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Nomenclature

A = state matrix, see Eq. (43)
b = reference length, see Eq. (11)
f = distance of dx from (xB , yB) plane, m
F = thrust vector, with ||F || , F , N
Fx, Fy, Fz = components of F in TI , N
g = auxiliary function, see Eqs. (49)
h = dimensionless parameter, see Eq. (41)
It, Iz = transverse and longitudinal moments of inertia, kg m2

î, ĵ, k̂ = unit vectors of TB
îI , ĵI , k̂I = unit vectors of TI
k = gain

kx, ky, kz = components of k̂ in TI
L = tether length, m
M = shape coefficient, see Eq. (6)
m = spacecraft mass, kg
mp = proton mass, kg
n = solar wind number density, m−3

N = number of tethers
P = shape coefficient, see Eq. (5)
q1, q2 = state variables, see Appendix
r̂ = sun-spacecraft unit vector
r = sun-spacecraft distance, m
S = spacecraft center-of-mass
T = torque vector, N m
t = time, s
u = solar wind speed, m/s
V = Lyapunov function, see Eq. (51)
V = tether electric potential, V
Vw = solar wind electric potential, V
x = curvilinear abscissa, m
x = dimensionless state vector, see Eq. (43)
xB , yB , zB = axes of TB
xI , yI , zI = axes of TI
αn = pitch angle, rad
δn = clock angle, rad
ε0 = vacuum permittivity, F/m
ζ = damping factor
θ, φ, ψ = Euler’s angles, rad
λ = Smelt’s parameter
µ� = sun’s gravitational parameter, m3/s2

ν = dimensionless radial error
ρ = tether linear mass density, kg/m
σ = design parameter, see Eq. (4), kg/m/s
τ = tether tension force, N
TB = body reference frame
TI = inertial reference frame
Ω = spacecraft angular velocity vector, rad/s
ωn = natural frequency, rad/s
Ωx, Ωy, ω = components of spacecraft angular velocity in TB , rad/s
Subscripts

d = derivative
max = maximum
min = minimum
p = proportional
t = tip
0 = initial
⊕ = at 1 au from the sun
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Superscripts

′ = derivative with respect to x
· = time derivative
− = nominal
∼ = dimensionless

Introduction
High-energy missions or complex spacecraft trajectories that would be very difficult (or even impossible) to obtain with

conventional thrusters, may become feasible with the use of a propellantless propulsion system, such as a solar sail or an
Electric Solar Wind Sail (E-sail) [1, 2]. In particular, the latter generates thrust by exchanging momentum with solar wind
particles [1]. The incoming ions from the sun interact with an artificial electric field produced by means of long charged tethers,
which are kept at a high voltage level, on the order of few tens of kilovolts [3]. The spacecraft is spun around a symmetry axis
to deploy the tethers and maintain them stretched, so as to resemble, in an ideal case, a rigid disc [4, 5].
The use of a propellantless system that provides a continuous thrust, capable of being modulated within some limits, is a
fundamental requirement for tracking non-Keplerian orbits [6–9], generating artificial Lagrange points [10,11], or maintaining a
heliostationary condition [12–14]. In the latter case, the spacecraft is first required to reach a point in the interplanetary space
with zero absolute velocity [12,14], and then to exploit its propulsive acceleration for balancing the solar gravitational attraction
and maintaining such a still condition relative to an inertial (heliocentric) reference frame. Possible scientific missions for a
heliostationary spacecraft [13] include the sun’s observation, the monitoring for near-Earth objects, or the release of a small
solar probe along a rectilinear trajectory [15, 16]. Since a heliostationary condition requires a high-performance propulsion
system, which is beyond the current technology level for both solar sails [17] and E-sails [4], such an advanced mission scenario
can be considered as a technological challenge for a propellantless thruster [18].

The problem of maintaining a heliostationary position is especially involved, from a control point of view, for an E-sail-
based spacecraft whose propulsive acceleration magnitude varies as the inverse spacecraft distance from the sun. Indeed, in
that case the heliostationary condition is known to be unstable [19] and, therefore, a small error in the orbit insertion (that
is, in the sun-spacecraft distance) causes the spacecraft to move away from the desired reference position. The aim of this
Note is to study a feedback control system that is able to stabilize the dynamics of a spinning E-sail-based spacecraft around
a heliostationary position at a distance of about one astronomical unit from the sun. The analysis is made with a recent
mathematical model [20,21], which allows the actual tether shape to be accurately described and the thrust and torque vectors
to be written in a compact, analytical, form. In this context, the spacecraft attitude motion is investigated, and the effects of
a propulsive torque on the rotational stability are discussed with the aid of a linearized approach.

The Note is organized as follows. The next section extends the results of Ref. [21] by means of closed-form expressions for
thrust and torque vectors of a spinning, axisymmetric, E-sail in presence of a small pitch angle (case of near sun-facing E-sail).
These equations are then used to analyze the linearized dynamics and control of an E-sail-based spacecraft in a heliostationary
position at a sun-spacecraft distance of one astronomical unit. Finally, the last section contains some concluding remarks.

Mathematical Preliminaries
Consider a spacecraft whose primary propulsion system is an E-sail, and assume the vehicle to be modelled as an axially-

symmetric body spinning around its symmetry axis. Introduce a principal body reference frame TB(S; xB , yB , zB), with unit

vectors {̂i, ĵ, k̂}, whose origin coincides with the vehicle center-of-mass S, zB is aligned with the spacecraft symmetry axis,
and (xB , yB) plane coincides with the E-sail nominal plane, see Fig. 1(a).

Using a simplified geometric model to predict the thrust performance [21–23], the E-sail consists of N > 2 tethers, uniformly
distributed about the zB-axis. All tethers are maintained at the same electric voltage V , and have the same two-dimensional
shape, which is described through a given differentiable function f = f(x), where x is orthogonal to zB , and (x, zB) defines the
plane where the generic tether lies, see Fig. 1(b). The assumption of axial symmetry is consistent with the simulation results
obtained for an E-sail shape when its sun-spacecraft line is nearly aligned with the zB-axis, that is, for a sun-facing E-sail.
Note that, according to this simplified model, the tether root belongs to the zB-axis, whereas in the actual E-sail arrangement
all tethers are tied to the outer part of the spacecraft main body [4]. The length L of the generic tether may be written as a
function of f as

L =

∫ xt

0

√
1 + (f ′)2 dx (1)

where f ′ = f ′(x) , df/dx is the local tether slope, and xt is the distance of the tether tip from the spacecraft symmetry axis
zB , see Fig. 1(b).

Thrust and Torque Vector Model

Using the general mathematical model discussed in Ref. [21], both the thrust (F ) and torque (T ) vectors acting on an
axially-symmetric E-sail of given shape may be expressed in an analytical form as a function of f . In fact, assuming a distance
r from the sun of about r⊕ , 1 au, the vectors F and T become [21]

F =
1

2
N Lσ u

[
(2− P) r̂ + (3P − 2)

(
r̂ · k̂

)
k̂
]

(2)

T =
1

2
MN L2 σ u

(
k̂ × r̂

)
(3)

where r̂ is the sun-spacecraft unit vector, u is the solar wind speed (with a typical value of about 400 km/s when r ' r⊕), and
σ is a design parameter [4, 22,23] defined as

σ = σ⊕
(r⊕
r

)
with σ⊕ , 0.18 max(0, V − Vw)

√
ε0mp n⊕ (4)
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Figure 1 E-sail geometric arrangement. a) Reference frame. b) Generic tether shape. Adapted from Ref. [21].

in which Vw is the electric potential of the solar wind ions (with a typical value of about 1 kV [4] ), ε0 is the vacuum permittivity,
mp is the proton mass, and n⊕ = 5 × 106 m−3 is the solar wind number density at r ' r⊕. Note that the value of σ⊕ can
be varied, within some limits, by changing the tether electric voltage V [4, 22, 23]. For example, assuming V = 20 kV [2], the
value of the design parameter is σ⊕ ' 9.3 × 10−13 kg/m/s. In Eqs. (2)-(3), P ∈ [0, 1] and M ∈ [0, 1] are two dimensionless
coefficients related to the tether shape f through the equations

P ,
1

L

∫ xt

0

dx√
1 + (f ′)2

(5)

M ,
1

L2

∫ xt

0

f
[
1 + 2 (f ′)2

]
+ x f ′√

1 + (f ′)2
dx (6)

where L is given by Eq. (1).
In the special case of a flat shape, that is, when {f, f ′} = 0 and all tethers belong to the same (xB , yB) plane, Eqs. (1) and

(5)-(6) give L = xt, P = 1, and M = 0. In that case, the torque is zero independent of the E-sail attitude, whereas Eq. (2)
reduces to [20]

F =
1

2
N Lσ u

[
r̂ +

(
r̂ · k̂

)
k̂
]

(7)

whose magnitude is

‖F ‖ =
1

2
N Lσ u

√
1 + 3

(
r̂ · k̂

)2
(8)

which depends on the sun-spacecraft distance r through the parameter σ defined in Eq. (4).

Case of Logarithmic Tether Shape

The flat shape may be seen as the first order approximation of the actual shape of a spinning E-sail when its spin axis
coincides with the symmetry axis, and the sun-spacecraft line is nearly aligned with the zB-axis. Actually, each tether inflects
due to the interactions with the solar wind, as is confirmed by numerical simulations by Toivanen and Janhunen [23]. In
particular, when the E-sail spin rate ω is sufficiently high, that is

ω > ωmin with ωmin ,

√
5σ u

ρxt
(9)
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where ρ is the tether linear mass density, the equilibrium shape of the generic tether is accurately approximated by a natural
logarithmic arc in the form [21]

f(x) = b ln

(
1 +

x

xt

)
with x ∈ [0, xt] (10)

where b is a reference length, defined as

b ,
2σ u

ρω2
(11)

However, the spin rate cannot exceed a maximum value ωmax related to the tether yield strength τmax, that is [21]

ω < ωmax with ωmax ,

√
2 τmax

ρ x2t
(12)

Using a µm-diameter aluminum tether [24] with ρ ' 10−5 kg/m and τmax = 0.1275 N, the allowable pairs {ω, xt} are shown
in Fig. 2 when xt ∈ [1, 10] km. For example, assuming a reference spin rate of ω = 10 revolutions per hour (rph, with
1 rph ' 1.7453 × 10−3 rad/s), Fig. 2 shows that the maximum value of xt is about 9 km. In that case, Fig. 3 shows the
variation of {L,P,M} with xt ∈ [1, 9] km according to Eqs. (1) and (5)-(6).
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Figure 2 Allowable spin rates as a function of xt for a µm-diameter aluminum tether [24].

The results of Fig. 3 and, in particular, the functionM =M(xt) may also be obtained in an analytical (albeit approximate)
form. In fact, the condition ω > ωmin, with ω taken from Eq. (11) and ωmin from Eq. (9), implies b/xt < 0.4. Observing that

f ′ =
b

xt + x
≤ b

xt
(13)

the contribution of (f ′)2 in Eqs. (1) and (5)-(6) may be neglected, and the result is

L ' xt , P ' 1 , M' b ln (2)

xt
(14)

in accordance with the graphs of Fig. 3. Substituting now Eqs. (14) into Eqs. (2)-(3), the approximate expression of the thrust
vector reduces to Eq. (7) (with the magnitude given by Eq. (8)), whereas the torque vector becomes

T ' ln (2)

2
bN Lσ u (k̂ × r̂) (15)

Equations (7) and (15) are useful for analyzing the perturbed dynamics of an E-sail-based spacecraft in a heliostationary
condition, as is discussed in the next section.

Heliostationary E-sail Linearized Dynamics
Consider an E-sail-based spacecraft in a heliostationary position at a distance r = r⊕ from the sun. In this reference

(equilibrium) condition, the spacecraft inertial velocity is zero, the thrust vector direction coincides with the sun-spacecraft

line (that is, k̂ ≡ r̂) and the propulsive acceleration magnitude balances the (local) sun’s gravitational acceleration. According
to Eqs. (7)-(8) and (15), and bearing in mind Eq. (4), the reference condition is therefore described by

T = 0 ,
‖F ‖
m

=
N Lσ⊕ u

m
≡ µ�
r2⊕

(16)

where m is the (constant) total spacecraft mass, and µ� is the sun’s gravitational parameter.
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Figure 3 Variation of {L,P,M} with xt when ω = 10 rph.

Spacecraft Position Stability and Control

According to Ref. [19], the heliostationary condition is unstable. In fact, from Eqs. (4), (8) and (16), the propulsive
acceleration in the neighbourhood of the reference position is

‖F ‖
m

=
N Lσ⊕ u

m

(r⊕
r

)
=
µ�
r2⊕

(r⊕
r

)
(17)

and the spacecraft equation of motion is therefore

r̈ = −µ�
r2

+
‖F ‖
m

=
µ�
r2⊕

[
r⊕
r
−
(r⊕
r

)2]
(18)

whose linearization gives [19]

ν̈ − µ�
r3⊕

ν = 0 (19)

where ν , (r/r⊕− 1) is the dimensionless error in radial (i.e., sun-spacecraft) distance. Accordingly, a control system must be
implemented to make the heliostationary condition stable. A simple solution is to change the tether electric voltage V (and
so, the value of σ⊕) as a function of the sun-spacecraft distance. The voltage is therefore conveniently adjusted so as to induce
a variation of the propulsive acceleration in the form of a proportional control law, that is

‖F ‖
m

=
µ�
r2⊕

(r⊕
r

)
(1− kp ν) (20)

where kp is a constant dimensionless parameter. Since the propulsive acceleration magnitude ‖F ‖/m is proportional to the
tether voltage V , see Eqs. (4) and (8), the maximum percentage variation of V is

∆Vmax

V
= kp (νmax − νmin) (21)

where νmax (or νmin) is the maximum (or minimum) value of ν, while V is the nominal value of the tether voltage. Substituting
Eq. (20) into (18), the linearized spacecraft dynamics in the neighbourhood of the reference position becomes

ν̈ +
µ�
r3⊕

(kp − 1) ν = 0 (22)
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which describes a harmonic motion when kp > 1, that is

ν(t) = ν0 cos(ωn t) +
ν̇0
ωn

sin(ωn t) (23)

where ωn ,
√
µ� (kp − 1)/r3⊕ is the natural frequency, and {ν0, ν̇0} are the initial conditions. Note that the oscillation period,

given by 2π/ωn, is less (greater) than 1 year if kp > 2 (1 < kp < 2), while ωn =
√
µ�/r3⊕ when kp = 2. In the special case

when ν̇0 = 0, Eqs. (21) and (23) give ∆Vmax/V = 2 kp ν0, that is, the maximum percentage variation of the tether voltage is
proportional (through kp) to the orbit insertion radial error ν0. Although the linearized dynamics (22) has imaginary poles
and so no conclusion can be inferred on the stability of the nonlinear model, the latter may be shown to be locally stable
around the equilibrium condition ν(0) = 0 and ν̇(0) = 0, as is discussed in the Appendix.

The radial oscillations described by Eq. (23) can be damped out with a proportional-derivative control system. In that
case the tether voltage is modulated in such a way that the propulsive acceleration is in the form

‖F ‖
m

=
µ�
r2⊕

(r⊕
r

) 1− kp ν −
kd ν̇√
µ�/r3⊕

 (24)

where kd > 0 is a constant dimensionless parameter. The linearized spacecraft dynamics are

ν̈ +
µ�
r3⊕

(kp − 1) ν +
kd ν̇√
µ�/r3⊕

 = 0 (25)

which describes a second-order system with damping factor ζ , kd/
(

2
√
kp − 1

)
and natural frequency ωn. Note that, when

kd = 2
√
kp − 1 (that is, ζ = 1), the time variation of the radial error is

ν(t) = exp (−ωn t) [ν0 + (ν̇0 + ωn ν0) t] (26)

and the maximum variation of tether voltage is ∆Vmax/V = ν0 if ν̇0 = 0.

Attitude Dynamics

When the spacecraft attitude is perturbed from its reference condition, that is, when the zB-axis slightly differs from
the sun-spacecraft direction (k̂ 6= r̂), the spacecraft experiences a non-zero propulsive torque whose approximate expression
is given by Eq. (15). The components of T in the body reference frame can be written as a function of three classical
Euler’s angles {φ, θ, ψ}, which define the orientation of TB with respect to an inertial reference frame TI(S; xI , yI , zI) of

unit vectors {̂iI , ĵI , k̂I}, where k̂I ≡ r̂, and îI points towards a fixed direction in space. Using a rotational sequence [25]
3(ψ)→ 1(φ)→ 2(θ) to describe the orientation of TB relative to TI , the components of r̂ in the body reference frame are

[r̂]TB =

[− cosφ sin θ
sinφ

cosφ cos θ

]
(27)

The sail attitude may also be expressed using the pitch angle αn ∈ [0, π] and clock angle δn ∈ [0, 2π], defined as

αn = arccos(r̂ · k̂) , δn =


arccos

(
r̂ · î
||r̂ × k̂||

)
if (r̂ · ĵ) ≥ 0

2π − arccos

(
r̂ · î
||r̂ × k̂||

)
if (r̂ · ĵ) < 0

(28)

that are related to the Euler’s angles through the equations

cosαn = cosφ cos θ , sin δn =
sinφ

sinαn
, cos δn = −cosφ sin θ

cosαn
(29)

Assuming αn to be sufficiently small in the perturbed condition, which implies {φ, θ} � 1 (recall that θ = φ = 0 in the
reference condition), Eq. (27) reduces to

[r̂]TB '

[−θ
φ
1

]
(30)

and the linearized kinematic equations are [26]

φ̇ = Ωx + θ ω (31)

θ̇ = Ωy − φ (ω − θΩx) (32)

ψ̇ = ω − θΩx (33)
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where [Ωx, Ωy, ω]T = [Ω]TB are the components in TB of the spacecraft angular velocity vector Ω. The kinematic equations
can be further simplified by observing that ω � θΩx, from which

φ̇ = Ωx + θ ω (34)

θ̇ = Ωy − φω (35)

ψ̇ = ω (36)

Bearing in mind Eq. (15) and using Eq. (30), the components of the propulsive torque vector in TB become

[T ]TB = − ln (2)

2
bN Lσ u

[
φ
θ
0

]
(37)

Accordingly, the Euler’s equations for the axially-symmetric E-sail are given by

Ω̇x = −hω2 φ+ λωΩy (38)

Ω̇y = −hω2 θ − λωΩx (39)

ω̇ = 0 (40)

where

λ ,
It − Iz
It

, h ,
ln (2) bN Lσ u (1− λ)

2 Iz ω2
(41)

in which Iz and It are the longitudinal and transverse moments of inertia, respectively.
Note that h is a dimensionless parameter depending on the tether shape through the reference distance b, and on the sun-

spacecraft distance r (or tether voltage V ) through the design parameter σ. Recalling the perturbed motion of the spacecraft
center-of-mass around the reference position described by Eq. (18), the dimensionless parameter h is a function of time through
σ. However, the value of σ changes with time very slowly when compared to the rotational period (since ωn � ω), so that h
can be considered as a constant parameter in the analysis of the E-sail attitude dynamics. From Eqs. (36) and (40), the spin
rate ω is a constant or motion, and ψ = ω t + ψ0, where ψ0 is the initial value of ψ. Using the dimensionless time t̃ and the

angular velocities {Ω̃x, Ω̃y} defined as

t̃ , t ω , Ω̃x ,
Ωx

ω
, Ω̃y ,

Ωy

ω
(42)

Eqs. (34)-(35) and (38)-(39) may be equivalently written in matrix form as

dx

dt̃
= Ax with A ,

 0 λ −h 0
−λ 0 0 −h
1 0 0 1
0 1 −1 0

 (43)

where x , [Ω̃x, Ω̃y, φ, θ]
T is the dimensionless state vector. Using the Routh-Hurwitz stability criterion, and taking into

account that h > 0 and λ < 0, it may be verified that the linear differential system of Eq. (43) is stable and is characterized by
a pair of imaginary poles. Therefore, the presence of a propulsive torque vector, due to a pitch angle αn different from zero,
does not affect the (natural) stability of the E-sail rotational motion.

The stability of the nonlinear E-sail attitude dynamics has been investigated by extensive simulations. For exemplary
purposes, consider the case of initial conditions

{αn0 , δn0} = {5, 90} deg , {Ωx0 , Ωy0 , ω0} = {0, 0, 40} rph (44)

and use the same design parameters (ρ and σ) as those discussed in the previous section with N = 500, L = 2 km, It =
1000 kg m2, and λ = −1/2. An initial spin rate equal to 40 rph implies M ' 0.0026 and P ' 1 (note that, when L = 2 km,
the spacecraft spin rate must range within the interval [5.63, 45.74] rph). The simulation results are reported in Fig. 4. The
pitch angle shows a periodic time variation due to a nutation motion of the spacecraft symmetry axis. The maximum value of
αn coincides with αn0 , while its oscillation period is equal to 46 s. Let kx, ky and kz be the components of k̂ in the frame TI .
Figure 4 illustrates the time variations of kx and ky, and shows the combined effect of a nutation and a precession motion,
the latter having a period of about 6.5 minutes.

The long-term propulsive effect due the torque acting on the spacecraft is better appreciated by simulating the thrust
components in the inertial frame. This is possible using the following equations

Fx =
N Lσ u

2
(3P − 2) [cosφ cos θ (sin θ cosψ + sinφ cos θ sinψ)] (45)

Fy =
N Lσ u

2
(3P − 2) [cosφ cos θ (sin θ sinψ − sinφ cos θ cosψ)] (46)

Fz =
N Lσ u

2

[
2− P + (3P − 2) cos2 φ cos2 θ

]
(47)

where Fx, Fy and Fz are the components of F in TI . Figure 5 shows the simulation results. The thrust components on the
plane (xI , yI) are characterized by a zero mean value, while the radial component has a short period oscillation with a small
amplitude, due to the nutation motion.
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Conclusions

The dynamics of a spinning E-sail-based-spacecraft exhibits a marked separation between attitude and orbital motion.
In particular, with a suitable modulation of the tether electric voltage, the spacecraft center-of-mass moves along the sun-
spacecraft line around its nominal heliostationary position. When a simple proportional controller is used, the maximum
variation in tether voltage is proportional to the (radial) distance error in orbit insertion. The resulting spacecraft motion
is an undamped harmonic oscillation with a period on the order of some years. The combined effect of tether inflection and
deviation from the sun-facing condition (that is, the presence of a small pitch angle) generates a propulsive torque that induces
an undamped oscillatory motion with a frequency comparable to the spacecraft spin rate. Despite the propulsive torque due
to the perturbation in pitch angle, the attitude motion is stable and can be conveniently studied using a linearized model and
a constant state matrix.

The proposed approach can be extended to the case of an E-sail-based spacecraft in a non-Keplerian circular (or nearly
circular) orbit, with a radius on the order of one astronomical unit. In that case, the thrust vector is required to be aligned with
the sun-spacecraft direction, whereas the propulsive acceleration magnitude is a (small) fraction of the local sun’s gravitational
acceleration. The orbital motion, however, induces a time increase of the pitch angle, since the spin axis points a fixed direction
in the space. A suitable control system is therefore necessary to re-align the spin axis along the sun-spacecraft line.
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Appendix
With reference to Eqs. (18) and (20), the nonlinear radial dynamics of an E-sail with proportional control around a

heliostationary equilibrium position at a distance r = r⊕ from the sun, is

ν̈ =
µ�
r3⊕

(1− kp) ν − kp ν2

(1 + ν)2
(48)

Let q = [q1, q2]T, with q1 , ν and q2 , ν̇, then Eq. (48) can be rewritten as
q̇1 = q2

q̇2 =
µ�
r3⊕

(1− kp) q1 − kp q21
(1 + q1)2

, g(q1)
(49)

Introduce the candidate Lyapunov function

V (q) = −
∫
g(q1) dq1 +

1

2
q22 (50)

with V (0) = 0, from which

V (q) =
µ�
r3⊕

[
q1

1 + q1
+ kp q1 − (1 + kp) ln(1 + q1)

]
+

1

2
q22 (51)

It may be verified that, when kp > 1, V (q) > 0 ∀q 6= 0 and V̇ (q) = 0 ∀q. This implies that V (q) is actually a Lyapunov
function and the origin is a locally stable point when a proportional feedback control law is adopted.
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