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Abstract 

We present the new BALOO package for performing multireference variational/perturbative computations for 

medium- to large-size systems. To this end we have introduced a number of conceptual and technical 

improvements including full parallelization of the code, use and manipulation of a large panel of reference 

orbitals, implementation of diagrammatic perturbation treatment, computation of properties by density 

matrix perturbed to the first-order. A number of test cases are analyzed with special reference to electronic 

transitions and magnetic properties to show the versatility, effectiveness, and accuracy of BALOO. 
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Introduction 

The development of accurate yet effective methods for treating medium- to large-dimension 

systems involving large (static) correlation effects (hereafter broadly referred to as multi-reference 

systems) is still an important challenge of theoretical and computational chemistry. As a matter of 

fact, for molecular systems where a single reference description is a reasonable first approximation 

the coupled cluster singles-doubles with perturbative triples [CCSD(T)]
1
 approach is considered the 

golden standard of quantum chemistry, and actually delivers remarkably accurate results when 

coupled with sufficiently large basis sets.
2
 Ongoing attempts to improve the scaling of CCSD(T) 

with the number of active electrons together with developments of companion treatments (EOM-

CCSD, etc.) for excited states, dominated by single excitations from a single reference ground 

state,
3
 have great promise for these situations. At the same time, impressive advances of methods 

rooted in the density functional theory (DFT) and its time dependent extension (TD-DFT)
4
 are 

paving an alternative route for reliable descriptions of even larger systems. However the situation is 

different for true multi-reference cases, where the key to an accurate and conceptually satisfactory 

description is found behind the single-reference description, and taking into account the multi-

configuration character from the very beginning.
5-8

 

In nearly all cases, such electronic structure approaches can be divided in two steps. First, a 

qualitatively correct multi reference (MR) wave function is built, able to take into account the 

leading static correlation. This can be done in several ways, the conventional one resorting to a 

complete active space self-consistent field (CASSCF) wave function, in which a limited number of 

valence electrons is distributed in all possible ways over a set of valence orbitals. There are a 

number of advantage in this reference wave function, namely that it (i) can treat near-degeneracies, 

(ii) is a spin eigenfunction, and (iii) also provides a reasonable starting point when spin-orbit 

coupling becomes important.
9
 However, full CASSCF can become prohibitive for large numbers of 

active electrons and different strategies have been proposed in the literature that allow the use of 

incomplete reference spaces.
10

 

The MR wave function can be improved by perturbation theory (MR-PT),
11

 configuration 

interaction (MR-CI),
12-13

 and coupled-cluster (MR-CC) approaches.
14

 The best solution should be in 

principle offered by the MR-CC model, but, despite the quite large number of implementations 

proposed till now, a generally applicable method to tackle medium-size systems has not yet 

emerged. MR-CI has a long-standing tradition and is rather accurate, but is plagued by the problems 

of lack of size-consistency and high computational cost. MR-PT is by far the most applied strategy 

and the CASPT2 variant
15-16

 has become a very popular working horse of wave function based 

quantum chemistry. However, also this approach has its own limitations and we thought it 



4 

 

interesting to develop a general MR-PT engine, whose MR part is as flexible as possible and whose 

PT part is made as efficient as possible thanks to a mixing of technical and methodological 

improvements. Before proceeding, let us mention two quite recent approaches along related lines. 

The first one is the NEVPT2 model by Cimiraglia and Angeli,
17-18

 which has a number of appealing 

features, but still requires a full CASSCF reference wave-function. The second method is the 

SORCI approach by Neese
19-20

 where the whole electron space is divided into different subspaces, 

which are treated at different levels of approximation. Our Baloo code follows a philosophy quite 

similar to SORCI, but introduces a number of distinctive features including full parallelization of 

the most demanding computational steps, optimization of the integral transformation, effective 

diagrammatic perturbative treatment, and computation of properties by the one-body density matrix 

perturbed to the first order, just to mention a few. 

The paper is organized as follows. The next section contains a description of the main features of 

the new Baloo program following the logical steps of a full computation. Next we present a number 

of case studies with special reference to excitation energies and magnetic properties. Some 

conclusions and perspectives are provided in the last section.  
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Theoretical background and technical aspects 

 

Overview  

BALOO (“the sleepy brown bear” in The Jungle Book by R. Kipling) is a program written in 

FORTRAN 95 to perform extended variational Configuration Interaction (CI) supplemented by Multi 

Reference (MR) perturbative calculations. The BALOO code proceeds from the old CIPSI program
21

 

and its successive improvements.
22-23

 The original code has been totally rewritten in order to 

optimize its performances, simplify and generalize input data, exploit new possibilities offered by 

the FORTRAN 95 language and parallelize all the critical parts of the calculation. Broadly speaking, 

BALOO was devised to allow for high level and accurate calculations of a number of molecular 

properties like excitation energies and general one-electron observables for both ground and excited 

states. To this end, several new computational strategies have also been implemented within the 

code. 

A key feature of BALOO is the possibility of performing a sequence of CI calculations by gradually 

enlarging the configurational space according to some criteria usually based on MR perturbation 

theory (PT). This has the advantage of avoiding the a priori choice of the wave function restrictions 

expressed in terms of constraints on orbital occupancy, as instead necessary in CAS,
24

 RAS,
25-26

 

ORMAS
27

 and similar methods. Thus the extension of the many-electron basis set is completely 

automated and, as detailed below, it can be driven by the property of interest. One of the main 

features of BALOO is the MR diagrammatic perturbation firstly proposed by Cimiraglia,
28

 which has 

been proved to speed up dramatically the calculation and allows the user to consider perturbative 

spaces otherwise impractical. 

In the following, the definition of the key ingredients and the different steps possibly involved in a 

BALOO calculation are described in detail.  

 

One-electron Basis Sets 

The basic requirement for a BALOO calculation is a set of orthonormal molecular orbitals (MOs), 

which may come from any source like SCF, MC-SCF or even DFT calculations. Furthermore, the 

working MOs may also be the Natural Orbitals of a previous BALOO calculation or the MOs coming 

from a Quantum Chemistry calculation and subsequently manipulated by the “in house” software 

QUIOLA,
29

 which interfaces between the HF-like calculation and the four index transformation from 

atomic to molecular basis set. QUIOLA  is able to localize onto specific fragments, diagonalizing the 

virtual (or occupied) MO block in a given one electron potential and rearrange the sequence in order 

to facilitate the choice of the active MO space in the BALOO program (see below). 
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Four-index Transformations 

Once a set of MOs has been chosen, all the required one- and two-electron integrals are transformed 

from atomic to molecular basis set. This is performed by the IJKL program, originally included in 

the CIPSI package
21

 but largely modified in the current version. For non-canonical MOs, IJKL also 

computes a double occupation Fock like matrix to be used by BALOO for the evaluation of the 

Hamiltonian matrix elements in the many electron basis set. The program has been efficiently 

parallelized exploiting the large RAM currently equipping modern High Performance computers. 

This implementation makes this step practically insignificant in comparison with the total cost of 

the full calculation. 

 

Molecular Orbitals Partition and Configuration Definition  

As usual, the one-electron basis set is partitioned into three different classes: 

a) frozen MOs, i.e. orbitals that are doubly occupied in all configurations and not considered in four 

index transformation. BALOO only uses this set of MOs for the calculation of the required reduced 

density matrices in order to evaluate one-electron properties. 

c) active MOs. These orbitals may have any occupation number in the variational space and are also 

considered in the intermediate perturbative steps, used to enlarge the variational space. This space 

will be also named Perturbative Active Space (PAS) as the included MOs are used in the 

perturbative approach at every step. The MO space used to build the many-electron variational 

space will be called Variational Active Space (VAS) ad it is obviously a subspace of the PAS. 

b) inactive MOs, which are silent during the BALOO sequence except in the final step, in the case 

Complementary Space Perturbative Approach (CSPA) or diagrammatic calculations (vide infra) are 

performed. Therefore, inactive MOs are doubly occupied or empty in all BALOO steps and they are 

usually located at the beginning (doubly occupied) and/or at the end (empty) of the MO sequence. 

Notice that the MO active space can be increased along the CI+PT2 steps in order to prepare more 

and more accurate CI wave functions to be used for the final perturbative step. 

The many-electron space can be built with Configuration Spin Functions (CSF) as well as with 

Slater Determinants (SD). As is well known, the CSFs are eigenvalues of the Spin operators and 

thus give rise to a much smaller space than SDs. Yet, in the cases where states with different spin 

are to be computed, the use of SDs can still be computationally convenient (e.g. for the singlet-

triplet energy gap in diradicals).  As the term ‘configuration’ is used in a variety of contexts and 

sometimes with slightly different meanings, for the sake of clarity we define as Occupation Number 

Configurations (ONC) a sequence of occupation numbers 0,1,2 referred to spatial orbitals. For 
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instance in the case of LiH molecule an ONC might be (1σ)
2
(2σ)

0
(3σ)

1
(4σ)

1
. In the framework of 

CSFs, once the spin symmetry has been defined, each ONC can be used to generate a number of 

CSFs, obtained from a linear combination of the SDs that have the desired spin value along the 

quantization z axis. Conversely, if SDs are used as many-electron basis set, this a priori linear 

combination is not needed and the spin symmetry of the wave function is made through suitable a 

posteriori linear combination of those SDs arising from the same ONC. 

 

Storing Strategy and Matrix Element Evaluation 

To efficiently exploit computer memory and to reduce hard disk occupancy, BALOO does not 

necessarily store all two-electron integrals read from the IJKL output file, but only those really 

needed for the current type of calculation. For instance a CI calculation requires only those integrals 

with all indices in the VAS, whereas the subsequent MR perturbative calculation that uses CI states 

as zero-order wave function, requires the addition of two-electron integrals having two indices in 

the PAS-VAS space, i.e. in the MO space active for perturbative calculations but not used in the 

current CI calculation. Exploiting these strategies, the available memory on last-generation 

computational resources can routinely handle up to 400-500 MOs in the active space. 

The one- and two-electron matrix elements between CSFs (or SDs) are computed by implementing 

in an efficient way the formula tape method. The formulae are computed in symbolic way as needed 

and then stored once for all. At the same time each type of matrix element is encoded in a single 

binary number and all these numbers are arranged in increasing order, so that the searching 

procedure can be performed with the bisection method. By this algorithm, no more than twenty 

computer operations are sufficient to detect the right symbolic formula. The large memory 

requested for high excitation levels is not a serious problem, as when the memory devoted to the 

formula is filled, the program removes the stored data and resets the memory to store new formulae. 

The only limit in the many-electron basis set concerns the maximum excitation level, which in the 

present code has been fixed to 12, although there is no severe obstacle for further increasing. As 

discussed in more detail in the following, this and other new implementations make BALOO more 

than 100 times faster, than more conventional (e.g. the old CIPSI) codes, without exploiting 

parallelization. Finally, calculations can be performed on neutral closed shell molecules as well as 

on positive and negative ions.  
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Variational CI Step 

Once a variational space is assigned, an approximate time independent Schrödinger equation can be 

solved. This implies the solution of the CI eigenvalue problem projected in the variational space {𝑉} 

formed by the many-electron basis set 

 (0) (0) (0)

K K KPHP E    (1) 

where  
{ }V

i ii
P     is the projector operator in the given space { }V  formed by the Slater 

determinants or CSFs 
i  . Therefore the CI states are expressed as 

 
{ }

(0) (0)
V

K iK i

i

C    (2) 

Such eigenstates represent as the variational approximations of the true eigenstates and in view of 

the perturbative step, they will be also called zero-order states. Similarly, the variational 

eigenvalues are also called zero order energies. 

The evaluation of the lowest Hamiltonian eigensolutions is performed with the Davidson 

algorithm,
30

 using also some additional expedients in order to improve the convergence and to 

restart the calculation in possible critical cases, e.g. when multiple eigenvalue flips may occur. Both 

disk-based and direct methods are implemented, although the latter approach becomes mandatory 

for large CI matrices. This step has been completely parallelized with an overall efficiency of about 

80%. 

 

Perturbative Step 

The standard perturbative step (i.e. without exploiting diagrammatic techniques) following the 

variational CI calculation is a Rayleigh-Schrödinger first order perturbative correction of the zero-

order states 

 
(0){ }

(1)
'FOIS

K a

K a

a K a

H

 

 
  


  (3) 

and a simultaneous second order energy correction 

 (2) (0) (1)'K K KE H    (4) 

where Φ𝑎 is a perturber CSF belonging to the this First Order Interaction Space (FOIS), as 

determined by all the CSFs included in the variational space { }V . The energies in the denominator 

are eigenvalues of some unperturbed Hamiltonian 𝐻0, whereas the operator 𝐻′ is the perturbation 

Hamiltonian. Hence, the complete Hamiltonian is 
0 'H H H  . 
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Both Møller-Plesset (MP) and Epstein-Nesbet (EN) partition schemes are implemented, although 

the former gives in general better results and has the advantage that the zero-order Hamiltonian is a 

one-body operator. The MP unperturbed operator corresponds to the diagonal part of the Fock 

operator which in second quantization formalism may be written as 

 MP †

0 rr r r

r

H F a a  (5) 

where the a’s are the usual creator/annihilation operators and F is the Fock matrix arising from the 

HF wave function. This leads to the so-called barycentric approximation
21

 where the zero-order 

states are eigenfunctions of  
0

MPH  and  the unperturbed energy is 

 
{ } { }

2 2(0) MP (0) MP

0 0

V V

K K K iK i i iK i

i i

H C H C          (6) 

The barycentric approximation simplifies the problem, avoiding the solution of large-scale linear 

equation systems.
31-32

 In the Epstein-Nesbet partition, the unperturbed Hamiltonian is conveniently 

defined through a diagonal projected Hamiltonian  

 
{ } { }

(0) (0) (0) (0)

0

V FOIS
EN

K K K K p p p p

K p

H H H            (7) 

so that both the CI states and the CSFs belonging to the FOIS are eigenvectors of 
0

ENH . Although in 

the above equation the sum over K is formally on all the eigenvalues of the projected Hamiltonian, 

in practical cases the sum can be restricted to the computed zero-order states. With this choice, the 

MP and EN partition schemes only differ for the denominators, whose calculation is obviously 

heavier in the EN case. 

The perturbative FOIS space derives from the orbitals in the current active space, so that inactive 

orbitals are completely ignored in the perturbative calculation. This step allows for a selection of a 

given number of ONCs, which might be included in the variational space employed in a subsequent 

CI step. The selection can be performed by using different criteria, possibly depending on the 

property under investigation.
33

 The criteria can be second order energy contribution, contribution to 

the first order wave function, energy difference between a pair of states, and contribution to a given 

one-electron property. 

Despite the efficient parallelization, the perturbative step may be time consuming and the 

calculation can become quickly unfeasible even for molecules of moderate size when large active 

spaces are considered. The standard way to overcome this difficulty is to adopt an internal 

contraction scheme
34-35

 that drastically reduces the number of perturbers. Unfortunately, this 

scheme is only suitable for CAS wave functions and also creates additional complications due to the 

non-orthogonality of the perturbative states. For this reason BALOO adopts a different strategy, 
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allowing the user to impose some restrictions on the FOIS, depending on the property of interest. 

For instance, for the calculation of excitation energies of closed shell molecules, the perturbers with 

excitation level above 7 do not appreciably affect the results. Likewise the number of unpaired 

electrons in the perturbers may be limited to 8 or 10 without affecting the energy differences. These 

restrictions imply a very large saving in term of computational cost. 

A further strategy to save CPU time is the selection of a subspace in the variational space, which is 

able to represent on equal footing all the states considered, to be used as the generator space for the 

FOIS. This method was already implemented in the CIPSI perturbative algorithm
23

 and represents a 

very useful strategy mainly for large variational spaces, where the number of very small coefficients 

of the CI states is rather high. In practice the FOIS coincides with the perturbative space and is 

determined by the following formula  

  { } { '}FOIS S D V   (8) 

where �̂� and �̂� are the single and double substitution operators and { '}V  is the smallest subspace of 

the full variational space { }V  for which the norm of the projection of all the CI states in this space 

is higher than a given value 𝜏 . If 
SN  is the number of CI states then  

 
{ '}

2
(0) 1...

V

iK S

i

C K N    (9) 

where the C ’s  are the expansion coefficients of the CI states given in Eq (2). In other words if 𝑃′ 

is the projector into {𝑉′}, such subspace includes the minimum number of elements of { }V  for 

which the following equation is verified for all CI states 

 ' (0) ' (0)Ψ | Ψ      K KP P   (10) 

The same strategy can be used for the calculation of the Hamiltonian matrix elements between the 

unperturbed CI states and the perturbers, that is the basic quantity for the perturbative calculation. 

The subspace  {𝑉′}  is chosen in Eq. (9) so that the equation 

 'Ψ | '|Φ Ψ | '|ΦK a K aP H H  (11) 

is approximatively satisfied. It has been verified that in practical cases the value of 𝜏 indicates the 

accuracy of the perturbative energies, namely 𝜏 = 1 − 10−𝑛  implies an accuracy of about n 

significant digits. Therefore the reasonable choice of 𝑛 = 5 does not affect appreciably the quality 

of the energy result while decreases the CPU time by 10 or 20 times, depending on the calculation 

and on the number of CI states. Both these projections are controlled by suitable variables that can 

easily be defined in BALOO’s input. 
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CSPA Step 

The restriction of the active space can be removed in the CSPA step, which performs a perturbative 

calculation including excitations involving also the inactive orbitals. This is generally the last step 

of the calculation sequence and, depending on the dimension of the active and inactive spaces, may 

be rather time consuming. Similarly to previous steps, it has been parallelized to scale almost 

linearly with the number of processors. The only restriction to the number of CPUs is in the 

memory demand, as each thread needs to store the requested two electron integrals.  

 

Diagrammatic Perturbative Step 

A valid alternative to CSPA is offered by the diagrammatic perturbative step described in the 

following. According to the pioneering paper of Cimiraglia,
28

 the perturbative calculation can be 

performed using diagrammatic techniques, with large performance improvements. In the present 

version the improvement with respect to traditional perturbation are essentially due to a simpler way 

to incorporate two-electron integrals in the perturbative energy calculation, i.e. without the explicit 

use of CSFs or SDs. Differently from the original implementation, which considers separately the 

perturbative energy diagrams, in the present code all diagrams are automatically evaluated in 

symbolic form and collected in a number of terms. Similarly to the technique used for the 

Hamiltonian matrix elements, the diagrammatic terms are stored in memory once for all and 

retrieved when needed. Likewise the other steps and differently from the original proposal
28

, the 

diagrammatic step works both for CSFs and SDs. Moreover the same strategies described in the 

perturbative step and aimed to save CPU time without affecting the quality of the results, can be 

adopted also in this step. 

The current diagrammatic code is able to dramatically decrease the CPU time. As an example, on 

24 CPU processors Intel E5-2620 the calculation for Guanine with the 6-311G(d)+ basis set leading 

to 246 MOs (excluding core MOs) with a CI space of 45,000 CSF and 2.10
11

  perturbers, takes 210 

hours for the traditional perturbation complemented with CSPA and only 5.2 hours for the 

diagrammatic perturbation, i.e. a reduction of about 40 times. On the other hand, the diagrammatic 

perturbation can only be used for energy calculation and, as CSFs are never explicitly considered, it 

cannot conveniently be used for the selection of ONCs, necessary to efficiently enlarge the 

variational space. A further improvement (not considered in the above timings) comes from the 

extrapolation procedure already implemented in CIPSI
36

 which allows for further CPU time 

reduction, without appreciably affecting the accuracy of the results. 

Finally it should be noticed that the current diagrammatic implementation in BALOO works for the 

FOIS projected on the active orbitals as well as for the FOIS coming from the whole set of orbitals 
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(active+inactive). Thus the diagrammatic perturbative step can be equivalent to traditional 

perturbation plus the CSPA step.  

Both in diagrammatic, CSPA and standard perturbative steps the Quasi Degenerate Perturbation 

Theory (QDPT) based on an effective Hamiltonian is implemented in the barycentric MP partition. 

The model space is formed by the states selected in the CI step and the fluctuation potential 

perturbation is computed up the second order. Whereas in many cases QDPT does not improve 

appreciably the results, there are situations in which the non-diagonal perturbative couplings are 

strong and the results are rather different from those arising from non degenerate perturbation 

theory. A typical example is provided in Ref. 
37

 for the energy crossing between the neutral and 

ionic configurations in NaCl. 

 

Property Computation 

BALOO can compute a number of one-electron properties as well as a full excitation spectrum if 

many states of the same spin are requested in the calculation. This requires the evaluation of the 

one-body density matrices for both single-state and two-state transitions, which can be currently 

performed at two levels of approximation: zero order density matrices using the CI states and first 

order perturbed density matrices.
38

 Natural orbitals of a specific state or of a state-average can be 

next computed and written on disk to be possibly retrieved by the IJKL program for integral 

transformation, in order to repeat CI+PT calculation with an (hopefully) improved set of MOs.  

 

Protocol for Magnetic Interactions in Diradicals 

The BALOO software allows for CI calculations to be performed within the Difference Dedicate 

Configuration Interaction (DDCI) scheme,
39-40

 originally implemented by some of us in the original 

CIPSI code.
41-49

 Furthermore, in order to reliably investigate spin coupling in diradicals, an accurate 

yet feasible computational protocol within the DDCI scheme has been proposed in the last few 

years by our group
45-46

 and it is now implemented in BALOO.  All details can be found in the quoted 

references, whereas only a brief summary will be given in the following. i) A starting set of MOs is 

obtained at the SCF level for the target molecule in its triplet state by a ROHF calculation using a 

modified version of GAMESS;
50

 ii) the canonical SCF MOs are localized
44

 onto specific molecular 

moieties, and only the most relevant to the magnetic interaction are retained in the variational 

calculation; iii) a suitable one-electron operator is built in this space and diagonalized, in order to 

obtain new modified MOs able to improve the convergence of the DDCI calculation vs the number 

of virtual MOs;
44

 iv) the CSPA,
48

 based on a balanced combination of variational and perturbative 

calculations within the DDCI selection, is finally employed to yield accurate values for the singlet-
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triplet energy gap or for the J term of the Heisenberg-Dirac-Van Vleck model. This protocol has 

been successfully applied to diradical species, usually made by two “magnetic” fragments, each 

bearing one unpaired electron, bridged by an unsaturated organic moiety, polyene or aromatic. For 

such target molecules, the DDCI is built in terms of the minimal CAS(2,2) space associated with the 

two magnetic orbitals (one on each “magnetic” fragment) plus all the determinants arising from 

single and double excitations from the magnetic to the VO’s, and all the double excitations from the 

core orbitals involving only one core-to-virtual excitation (see also Figure 3 of ref.
51

 or Table 1 of 

ref.
46

). This type of calculations is usually performed using SD as this allows to include both singlet 

and triplet states in a unique calculation. However CSF could be used without increasing 

appreciably the total wall time.   

 

Protocol for Excited States 

The calculation of excited states and absorption spectra can be performed according to the route that 

in the past has been used with success
52-55

 with the CIPSI method.
56

 After obtaining a suitable MOs 

set, by an HF calculation using a modified version of GAMESS and after the integral transformation 

with IJKL is accomplished, we start the BALOO calculation with a modest variational space of 

singly excited ONC which is gradually enlarged by three of four CI+PT steps, until the calculation 

reach large but still feasible dimensions. The final fourth step includes a diagrammatic perturbative 

calculation followed by the calculation of the oscillator strengths. The selection of the ONCs to be 

used to enlarge the variational space is usually based on energy criteria. 

 

Spectral Line-shapes 

Due to the efficiency and speed of BALOO, we can afford with a reasonable computational cost, the 

calculation of the lineshape profile of the electronic absorption bands, exploiting the results of 

molecular dynamics. This can be performed by following a sequential approach, essentially 

consisting in applying the protocol for the excited state calculation described above to a set of 

snapshots randomly selected from a purposely-stored trajectory, in which the time evolution of the 

system is described by a force field. The final spectrum is then obtained by a simple average of the 

stick spectra (frequency and oscillator strength) obtained for every single snapshot. If each stick 

spectrum is separately convoluted with a Gaussian function, the abovementioned average also 

yields a spectral line shape that can be directly compared with the experiment. 

 

Results and Discussion 
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All geometry optimizations were performed using the GAUSSIAN09
57

 package by means of density 

functional theory (DFT). The employed combination of functional/basis set will be given in the 

following for each investigated case study.  

 

Absorption Spectra 

In this section the BALOO performances in the calculation of excited states and electronic absorption 

spectra will be discussed. We have considered two different test cases, namely azomethane and 

pyrimidine.  

 

Azomethane 

The program is first tested on azomethane in vacuo, because this system has been recently studied
58

 

by very accurate post-HF methods, thus representing a good benchmark for validating our results. 

Moreover experimental results are also available.
59-60

  

The first 15 excitation energies and oscillator strengths obtained for the planar optimized molecular 

geometry of ref.
58

 using the aug-cc-PVDZ basis set are reported in Table 1. The resulting absorption 

spectrum is shown in Figure 1. In the MRCI calculation we have taken all orbitals, except the 1s of 

carbon and nitrogen. After five CI+PT2 steps the final CI space includes 250,280 CSFs. The time 

needed for such calculation on a 32 processor (Xeon
®
 E5-2670 2.60 Ghz) workstation was roughly 

2.5 days.  

 

 

 

Figure 1: Computed (sticks and continuous line, black) and experimental59-60 (dashed line, red) spectra of azomethane. 

The lineshape profile is obtained by a convolution with a Gaussian function of FWHM=0.80 eV. 

 

In Figure 1 we can see a good agreement between experimental and theoretical predictions, which is 

confirmed by the values reported in Table 1.  
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 EOMEE-CCSD
58 

CC3
58 

exp59-60 BALOO  
Assign Vex Osc.Str. Vex Osc.Str.  Vex Osc.Str. Assign 

n+* 3.77 0 3.76 0 3.6 3.41 0 n+* 

n+R3s 6.27 0 6.20 0 5.5 5.88 0 n+R 

n+R3p 6.74 0.08 6.65 0.08  6.46 0.08 n+R 

n+R3p 6.94 0.14 6.90 0.15 6.8 6.67 0.14 n+R 

n+R3p 6.97 0.04 6.92 0.05  6.68 0.04  

n+R3d 7.49 0 7.42 0  6.99 0.01 n- 

n+R3d 7.64 0 7.58 0  7.12 0 n+R 

n+R3d 7.76 0 7.71 0  7.26 0 n+R 
n-* 7.60 0.01 7.30 0.01  7.38 0 n+* 

n+R3d 8.39 0 8.33 0  8.06   
n+R4p 8.40 0.05 8.38 0.13     
n+2* 8.68 0 8.62 0    

* 8.60 0.25 8.27 0.20 8.0 8.09 0.32 *
n+ R4p 8.97 <0.01 8.91 ?  8.83 0.01 n+R 

R3s 9.05 0.05 8.97 ? 8.7 8.92 0 R

* 9.10 0 8.92 0  9.31 0 R
 

Table 1: Vertical excitation (Vex) energies (eV) of azomethane by BALOO and compared with those of ref.58. The 

most intense excitations are reported in boldface. 

 

The difference in the vertical excitation energies of the most intense peaks is smaller than 0.2 eV. 

The maximum error is found for the band at 5.5 eV whose precise detection presents some 

experimental problems due to its very small intensity. The comparison between the present results 

and those of Ref.
58

 is globally good, although some differences are observed especially for the 

intense band centered at 8 eV which we found to be concentrated in a single electronic state 

whereas EOM-CCD and CC3 calculations predict a splitting in two bands. Moreover our excitation 

energy seems to be more accurate. 

 

Pyrimidine 

The computational feasibility of the BALOO protocol for excited states has been further tested by 

averaging the stick spectra computed for a large number of geometries issuing from molecular 

dynamics (MD) simulations. As a test case, we have exploited a recent MD simulation,
61

 performed 

for the pyrimidine molecule in gas phase at 298 K, using a force-field (FF) purposely parameterized 

for pyrimidine
61

 through the JOYCE
62-63

 procedure.  

One hundred frames (one every 50 ps) were extracted from the MD trajectory and each of them was 

used for a single CI-MRPT2 calculation. Finally, all the computed transition frequencies and 

oscillator strengths are convoluted with Gaussian functions and subsequently averaged into a unique 

band. The resulting broadening hence accounts, at a classical level, for the nuclear dynamics.  
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These calculations have been performed using the 6-311G(d) basis set so that, neglecting the 1s 

orbitals of Carbon and Nitrogen atoms, the MOs transformed from atomic to molecular basis and 

included in the construction of the CI space are 120, 15 doubly occupied and 105 empty. Each 

calculation of 25 eigenstates, which cover the VUV region up to 10 eV, with a final CI space of 

about 50,000 CSF, requires roughly 6 hours on a 16 processors (Xeon
®
 2.60 GHz) workstation, 

including the final perturbative diagrammatic second-order energy correction to the CI eigenvalues.  

The computed spectrum is reported in Figure 2 and compared with the recent high resolution 

measurements in the gas phase of ref.
64

 In agreement with the conclusions of refs.
61, 65

, four bands 

appear at energies below the most intense * transition (at ~8 eV), which can be assigned as 

reported in Table 2. Above the * band the last absorption below 10 eV is characterized by a 

series of n* transitions with small oscillator strengths. 

The comparison between experimental and computational results displayed Figure 2 shows a good 

agreement in the position of the bands, including the shoulder at 5.9 eV (see inset), although for the 

strongest * band (that observed at 7.5 eV) the shift is larger (0.3 eV). The discrepancy found 

for the band at 7.5 eV, as well as those found in width and intensity of the bands, are probably due, 

as discussed in References [
61, 65

], to the lack of quantum vibronic effects, which are smeared out at 

least partially in solution, where molecular dynamics appears to be able of simulating the effects on 

the bandwidth of solute-solvent interactions.
65

  

 

 

 

Figure 2: Computed and experimental64 spectra of pyrimidine. The lineshape profile is obtained by a convolution of 

each line of the 100 spectra with a Gaussian function of FWHM=0.2 eV. 
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Assign Exp.60 BALOO 

n* 4.2 4.1 

* 5.2 5.2 

n* 5.9 5.9 

* 6.7 6.9 

* 7.5 7.8 
Table 2: Bands head energies (eV) of pyrimidine as obtained by the average of BALOO computations on 100 MD 

snapshots. 

 

Test on intensive properties (weak separability) 

It is well known that despite the Rayleigh-Schrödinger perturbative method can give extensive 

energies, for multi-reference wave functions as unperturbed states, the size consistency of the 

perturbative energies are generally not obtained. Moreover, if the system is composed by two non 

interacting sub systems, multiplicative separability of the wave function is not guaranteed, although 

no a priori truncation is imposed on the variational space. Even in the case the variational wave 

functions satisfy the multiplicative separability, small deviations from additive energies may be 

observed. Such defects propagate also on the intensive properties of the monomers as the excitation 

energies (weak separability). However we may reasonably expect that the deviations from intensive 

and extensive scaling properties are less and less relevant with the increasing of the variational 

space. This because the projected CI wave functions resemble more and more the full CI ones and 

the subsequent perturbative treatment should further improve the scaling properties.  

To verify the error on the weak separability requirement, we have performed a number of 

calculations on a non-interacting dimer composed by NH3 and CH3OH. The excitation energies of 

the former with and without the methanol molecule have been computed according to the standard 

protocol of BALOO for the calculation of excitation spectra, carried out with the 6-31G* basis set. In 

the post HF calculations, all the 1s orbitals have been frozen. In both calculations, using the CIS 

space as starting CI space, the variational space is gradually enlarged in three steps by a given factor 

referred to the number of ONCs.  The final number of CSF is 239,790 for NH3 and 212,011 for the 

dimer. For ammonia, the CI-MRPT2 calculation of the excitation energies gives practically the full 

CI result, as they do not change from the two last steps and the MP and EN excitation energies are 

identical. Therefore these values can be used as a reference for the calculations on the dimer. The 

results are displayed in Table 3. 

It is apparent that as the variational space increases, the excitation energies of the ammonia in the 

dimer approach monotonically to the exact values. However, the convergence is not so quick, and in 

the best calculation the MR perturbative results agree with the reference values within 0.05 eV. The 

data reported confirm that the intensive properties can be computed with acceptable accuracy only 
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in the case of large variational spaces, for which deviations of the wave function from the 

multiplicative separability requirement is small enough.  

 

Ammonia spectrum (isolated system) 8.18 10.53 14.10 

Ammonia-Methanol  17,300  8.33 10.70 14.25 

Ammonia-Methanol  51,486 8.32 10.68 14.23 

Ammonia-Methanol  83,476 8.27 10.63 14.18 

Ammonia-Methanol  130,026 8.26 10.60 14.17 

Ammonia-Methanol  212,011 8.23 10.58 14.15 

 

Table 3.  Comparison of the excitation energies of ammonia with and without a non interacting methanol molecule, as 

computed by the BALOO program. The excitation energies (eV) of the isolated ammonia are displayed in the first row. 

The remaining rows report the excitation energies of ammonia in the dimer at CI+Pert level, for gradually enlarged 

variational spaces. The number in the first column is the number of CSF in the variational space, which provides the 

zero order states for the subsequent perturbative calculation. 

 

 

Molecular Magnets  

One of the major strengths of the BALOO code stands in the possibility of accurately computing 

critical observables (e.g. magnetic couplings) with an affordable computational cost. This can be 

done thanks to the implementation of specific protocols, namely DDCI and CSPA. Two different 

tests have been devised to illustrate the accuracy and feasibility of BALOO computations. First, the 

accuracy in predicting singlet-triplet energy gaps, will be tested on different homologues of benzyne 

diradicals, a popular benchmark
66-69 

for this kind of calculations. Next, the possibility of performing 

calculations on large molecules containing metal centers will be validated on transition metal-based 

molecular magnets.  

 

Benzynes 

All three isomeric benzyne diradicals, i.e. o-, m- and p-benzyne (see Figure 3), have been the object 

of several studies in the last years, by both theoretical
66-82

 and experimental,
83-88

 points of view due 

to important applications in synthesis, and remarkable role in the action of anti-tumoral compounds, 

together with the computational challenges connected to their peculiar structure. Among others, the 

singlet-triplet splitting ΔETS of such compounds have become a reference value for benchmarking 
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high-level multi-reference methods.
66-68

 Furthermore, reliable experimental estimates
85

 of ΔETS 

have been reported, and can also be employed in testing the accuracy of the results.  

 

 

Figure 3: Geometries were taken from Ref.67, where the internal coordinates for o- and m-benzyne were obtained 

through RHF-CCSD(T) and UHF-CCSD(T) optimizations for singlet (a and c panels) and triplet states (b and d panels), 

respectively, whereas the singlet (e panel) and triplet (f panel) states of p-benzyne were optimized using broken 

symmetry orbitals and cc-pVDZ/UHF-CCSD(T) wave functions.  

 

A detailed discussion on m-benzyne singlet and triplet state’s equilibrium geometries has been 

recently reported in Ref.s
81-82

. However, for a reliable comparison with the reference theoretical 

data reported in Ref.
67

 for all the benzyne homologues, molecular geometries were taken from 

there, where all the details concerning the optimization procedure and the numerical values of the 

optimized coordinates can be found. The employed molecular geometries for all the considered 

systems are displayed in Figure 3 for both spin states. Even from a preliminary visual inspection, it 

appears that the investigated diradicals, especially o- and m- isomers, have rather different 

equilibrium geometry in the singlet (GS) and triplet (GT) states. 

Three different computational routes were devised to estimate the effect of such geometry 

distortions on ΔETS (see Table 4). The first route (DDCI/V) corresponds to the standard “vertical” 

approach, successfully employed for many organic diradicals,
41-49

 where the geometry distortions 
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are ignored and a DDCI calculation for both the triplet and singlet states, is here carried out at the 

equilibrium geometry GS of the singlet (taken from Ref.
67

), which is the ground state of all the three 

isomers. On the contrary, the second protocol (DDCI/A) corresponds to the adiabatic approximation 

as it takes into account the geometry distortion: the singlet and triplet energies are computed at 

DDCI level separately for GS and GT, respectively, and ΔETS is computed as the difference of the 

two resulting values. Following route (DDCI+PT2/A) we can further refine the DDCI/A result, by 

adding a perturbative step to the DDCI states as obtained in step DDCI/A, thus increasing the 

accuracy of the computed energies. 

The resulting energy gaps, obtained through the different computational routes, are reported in 

Table 5, together with the most accurate values available in the literature.
66-68

 As far as the most 

accurate route DDCI+PT2/A is concerned, it appears that the magnetic gaps are well reproduced for 

all three homologues, the computed value being in excellent agreement with both experimental 

measures
85

 and high-level computational results.
66-68

  Incidentally, it is noteworthy that the 

computed ΔETS for p-benzyne of 5.3 kcal/mol, confirms the sqic-MRCCSD estimate (5.2 kcal/mol), 

hence giving further support to the hypothesis of an alternative experimental assignment of 5.5 

kcal/mol.
67

 For the DDCI/A results only slightly different values were obtained for all three isomers 

with respect to the experimental values, being in some cases (e.g. m-benzyne) even in quantitative 

agreement.  

 

SCF calculations  

Singlet Triplet 

Orbitals computed at ROHF/6-311G* level for 

the triplet, at the singlet geometry, GS. 

Orbitals computed at ROHF/6-311G* level, at the 

triplet geometry, GT. 

 

BALOO calculations 

DDCI/V DDCI/A DDCI+PT2/A 

ΔETS = [ET-ES]@GS ΔETS = [ET ]@GT - [ES]@GS ΔETS = [ET + dET
PT2

]@GT - 

[ES+dES
PT2

] @GS 

Table 4: Computational routes employed for the calculations of the magnetic splitting ΔETS in benzyne homologues. 

 

By looking at the average computational times needed for each computational route, reported in 

Table 6, it is evident that the DDCI/A route should be followed, at least for m- and o- benzynes. On 

the contrary, since the difference between GS and GT p-benzyne geometries is very small, route 

DDCI/V already gives a very reasonable estimate of ΔETS. Hence, when dealing with larger 
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homologues, computational convenience suggests that the standard route DDCI/V could be used for 

p-benzyne, although also the DDCI/A route could remain feasible. 

 

Method Ref. p-benzyne m-benzyne o-benzyne 

 

Literature 

 

REKS/6-31G(d) 
66

 4.1 21.6 36.5 

MkCCSD 
67

 4.5 18.7 35.1 

sqic-MRCCSD/cbs+zpe 
68

 5.2 - - 

 

BALOO 

 

DDCI/V this work 5.1 33.4 50.6 

DDCI/A this work 4.8 21.1 39.2 

DDCI+PT2/A this work 5.3 19.7 36.9 

 

Experimental 

 

exp 
85

 3.8 (5.5?) 21.0 37.5 

 

Table 5: Singlet triplet energy gaps ΔETS for benzyne homologues. All values are in kcal/mol. 

 

 

 

Route Time 

DDCI/V 2 hours 

DDCI/A 4 hours 

DDCI+PT2/A 5 days 

Table 6: Computer times employed for the ΔETS calculations according to the different routes. 

 

Metallic biradical 

As an example of metallic diradical, we have considered the Bis(-azido)tetrakis(4-tert-

butylpyridine)dicopper(II) dication, prepared and studied in 1983 by Khan and coworkers
85, 89

 (Fig. 

4). The species was found ferromagnetic (triplet ground state) with a value of J=105±20 cm
-1

. 

All the calculations have been performed using the 10-electron ECP of Hay and Wadt
90-92 

for 

Copper with its DZ basis and the 6-311G basis set for the remaining atoms. The geometry has been 

fully optimized for the lowest triplet state at DFT/B3LYP level. For purposes of comparison, some 

key bond distances and angles are reported in Tab. 7. 
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Distances (Å) and Angles (deg) Optimized Experimental
82,83

  

RCu-Cu 3.13 3.04 

RCu-N1 = RCu-N2 2.01 1.99 

RN1-N2 2.52 2.53 

N1-Cu-N2 77.6 79.5 

Cu-N1-Cu = Cu-N2-Cu 102.4 100.5 

ES-ET (cm
-1

) 130.1 105±20 

Table 7: Selected distance and angles for Bis(μ-azido)tetrakis(4-tert-butylpyridine)dicopper(II) dication. In the last row 

the comparison of the experimental and computed value of the singlet-triplet energy gap is also reported. The ground 

state is the triplet state. 

 

The two MOs bearing an unpaired electron are the symmetric and antisymmetric combination of Cu 

in plane d orbitals with a little contribution of p orbitals of the bridging N and of the pyridine N. 

Fragmentation-localization is used to only retain the MOs on the Cu(N3)2Cu part of the whole 

cation (delimited by red lines in Figure 4). 

 

 

Figure 4: The Cu-based dication diradical. The red lines indicate the fragmentation made in the calculation 

 

The resulting orbital space used for the DDCI-CSPA calculation is then made by 32 double 

occupied, 2 singly occupied (magnetic) and 65 empty MOs. Taking all the occupied and 50 of the 

65 empty orbitals for the variational part of the calculation (dimension of the CI matrix of 775.209 

Slater determinants), we obtain a triplet ground state and a value of ES-ET =130.1 cm
-1

. The full 

variational calculation (all 65 empty MOs and dimension of the CI matrix of 1,228,681) gives 

exactly the same value, in very good agreement with the experimental data of 105±20 cm
-1

.  
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Conclusions 
 

The present study is the first systematic assessment of BALOO performances for different problems 

involving significant static and dynamic correlation at the same time. In our opinion, the presented 

test cases show that, thanks to a number of conceptual and technical developments, BALOO is a fast, 

robust and versatile code for accurate multi-reference computations. This result has been obtained 

through full parallelization of the code, optimization of the integral transformation, implementation 

of the diagrammatic version of perturbation theory, flexible manipulation (localization, 

fragmentation, etc.) of orbitals, effective computation of properties using the density matrix 

perturbed to the first order, extension of the DDCI concept to different properties including more 

effective orbital selection. 

Despite these strong features, some weak points remain, which call for further analysis. First of all, 

we recall that, even in the case the reference wave functions satisfy the multiplicative separability 

requirement, the correlation energy provided by the present perturbation step is not size consistent. 

Several test studies have shown that this issue is usually not too serious and can be taken under 

control by empirical recipes like the generalized Davidson correction
93

. However, a more general 

solution of this problem would be welcome, for instance replacing the linear CI model by a non-

linear (nearly) size-consistent modification. The second weakness of the model is that it is not 

completely a ‘black-box’ procedure because it requires the choice of a suitable reference space. 

Although this choice is, in a sense, automatically improved by the iterative extension of the 

reference space, it remains true that some intervention by the user is required. We consider this 

aspect a strength of the method since the choice can be based on chemical intuition and/or previous 

experience, thus being intrinsically connected with the (sought for) large flexibility of the approach. 

Third, the method does not lead in principle to microscopically smooth potential energy surfaces 

due to the truncation procedures employed. However, continuity can be enforced by means of 

techniques based, for instance, on overlap between the wave functions of neighbouring points. 

Additional work must be performed, in our opinion, in this direction. Fourth, the selection of active 

orbitals and target excited states has sometimes troubles for large basis sets including diffuse 

functions. Also here further analysis is needed, but some preliminary results show that approaches 

based on population analysis, shape of the orbitals, and energy shifts can be profitably used. 

In any case the overall performance of Baloo for the calculation of excitation energies and magnetic 

properties is already satisfactory, and this is encouraging for the further developments of the 

method that are presently under investigation. 
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As a final remark, we should point out that other methods, such as those based on the density matrix 

renormalization group (DMRG),
94-96

 are currently under development, with the aim of investigating 

large molecular systems by multireference calculations.  
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