointed out by Bellaflamme

and Peitz (2010, p. 572) ”In spite of its higher quality, quadraphonic sound failed to become

the new industry standard” and one of the reasons is that ”the technology was proposed under

several incompatible formats”. In this case the high quality good would have probably gained by
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providing at least some compatibility.

As for the social optimum, the welfare is maximized at a compatibility degree of zero except

if, under very strong network effects, all consumers buy the low quality good. Because there is

an outcome in the price competition for which all consumers buy the high quality good, then it

is possible to maximize the network externality without any compatibility at all.29 In contrast,

compatibility allows both firms to stay in the market so that the average quality of the goods on

sale decreases but prices increase as a result of compatibility. However, if the equilibrium in which

all consumers buy the low quality good arises, then, from the social point of view, it is beneficial

that some compatibility is offered so that consumers can be persuaded, by lower prices and network

effects, to buy from the high quality good. Thus, the social planner prefers de facto standardization

on the high quality rather than competition among the two (potentially compatible) network goods.

Indeed, in our model, because market coverage is assumed, as long as both firms stay in the market,

increasing degrees of compatibility reduce overall quality differentiation but increase consumers’

willingness to pay leading to softer price competition, however it does not affect the consumption

base, as all consumers are served in any case. In contrast, when either firm conquers the market,

increasing degrees of compatibility strengthen price competition. In other words, when firms

compete for the market, the compatibility degree is a device for firms to behave more aggressively.

Compatibility is then overprovided, except if, for very strong strong network effects all consumers

buy the low quality good. In this case, the social optimal degree of compatibility corresponds

to the private optimum. Thus, in vertically differentiated markets, depending on the strength of

the network effects, policy intervention could go in the direction of influencing compatibility costs

(by taxes or licensing costs for instance). The failure of the market is not however the rule. The

high definition DVD industry makes a case study in which private and social incentives matched.

29We thank an anonymous referee for pointing out this intuition.
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This industry is characterized by very strong network effects and at a certain point some partial

compatibility was to be offered (producers of DVD discs had come out with a disc which had

the HD-DVD version of the movie on one side and the Blu-Ray version on the other), but finally

the standard war has been won by the high quality firm Sony (Blu-Ray DVDs). These social

welfare conclusions are obtained for fully covered markets, a pervasive and reasonable assumption

in models with network effects and they can be applied when analysing mature and widespread

markets in contrast with emerging markets.

It is worth acknowledging that these policy conclusions do not necessarily hold for uncov-

ered markets. Compatibility may have a —welfare improving— demand–expansion effect which

is absent in our model. Indeed, previous contributions on compatibility strategies suggest that

compatibility is welfare improving. In particular, without assuming fully covered markets, Crémer

et al. (2000) show that compatibility is underprovided. Also, Baake and Boom (2001) show that

welfare is higher in the presence of an adapter. Note, however, that the welfare improving demand

effect does not necessarily overcompensate the welfare detrimental price increase associated with

higher degrees of compatibility. For instance, de Palma et al. (1999), in the presence of double pur-

chase, that is when consumers can achieve compatibility on their own, find that firms overprovide

compatibility with respect to social welfare in spite of the induced larger market coverage.

Another assumption of the model is the linearity of compatibility costs. We have assumed that

the firms face constant marginal costs of compatibility, whereas in previous work, for instance

Katz and Shapiro (1985) and Farrell and Saloner (1992), the cost of compatibility was assumed

fixed. More recently, Baake and Boom (2001) consider zero compatibility costs. Linear costs can be

justified in the context of a product with several features that need to be adjusted in order to render

the product compatible. Each additional feature would bring additional costs. Naturally, other

cost functions could be considered, namely, we could envisage a situation of convex compatibility
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costs. The qualitative results would not change, in the sense that for certain range of parameters,

compatibility would be offered, however, we expect that partial compatibility outcomes would be

more likely to arise in equilibrium.

Our analysis points out new interesting results about firms’ incentives to offer compatibility.

Indeed, as Besen and Farrell (1994) describe, firms’ horizontal compatibility strategies determine

the form of competition in the market. In particular, with two firms, there are three combinations of

such strategies: both firms choose incompatibility which results in a standard war; both firms prefer

compatibility; and finally, one firm chooses incompatibility whereas the other prefers compatibility.

This last case is natural under firm asymmetry. Katz and Shapiro (1985) show how a larger firm is

more likely to prefer incompatibility than a smaller firm. Similarly, Baake and Boom (2001) show

that the high quality firm, in contrast with the rival firm, is against compatibility. However, we

show that this need not be the case. In fact, for weak and very weak network effects both firms

have incentives to provide compatibility while for strong and very strong network effects, they

may have asymmetric preferences. In the first case, offering compatibility can soften competition.

In contrast, in the second case, either the high quality firm or the low quality firm are likely to

conquer the market thus having opposite incentives for compatibility. Under very strong network

effects, expectations about the network size are crucial in determining the dominant firm in the

market.
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6 Appendix

6.1 Lemma 1

Lemma 1 For k > 3α(1− τ), the price reaction function of firm B is given by,

pB (pA) =


1
2 (k − α (1− τ)) + pA

2 , if pA ≤ k − 3α (1− τ) ,

α (1− τ) + pA, if pA > k − 3α (1− τ) .

Whereas for 2α (1− τ) < k ≤ 3α (1− τ), the price reaction function is:

pB (pA) = pA + α(1− τ).

As for firm A, the price reaction function, for k > 2α(1− τ), is

pA (pB) =



pA = 0, pB ≤ α (1− τ) ,

pB−α(1−τ)
2 , if α (1− τ) < pB ≤ 2k − 3α (1− τ) ,

pB − k + α (1− τ), if pB > 2k − 3α (1− τ) .

Proof. Let us start by solving the maximization problem of firm B. In the first domain of the

profit function, the profit is increasing in the price, as such, it attains its maximum in the border

of the interval in which this branch of the profit is defined, i.e. pB = pA + α (1− τ). The second

branch of the profit function is concave and it attains its maximum at pB = 1
2 (k − α (1− τ))+ pA

2 .

Whenever this maximum falls outside the relevant domain, i.e. 1
2 (k − α (1− τ)) + pA

2 ≤ pA +

α (1− τ), or equivalently pA ≥ k − 3α(1 − τ) the optimum is pB = pA + α (1− τ) . Whenever

pA ≤ k−3α(1− τ), the optimum is pB = 1
2 (k − α (1− τ)) + pA

2 . Evidently, given that the optimal

solution for firm depends on whether pA is superior or inferior to k−3α(1− τ), we must guarantee

that this value is positive. In case k < 3α(1− τ), pA is always higher than k − 3α (1− τ) and as

such, the only relevant best reply for firm B is pB = pA + α (1− τ).

Let us now solve the maximization problem of firm A. In the first domain of the profit function,

the profit is increasing in the price, therefore it attains its maximum in the border of the interval
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in which this branch of the profit is defined, i.e. pA = pB − (k − α (1− τ)). The second branch

of the profit function is concave and it attains its maximum at pA = 1
2 (pB − α (1− τ)). When

1
2 (pB − α (1− τ)) ∈ (0, pB − (k − α(1− τ))], or equivalently, α (1− τ) < pB ≤ 2k − 3α(1 − τ),

the optimum obtains at pA = pB − (k − α (1− τ)) , when 1
2 (pB − α (1− τ)) < 0, or equivalently,

pB ≤ α (1− τ) then pA = 0. Finally, when 1
2 (pB − α (1− τ)) > pB − (k − α(1− τ)), that is,

pB > 2k − 3α(1− τ), the global maximum obtains at pA = 1
2 (pB − α (1− τ)).

6.2 Price regions

The fully covered market configurations described in the model occur when the following conditions

hold:

pA − pB ≤ α (1− τ) (DA −DB) , (14)

pB − pA ≤ α(1− τ)(DB −DA) + k, (15)

pA ≤ α (DA + τDB) . (16)

Given the demands (3) and (4), these conditions can be reduced to:

pA − pB ≤ α (1− τ)
(2 (pB − pA)− k)

(k − 2α+ 2ατ)
,

pB − pA ≤ −α(1− τ)
(2 (pB − pA)− k)

(k − 2α+ 2ατ)
+ k,

pA ≤ α
(
−α

(
1− τ2

)
+ kτ − (pA − pB) (1− τ)

)
(k − 2α+ 2ατ)

.

The price regions assume different values depending on the strength of the network effects.

The case of weak and very weak is depicted in figure 7.

6.3 Proof of Proposition 2

Consider first the relevant price region depicted in Figure 8 for strong network effects. We divide

this price space in 5 regions that we analyze in turn.
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Figure 7: Price region for weak and very weak network effects.

Figure 8: Price space for strong network effects.

In regions I and II, there is a unique consumer partition equilibrium: (DA = 0, DB = 1) and

(DA = 1, DB = 0), respectively. In these regions, no price equilibrium exists: in region I (II), firm

A (B) can profitably deviate by reducing its price pA (pB).

In regions IV and V, all three consumer partitions DA = 1, DA = 0 and DA ∈ (0, 1) are

equilibria of the consumers’ choice. We proceed by first eliminating the consumer partitions which

are not compatible with a price equilibrium in these regions. Concerning region IV, DA = 1 can

never be part of the equilibrium of the full game because firm B can always reduce its price pB

and conquer a positive market share (going to region I). In contrast, for DB = 1, given any pB
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belonging to region IV, firm A cannot profitably deviate as its profit is zero in any case. Therefore,

in region IV any price pair (pA, pB) such that pA ≥ 0 and pB = α(1−τ) is an equilibrium, whatever

the consumer partition which actually realizes. Concerning region V, no price equilibrium can be

associated with either DA = 1 or DB = 1 because the firm with no consumers can always reduce

its price and obtain positive profit, (pA can decrease and reach region II and similarly pB can

decrease and reach region I). We conclude by considering the possibility of DA ∈ (0, 1) in regions

IV and V.

Lemma 2 Let α(1 − τ) < k < 2α(1 − τ), the reaction functions of firms A and B in regions IV

and V with DA ∈ (0, 1), are given by,

pB (pA) =


α (1− τ) + pA, if pA ≤ ατ

α(1−τ2)−kτ
1−τ + pA

(k−α(1−τ))
α(1−τ) , if pA > ατ

pA (pB) =


pB − k + α (1− τ) , if pB ≥ k − α (1− τ)

0, if pB < k − α (1− τ)

Proof. Consider the situation in which for pB − pA ∈ [k − α(1− τ), α(1− τ)] the equilibrium

demand is such that DA ∈ (0, 1) and DB = 1−DA. Looking at the profit function of firm B overall

it is easy to see that: it is nondecreasing as long as pB < pA+k−α(1−τ), it has a downward jump

to zero at pB = pA+k−α(1−τ), after that it starts increasing again as long as pB < pA+α(1−τ)

and it is zero otherwise. As such, the maximum is attained at pB = pA + α(1 − τ) if this price

is lower than the limits imposed by conditions (14)-(16) on the prices. Otherwise, the reaction

function of firm B is the upper bound of the price region, which for k < 2α (1− τ) is defined

by pB < pA + α (1− τ), pB > pA + k − α (1− τ) and pB <
α(1−τ2)−kτ

1−τ + pA
k−α(1−τ)
α(1−τ) . A similar

reasoning applies to firm A.

Drawing the price reaction functions in Lemma 2, we can easily see that they intersect only once

at pA = α and pB = k+ατ . However, such a price pair is incompatible with the consumer partition
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DA ∈ (0, 1) which we can thus exclude. Indeed, as Figure 2 illustrates, at pB − pA = k−α(1− τ),

the equilibrium consumers’ choice is either DA = 0 or DA = 1.

Finally, in region III, we have a unique equilibrium of the consumers’ choice: any price pair

(pA, pB) such that pB ≤ k − α(1− τ) and pA ≥ 0 is associated with DA = 0, DB = 1. Profits are

then ΠA = 0 for firm A and ΠB = pB for firm B: thus, firm A will be indifferent between any

pA ≥ 0; however, firm B would always have an incentive to increase pB so as to move to region IV

(as long as pA is sufficiently low), where it can set a higher price.

2. For the range 0 < k < α(1 − τ), we need to distinguish two cases: k ∈ (0, α(1− 2τ)) and

k ∈ (α(1− 2τ), α(1− τ)) depending on: k + ατ > α(1− τ) which is equivalent to k > α(1− 2τ).

Figure 9 depicts the relevant price region for the case k ∈ (α(1− 2τ), α(1− τ)). We divide this

price space in 6 regions that we analyze in turn.

In regions I and II, there is a unique consumer partition equilibrium: (DA = 0, DB = 1) and

(DA = 1, DB = 0), respectively. In these regions, no price equilibrium exists: in region I (II), firm

A (B) can profitably deviate by reducing its price pA (pB).

In regions III, IV, V and VI, all three consumer partitions DA = 1, DA = 0 and DA ∈ (0, 1) are

equilibria of the consumers’ choice. We proceed by first eliminating the consumer partitions which

are not compatible with a price equilibrium in these regions. Concerning region III, DA = 1 can

never be part of the equilibrium of the full game because firm B can always reduce its price pB and

conquer a positive market share (going to region I). In contrast, for DB = 1, given any pB belonging

to region III, firm A cannot profitably deviate as also in region VI DA may be zero. Therefore, in

region III any price pair (pA, pB) such that pA ∈ III (that is pA ∈ [α (1− τ)− k, 2α (1− τ)− k])

and pB is α(1 − τ) with DB = 1 is an equilibrium. Concerning region IV, DB = 1 can never be

part of the equilibrium of the full game because firm A can always reduce its price pA and conquer

a positive market share (going to region II). In contrast, for DA = 1, given any pA belonging to
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region IV, firm B cannot profitably deviate as also in region VI DB may be zero. Therefore, in

region IV any price pair (pA, pB) such that pB ∈ IV (that is pB ∈ [α (1− τ) , 2α (1− τ)− k]) and

pA is α(1−τ)−k with DA = 1 is an equilibrium. Concerning region V, no price equilibrium can be

associated with either DA = 1 or DB = 1 because the firm with no consumers can always reduce

its price and obtain positive profit, (pA can decrease and reach region II or IV and similarly pB

can decrease and reach region III or I).

Concerning region VI, both DA = 1 and DA = 0 are compatible with a price equilibrium:

1. DA = 1 is associated with pA = α(1− τ)− k and pB ∈ [0, α (1− τ)] (firm B always gets zero

profit).

2. DB = 1 is associated with pB = α(1− τ) and pA ∈ [0, α (1− τ)− k] (firm A always gets zero

profit).

We conclude by considering the possibility of DA ∈ (0, 1) in regions III, IV, V and VI.

Lemma 3 Let k ∈ (α(1− 2τ), α(1− τ)), the reaction functions of firms A and B in regions III,

IV, V and VI with DA ∈ (0, 1), are given by

pB (pA) =


α (1− τ) + pA, if pA ≤ ατ

α(1−τ2)−kτ
1−τ + pA

(k−α(1−τ))
α(1−τ) , if pA > ατ

pA (pB) =


pB, if pB ≤ α(1−τ)(2α(1−τ)−k)

α(1−τ)−k

pB − α (1− τ) , if pB > α(1−τ)(2α(1−τ)−k)
α(1−τ)−k

These reaction functions intersect only once at pA = pB = αα(1−τ
2)−kτ

2α(1−τ)−k . Such a price pair is

compatible with the consumer partition DA = α(1−τ)
2α(1−τ)−k ∈ (12 , 1). However, we exclude this second-

stage price equilibrium because it locates in the boundary of the market coverage condition. Hence,

it is safe to assume that without the market coverage assumption this equilibrium would not exist.
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Figure 9: Price space for α(1 − 2τ) < k <

α(1− τ).
Figure 10: Price space for k < α(1− 2τ)

Figure 10 depicts the relevant price region for the case k ∈ (0, α(1− 2τ)). We divide this price

space in 6 regions that we analyze in turn.

In regions I and II, there is a unique consumer partition equilibrium: (DA = 0, DB = 1) and

(DA = 1, DB = 0), respectively. In these regions, no price equilibrium exists: in region I (II), firm

A (B) can profitably deviate by reducing its price pA (pB).

In regions III, IV, V and VI, all three consumer partitions DA = 1, DA = 0 and DA ∈ (0, 1)

are equilibria of the consumers’ choice. We proceed by first eliminating the consumer partitions

which are not compatible with a price equilibrium in these regions. In region III, DA = 1 can

never be part of the equilibrium of the full game because firm B can always reduce its price pB

and conquer a positive market share (going to region I). In contrast, for DB = 1, given any pB

belonging to region III, firm A cannot profitably deviate as also in region VI DA may be zero.

Therefore, in region III any price pair (pA, pB) such that pA ∈ III (that is pA ∈ [α (1− τ)− k, α])

and pB is α(1− τ) with DB = 1 is an equilibrium. In region IV, DB = 1 can never be part of the

equilibrium of the full game because firm A can always reduce its price pA and conquer a positive

market share (going to region II). In contrast, for DA = 1, given any pA belonging to region IV,
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firm B cannot profitably deviate as also in region VI DB may be zero. Therefore, in region IV

any price pair (pA, pB) such that pB ∈ IV (that is pB ∈ [α (1− τ) , α]) and pA is α(1− τ)− k with

DA = 1 is an equilibrium. Concerning region V, no price equilibrium can be associated with either

DA = 1 or DB = 1 because the firm with no consumers can always reduce its price and obtain

positive profit, (pA can decrease and reach region II or IV and similarly pB can decrease and reach

region III or I).

Concerning region VI, both DA = 1 and DA = 0 are compatible with a price equilibrium:

1. DA = 1 is associated with pA = α(1− τ)− k and pB ∈ [0, α (1− τ)] (firm B always gets zero

profit).

2. DB = 1 is associated with pB = α(1− τ) and pA ∈ [0, α (1− τ)− k] (firm A always gets zero

profit).

We conclude by considering the possibility of DA ∈ (0, 1) in regions III, IV, V and VI.

Lemma 4 Let k ∈ (0, α(1− 2τ)), the reaction functions of firms A and B in regions III, IV, V

and VI with DA ∈ (0, 1), are the same as in Lemma 3.

Proof. Follows the same reasoning as the proof for Lemma 3

6.4 Proof of Proposition 3

i 0 < 3α−k
3α

In this case, for values of τA, τB ∈ [0, 3α−k3α ), we have the corner (or the strong network effects)

solution in the price competition stage and profits are given by (11) and (12); and for values

of τA, τB ∈ (3α−k3α , 1] we have the interior solution in the price competition stage, with profits

(9) and (10). Let us consider first the revenue function of firm B. If τA ≤ 3α−k
3α , as long as

τB ≤ τA, firm B’s revenue is constant and equal to α(1−τA); for τA < τB < 3α−k
3α , its revenue
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is decreasing in τB and equal to α (1− τB); finally, for τB > 3α−k
3α , the revenue is convex in

τB. If τA >
3α−k
3α , then, the revenue of firm B is constant and equal to

(α(τA−1)+ 2
3
k)

2

k−2α(1−τA) , as long

as τB ≤ τA; and convex increasing otherwise. If τA = 1, then the revenue is constant and

equal to 4k
9 . Similarly, for firm A, when τB ≤ 3α−k

3α , its revenue is zero as long as τA ≤ 3α−k
3α ,

and positive and convex otherwise. When τB > 3α−k
3α , firm A’s revenue is constant and equal

to
(α(τB−1)+ 1

3
k)

2

k−2α(1−τB) , as long as τA ≤ τB; and convex increasing otherwise. When τB = 1, then

the revenue is constant and equal to k
9 .

If c = 0, The reaction functions are:

τB (τA) =



0 if τA ∈
[
0, 9α−4k9α

]
1,if τA ∈ [9α−4k9α , 1)

[0, 1] ,if τA = 1

, τA (τB) =


1,if τB ∈ [0, 1)

[0, 1] ,if τB = 1

There are multiple pure strategy Nash equilibria in the compatibility game, namely τA = 1

and τB ∈ [0, 1], and τB = 1 and τA ∈
[
9α−4k
9α , 1

]
. The overall compatibility degree is τ = 1.

This equilibrium respects the conditions (14)-(16) for the partition of the parameter space

in which it arises.30

If c ∈ (0, k
9
], we must consider three subsets of (0, k9 ].31 Let first c < 4k−9α

9 , then firm B

prefers τB = 1 to τB = 0, if τA ≤ 3α−k
3α ; otherwise, for τA > 3α−k

3α she prefers τB = 0 to

τB = 1, if
(α(τA−1)+ 2

3
k)

2

k−2α(1−τA) > 4k
9 − c. This inequality holds if and only if32

τA >
1

9α

(
−9c+ (9α− 2k) +

√
(k − 9c) (4k − 9c)

)
≡ τ̃ . (17)

30The market coverage condition is satisfied for k < 3α. When τ → 1, the RHS of condition (16)→ −∞. Therefore,

as pB is finite and positive, the condition always holds.
31We assume that the boundaries of these subsets are positive. In the case in which they are negative, only the

last subset is valid. Nevertheless, results are not affected.

32Define Φ (τA) =
(α(τA−1)+ 2

3
k)2

k−2α(1−τA)
−
(
4k
9
− c
)
. Φ (τA) has two real roots, τ+ and τ−. It is straightforward to see

that τ− < 0 < τ+ < 1. We denote τ+ = 1
9α

(
−9c+ (9α− 2k) +

√
(k − 9c) (4k − 9c)

)
≡ τ̃ . This is positive for

c < α(4k−9α)
9(k−2α)

.
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Likewise, firm A prefers τA = 1 to τA = 0, if τB ≤ 3α−k
3α ; otherwise, if τB > 3α−k

3α she prefers

τA = 0 to τA = 1, if and only if τB > τ̃ > 3α−k
3α . The reaction functions are, thus,

τB (τA) =


1 if τA ∈ [0, τ̃ ]

0,if τA ∈ [τ̃ , 1]

, τA (τB) =


1 if τB ∈ [0, τ̃ ]

0 if τB ∈ [τ̃ , 1]

.

Therefore, there are two asymmetric pure strategy Nash equilibria in the compatibility game,

namely, (τA, τB) = (1, 0) and (τA, τB) = (0, 1) . Moreover there exists a unique degree of

τi such that firms are indifferent between τi = 1 and τi = 0, that is τ̃ , defined by (17).

Now, let 4k−9α
9

< c < α
9

(
4k−9α
k−2α

)
. If τA < 3α−k

3α , firm B prefers τB = 0 to τB = 1, if

α (1− τA) > 4k
9 − c ⇐⇒ τA < 9α−4k+9c

9α < 3α−k
3α ; otherwise, for τA > 3α−k

3α , firm B prefers

τB = 0 to τB = 1, if τA > τ̃ . Firm A prefers τA = 1 to τA = 0, if τB ≤ 3α−k
3α ; otherwise, if

τB > 3α−k
3α she prefers τA = 0 to τA = 1, if and only if τB > τ̃ . The reaction functions are,

τB (τA) =



0 if τA ∈
[
0, 9α−4k+9c

9α

]
1 if τA ∈

[
9α−4k+9c

9α , τ̃
]

0 if τA ∈ [τ̃ , 1]

, τA (τB) =


1 if τB ∈ [0, τ̃ ]

0 if τB ∈ [τ̃ , 1]

.

Then there is a unique asymmetric pure strategy Nash equilibrium in the compatibility game,

namely, (τA, τB) = (1, 0) . Also the reaction function of firm B has two jumps: one upwards

at τA = 9α−4k+9c
9α , and one downwards at τA = τ̃ . Finally, let α

9

(
4k−9α
k−2α

)
< c < k

9
, in this

case, τ̃ < 0, and therefore the reaction functions become

τB (τA) =



0 if τA ∈
[
0, 9α−4k+9c

9α

]
1 if τA ∈

[
9α−4k+9c

9α , 3α−k3α

]
0 if τA ∈

[
3α−k
3α , 1

]
, τA (τB) =


1 if τB ∈

[
0, 3α−k3α

]
0 if τB ∈

[
3α−k
3α , 1

] .

Both firms choose zero compatibility for lower degrees of the rival’s choice, (3α−k3α < τ̃).

Then, there is a unique asymmetric pure strategy Nash equilibrium in the compatibility
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game, namely, (τA, τB) = (1, 0) . Also the reaction function of firm B has two jumps: one

upwards at τA = 9α−4k+9c
9α , and one downwards at τA = 3α−k

3α . Independently of the cost

subsets, the overall compatibility is τ = 1. Equilibria, then respect conditions (14)-(16).

If c ∈ [k
9
,∞), there is a unique symmetric pure strategy Nash equilibrium in the compati-

bility game, namely τA = 0 and τB = 0. Both for τA >
3α−k
3α and τA <

3α−k
3α , the best reply

of firm B is to choose τB = 0. The overall compatibility degree is τ = 0. This equilibrium

respects conditions (14)-(16).

ii For completeness we prove that for 3α−k
3α < 0 the equilibrium candidate computed is not com-

patible with the market coverage assumption. Remember that for 3α−k
3α ≤ 0, the unique

outcome of the price stage is the interior solution. As such, profits are given by (9) and

(10). The revenues are either constant in τi (when τi < τj) or convex in τi, (when τi > τj).

Consequently, the profit is maximized either at τi = 1 or τi = 0. Therefore overall compati-

bility is either τ = 0 or τ = 1. Checking the condition for market coverage (16) it is easy to

verify that it does not hold whenever k > 3α, given the second stage equilibrium prices and

demands, for the very weak network effects case as defined in Proposition 1.

6.5 Proof of Proposition 4

Consider the following relevant regions for the parameters:

i) 0 < 3α−k
3α . For this range of parameters, if in the strong and very strong network effects case we

focus on the corner solution such that all consumers buy good B, the social welfare (13) is

defined by:

SW (τ) =


1
2βB + α− cτ , τ ≤ 3α−k

3α

βB
1
2 −

11k3−(36(3−τ)(1−τ)α+9k(9τ−17))(1−τ)α2+18αk2(3τ−4)
18(k−2α+2ατ)2

− cτ , τ > 3α−k
3α

The maximum of SW (τ) occurs when τ = 0.
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Consider now the possibility that when k ∈ (0, α (1− τ)] or τ ∈ [0, α−kα ), the price equilibrium

selected in the second stage is such that all consumers buy good A.

ii) 0 < α−k
α < 2α−k

2α < 3α−k
3α . For this range of parameters, the social welfare (13) is defined by:

SW (τ) =



1
2βA + α− cτ , τ ≤ α−k

α

1
2βB + α− cτ , τ ∈ (α−kα , 3α−k3α ]

βB
1
2 −

11k3−(36(3−τ)(1−τ)α+9k(9τ−17))(1−τ)α2+18αk2(3τ−4)
18(k−2α+2ατ)2

− cτ , τ > 3α−k
3α

This SW function is not continuous: at τ = α−k
α , the left limit of the function is 1

2βA +

α − cα−kα and the right limit is 1
2βB + α − cα−kα . So, the SW function either attains its

maximum at τ = 0 or at τ = α−k
α . If c is high enough, namely c > αk

2(α−k) , the social welfare

is maximized at τ = 0, however, for lower values of c, the social planner would rather have

positive compatibility (τ = α−k
α ). To summarize, we have:

τ = 0, if c >
αk

2 (α− k)
, τ =

α− k
α

if c <
αk

2 (α− k)
.
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