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Abstract

The aim of this paper is to propose a semi-analytical method for the analysis of a two-impulse transfer between
two coplanar elliptic orbits, assuming each maneuver to change the magnitude of the spacecraft velocity only,
without affecting its direction. Using a recent mathematical model that describes the spacecraft dynamics in
a compact analytical form within a two-dimensional multiple-impulse scenario, this work proposes an algorithm
to calculate the global minimum velocity variation required to complete the transfer. The characteristics of the
optimal transfer trajectory, which is tangent to both the parking and the target orbit, are obtained as a function
of a single variable, which defines the angular position of the first maneuver. This feature allows the designer
to analyze the cotangential transfer in a parametric form, thus obtaining a trade-off solution between the total
velocity variation and the desired characteristics of the transfer orbit.
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Nomenclature

a, b = auxiliary dimensionless functions, see Eqs. (33)-(34)
D,N = auxiliary dimensionless functions, see Eqs. (7)-(8)
e = orbital eccentricity
f, g,G = auxiliary dimensionless functions, see Eqs. (30)-(31) and (39)
H = Heaviside step function
J = performance index
n = number of impulsive maneuvers
O = primary body center-of-mass
p = semilatus rectum
r = primary body-spacecraft distance
∆V = velocity variation
∆θ = swept angle
η = dimensionless parameter, see Eq. (4)
θ = polar angle
µ = primary body gravitational parameter
ψ = auxiliary angle, see Eq. (36)
ω = apse line rotation angle
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Subscripts

0 = parking orbit
1 = transfer trajectory, first maneuver
2 = target orbit, second maneuver
i = i-th maneuver, Keplerian arc

Superscripts

? = optimal

1. Introduction

A fundamental requirement for the success of most space missions is the capability for a spacecraft to
achieve and maintain a predetermined orbit. For example, it is often required to correct the shape, size,
and/or orientation of an intermediate or parking orbit by means of propulsive maneuvers since the launch
vehicle usually cannot deploy the satellite in its final, working, orbit. Other typical applications include
trajectory or midcourse maneuvers, change of the orbital inclination and rendezvous guidance problems [1].
A particularly complex scenario is represented by the reconfiguration maneuver of several spacecraft that
operate in a formation. In most cases the problem may be reduced to look for impulsive maneuvers that are
able to transfer a spacecraft from a given elliptic orbit to another prescribed elliptic orbit. A very readable
and thorough introduction to this subject is offered by the classical survey paper by Gobetz and Doll [2].

In this context, this paper concentrates on finding a transfer Keplerian trajectory that is tangent to two
coplanar ellipses (often referred to as cotangential transfer). The latter may be considered a classical problem
of orbital mechanics, which was first investigated by Lawden [3] in a two-impulse mission scenario. Early
attempts to find a solution to the cotangential transfer were based on graphical methods, which exploited the
hodograph theory [4]. In particular, Thompson et al. [5] used the orbital hodograph theory to deal with the
cotangential transfer within the context of safety improvements of orbital rendezvous. The rationale is that,
in case the rendezvous maneuver is eventually aborted [6], a transfer tangent to the final trajectory allows
the spacecraft to smoothly move away from the target orbit without crossing it. The solution presented in
Ref. [5] is based on a numerical iterative procedure to find the cotangential orbit. More recently, Zhang et
al. [7, 8] analyzed the constrained reachable domain [9, 10, 11] with a single tangential impulse, and proposed
an analytical approach for the study of the conditions under which a cotangential transfer exists, in terms
of true anomaly range along the initial or final orbit. Indeed, a cotangential transfer may not be feasible
when the two terminals belong to intersecting elliptic orbits [12]. The importance of a cotangential transfer
has been recently stressed by Kiriliuk and Zaborsk [13], who have analyzed the optimal bi-elliptic (and
bi-parabolic) transfer trajectories between non-coaxial elliptic orbits. Finally, the future research should try
to extend this problem to general relativistic fields either to devise some possible tests or to account for it
in some special cases when extreme accuracy may be needed [14, 15].

Since for a given pair of arbitrarily oriented coplanar elliptic orbits there exists an infinite number of
admissible cotangential transfer ellipses [16], a particularly interesting problem is to look for the optimal
impulsive trajectory [17], that is, the transfer that minimizes the total velocity variation (∆V ). A solution
to this problem cannot be obtained in closed-form, and it has been pointed out that in some cases the
total ∆V tends to be sensitive to the initial position point, especially when the two reference orbits have
intersection points [2]. Vinh [18] has shown that, in general, a cotangential transfer is not optimal when a
truly minimum ∆V transfer trajectory is sought. However, when the two reference elliptic orbits are of low
eccentricity, that is, less than 0.2, a cotangential transfer is known to be near optimal. In fact, in that case
the total velocity variation exceeds the global minimum value (which would correspond to a non-tangent
transfer) by less than 1% only [19].

The aim of this paper is to illustrate an effective procedure for calculating the optimal two-impulse
cotangential transfer between two coplanar elliptic orbits. The proposed method is different from other
existing approaches [20] and is especially well suited for obtaining a simple expression for the required ∆V .
It exploits a recent mathematical model that describes, in a compact analytical form, the spacecraft two-
dimensional dynamics within a generic multiple-impulse scenario [21]. The characteristics of the transfer
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trajectory are obtained as a function of a single independent variable that defines the angular position of the
first impulsive maneuver along the parking orbit. The described method allows the designer to analyze the
cotangential transfer in a parametric form and, using a graphical approach, to easily select the best trade-off
solution between the (two-impulse) total ∆V and the desired characteristics of the transfer orbit.

2. Problem description and mathematical model

Consider two elliptic, coplanar and confocal Keplerian orbits of given shape and orientation. The common
focus of the two orbits is denoted by O and µ is the gravitational parameter of the primary body. Let e0 < 1
and p0 be the eccentricity and semilatus rectum of the parking orbit, respectively, and introduce the subscript
2 for indicating the orbital parameters of the target orbit, whose apse line (from the focus to the pericenter)
is rotated counterclockwise by an angle ω2 ∈ [0, 2π) with respect to that of the parking orbit, see Fig. 1.
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Figure 1: Problem geometry.

The problem addressed in this work is to find the optimal trajectory (subscript 1), in terms of minimum
required ∆V , which allows the spacecraft to be transferred from the parking to the target orbit by means
of two tangential impulsive maneuvers (TIMs). By definition, the two maneuvers may only change the
magnitude of the spacecraft velocity vector without affecting its direction. In other terms, if ∆V1 (or ∆V2)
is the velocity variation relative to the first (or the second) TIM, the characteristics of the cotangent transfer
orbit, that is, its semilatus rectum p1, eccentricity e1 and apse line rotation angle ω1 ∈ [0, 2π) relative to
the parking orbit apse line, have to be chosen such that the dimensionless performance index

J ,
∆V√
µ/p0

=
∆V1 + ∆V2√

µ/p0
(1)

is minimized. Note that
√
µ/p0 is a reference velocity that coincides with the orbital velocity of a (virtual)

circular orbit of radius p0, around the primary body O.
The study of this problem, which requires the use of two TIMs, may be thought of as a special case of a

transfer orbit in which the spacecraft performs a sequence of n ∈ N+ TIMs, with n = 2. It is therefore possible
to analyze the transfer trajectory by exploiting the general mathematical model discussed in Ref. [21], which
uses a linear systems approach to study the two-dimensional spacecraft motion in a multiple-impulse (either
radial or tangential) mission scenario. The main features of such a model, which are useful for the succeeding
analysis, are now briefly summarized.

2.1. Mathematical preliminaries

Consider a spacecraft, initially placed on an elliptic parking orbit with orbital parameters {p0, e0}, which
executes n ≥ 1 TIMs. Assuming the spacecraft to be under the gravitational attraction of the primary only,
its trajectory belongs, at any time, to the same plane as that of the parking orbit and consists of (n+1) conic
arcs, each one being characterized by a semilatus rectum pi, an eccentricity ei, and an apse line rotation
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angle ωi ∈ [0, 2π), with i = 1, 2, . . . , n. Note that ωi is measured counterclockwise from the parking orbit
apse line. The three parameters {pi, ei, ωi} univocally define the geometry of the i-th conic arc that starts
just after the application of the i-th TIM. The index i = 0 corresponds to the given parking orbit, while
i = n (just after the last maneuver) represents the target Keplerian orbit, see Fig. 2.

According to Ref. [21], the polar equation of the spacecraft trajectory can be written in a compact and
analytical form as

r = r(θ) =
p0

1 + e0 cos θ +

n∑
i=1

1− η2i∏i
j=1 η

2
j

[1− cos(θ − θi)] H(θ − θi)
(2)

where r is the primary-spacecraft distance, θ ≥ 0 is the polar angle measured counterclockwise from the
parking orbit apse line, and H(x) denotes the Heaviside step function, defined as

H(x) =

{
0 if x ≤ 0

1 if x > 0
(3)
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Figure 2: Multiple impulse transfer conceptual sketch.

In Eq. (2), θi ≥ 0 is the polar angle at which the i-th TIM is executed, while ηi > 0 is a dimensionless
and strictly positive parameter defined as

ηi ,
√

pi
p(i−1)

(4)

where p(i−1) is the semilatus rectum of the Keplerian orbit just before the i-th TIM. The values of ei and
ωi are obtained from equations

ei =

i∏
j=1

η2j

√
N2
i +D2

i (5)

sinωi = − Ni√
D2
i +N2

i

, cosωi =
Di√

D2
i +N2

i

(6)

where the dimensionless functions Ni and Di are defined as

Ni ,
i∑

k=1

1− η2k∏k
j=1 η

2
j

sin θk (7)

Di , e0 −
i∑

k=1

1− η2k∏k
j=1 η

2
j

cos θk (8)
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Note, in passing, that Eq. (6) fixes a typo (that is, a minus sign) in Eq. (36) of Ref. [21]. Finally, the velocity
variation ∆Vi of the i-th TIM may be written in a compact form as

∆Vi = |ηi − 1|

√
2µ

ri
−
µ
(
1− e2i−1

)
pi−1

(9)

where ri is the primary-spacecraft distance at which the i-th TIM is executed, see Eq. (2). The total velocity
variation ∆V is therefore

∆V =

n∑
i=1

∆Vi (10)

The previous relations may be applied to a generic number n ∈ N+ of TIMs. In particular, for a given set
of n polar angles {θ1, θ2, . . . , θn}, the whole spacecraft trajectory is defined by Eq. (2), the characteristics of
each Keplerian arc (semilatus rectum, eccentricity and apse line direction) are obtained from Eqs. (4)–(6),
each velocity variation is given by Eq. (9), and the total ∆V is calculated through Eq. (10).

2.2. Case of two-TIM transfer

In the notable case of a two-impulse transfer (n = 2), the previous relations may be used to define
an algorithm for finding the absolute minimum of the performance index J in Eq. (1) using a graphical
approach. To that end, note that the first maneuver point, which belongs to the parking orbit, has a polar
angle θ1 ∈ [0, 2π) that coincides with its true anomaly. Also, since the second maneuver point belongs to
the target orbit, its polar angle θ2 > θ1 may be written as

θ2 = θ1 + ∆θ with ∆θ ∈ (0, 2π) (11)

In fact, if ∆θ > 2π, the spacecraft would travel more than one full revolution along the transfer orbit when
e1 < 1. Using Eq. (11), ∆θ may therefore be used as the angular variable necessary to set the second
maneuver point, with ∆θ 6= 0.

The characteristics of the transfer orbit are obtained from Eqs. (4)–(6) by simply enforcing the condition
i = 1, viz.

p1 = p0 η
2
1 (12)

e1 = η21

√
e20 − 2 e0 (1/η21 − 1) cos θ1 + (1/η21 − 1)

2
(13)

sinω1 = − N1√
N2

1 +D2
1

, cosω1 =
D1√

N2
1 +D2

1

(14)

where the dimensionless functions N1 and D1 are, see Eqs. (7)-(8)

N1 =

(
1

η21
− 1

)
sin θ1 , D1 = e0 −

(
1

η21
− 1

)
cos θ1 (15)

with
N2

1 +D2
1 = e20 − 2 e0

(
1/η21 − 1

)
cos θ1 +

(
1/η21 − 1

)2
(16)

When the condition n = 1 or n = 2 is enforced in Eq. (2), the primary-spacecraft distance is found at the
first (r1) or second (r2) TIM as

r1 =
p0

1 + e0 cos θ1
(17)

r2 =
p0

1 + e0 cos θ2 + (1/η21 − 1) [1− cos(θ2 − θ1)]
(18)
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From Eq. (9), the velocity variations at the two maneuver points are

∆V1 = |η1 − 1|

√
2µ

r1
− µ (1− e20)

p0
(19)

∆V2 = |η2 − 1|

√
2µ

r2
− µ (1− e21)

p1
(20)

Substituting Eqs. (17)-(18) into (19)-(20), it may be verified that

∆V1 =

√
µ�

p0
|η1 − 1|

√
e20 + 2 e0 cos θ1 + 1 (21)

∆V2 =

√
µ�

p0
|η2 − 1|

√
η21 [e20 + 2 e0 cos θ1 + 1] + 2 e0 (cos θ2 − cos θ1) + 2 (1/η21 − 1) [1− cos (θ2 − θ1)]

(22)

and the dimensionless performance index of Eq. (1) can be explicitly written as

J = J (η1, η2, θ1, θ2) = |η1 − 1|
√
e20 + 2 e0 cos θ1 + 1+

+ |η2 − 1|
√
η21 [e20 + 2 e0 cos θ1 + 1] + 2 e0 (cos θ2 − cos θ1) + 2 (1/η21 − 1) [1− cos (θ2 − θ1)] (23)

However, the four mission parameters {η1, η2, θ1, θ2} in the performance index J are not independent.
Indeed, at the end of the second maneuver the spacecraft belongs to the target orbit, whose orbital parameters
{p2, e2, ω2} are given. Substituting i = 2 into Eqs. (4)–(6), the result is

p2 = p0 η
2
1 η

2
2 (24)

e2 = η21 η
2
2

√[
e0 +

(η21 − 1) cos θ1
η21

+
(η22 − 1) cos θ2

η21 η
2
2

]2
+

[
(η21 − 1) sin θ1

η21
+

(η22 − 1) sin θ2
η21 η

2
2

]2
(25)

tanω2 =
η22 (η21 − 1) sin θ1 + (η22 − 1) sin θ2

η21 η
2
2 e0 + η22 (η21 − 1) cos θ1 + (η22 − 1) cos θ2

(26)

which give three additional nonlinear constraints to be met. In conclusion, a single variable only may be
freely chosen within the set {η1, η2, θ1, θ2} and this is selected to coincide with the polar angle θ1 ∈ [0, 2π).

Recalling Eq. (11), the previous Eqs. (24)–(26) may be rearranged in the form

η1 =
√
f(θ1,∆θ) (27)

η2 =

√
p2/p0√

f(θ1,∆θ)
(28)

e2 = g(θ1,∆θ) (29)

where f(θ1,∆θ) and g(θ1,∆θ) are two dimensionless auxiliary functions defined as

f(θ1,∆θ) ,
(p2/p0) [sin(ω2 − θ1)− sin(ω2 − θ1 −∆θ)]

(p2/p0) [sin(ω2 − θ1) + e0 sinω2]− sin(ω2 − θ1 −∆θ)
(30)

g(θ1,∆θ) ,
sin(∆θ) + (p2/p0) [e0 sin θ1 − e0 sin(θ1 + ∆θ)− sin(∆θ)]

sin(ω2 − θ1 −∆θ)− sin(ω2 − θ1)
(31)
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Note that η1 6= 0 ⇒ p1 6= 0, see Eq. (4), and so f(θ1,∆θ) 6= 0, see Eq. (30), which implies that the
denominator of Eq. (31) is different from zero. Combining Eqs. (29) and (31) it is found that

a sin ∆θ + b cos ∆θ − a = 0 (32)

where

a , −e0 (p2/p0) sin θ1 − e2 sin (ω2 − θ1) (33)

b , 1− (p2/p0)− e0 (p2/p0) cos θ1 + e2 cos (ω2 − θ1) (34)

Since ∆θ 6= 0, Eq. (32) can be rewritten as

sin (∆θ + ψ)− sinψ = 0 (35)

where the auxiliary angle ψ is defined by

sinψ =
a√

a2 + b2
, cosψ =

b√
a2 + b2

(36)

The value of ∆θ ∈ (0, 2π) that satisfies Eq. (29) is given by

∆θ = π − 2ψ (37)

where ψ is obtained from Eqs. (33)-(34) and (36) as a function of θ1, p2/p0, e0, e2, and ω2. In particular,
note that J in Eq. (23) depends on the semilatus rectum of the parking and target orbits as a function of
their ratio p2/p0 only.

2.3. Algorithm for the analysis of global optimal transfer

It is now possible to describe an algorithm that minimizes the ∆V necessary for a two-impulse cotan-
gential transfer between a given pair of elliptic orbits. Assume the characteristics of the parking and target
orbits are fixed through the four parameters {p2/p0, e0, e2, ω2}. For a given coordinate θ1 ∈ [0, 2π), ∆θ is
obtained from Eq. (37) and f(θ1,∆θ) from Eq. (30) (the case f(θ1,∆θ) < 0 is discarded as it corresponds to
an infeasible transfer). The values of θ2, η1 and η2 are calculated from Eqs. (11), (27) and (28), respectively.
Finally, J is obtained from Eq. (23). The same procedure is then repeated for different values of θ1, until a
smooth function plot J = J(θ1) is obtained in the interval [0, 2π). The optimal transfer corresponds to the
polar angle θ1 = θ?1 ∈ [0, 2π) that minimizes J(θ1), viz.

θ?1 = min
θ1∈[0, 2π)

[J(θ1)] (38)

whose value can be obtained, by inspection, from the plot of J = J(θ1).

3. Method validation and case study

The previously described algorithm is now validated by analyzing the transfer between elliptic, coplanar,
orbits whose axes are aligned and have the same direction (that is, ω2 = 0 deg). For exemplary purposes,
assume p2/p0 = 2, e0 = 0.2, and e2 = 0.4. In this case the plot of J = J(θ1) (that, is the total velocity
variation ∆V /

√
µ/p0 as a function of the polar angle θ1) obtained through the proposed algorithm is shown

in Fig. 3(a), while Fig. 3(b) illustrates the (dimensionless) value of ∆V1 = ∆V1(θ1) and ∆V2 = ∆V2(θ1).
In particular, Fig. 3(a) shows that the minimum value of J , that is, the optimal transfer in terms of

minimum required ∆V , is obtained when θ1 = 0, that is, when the first maneuver occurs at the pericenter
of the parking orbit. In that case, Eq. (33) gives a = 0, Eq. (36) gives ψ = 0, and Eq. (37) states that
∆θ = 180 deg. In other terms, the optimal transfer trajectory coincides with a semi-ellipse (in fact, the
swept angle is π rad) which is tangent at the pericenter (or apocenter) of the parking (or target) orbit, see
Fig. 4.
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Figure 3: Dimensionless velocity variations as a function of θ1 when p2/p0 = 2, e0 = 0.2, e2 = 0.4, and ω2 = 0 deg.
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Figure 4: Parking, target, and optimal transfer orbits when p2/p0 = 2, e0 = 0.2, e2 = 0.4, and ω20 deg.

This result is in perfect agreement with the conclusions of Lawden [22], who stated that “if two orbits
have their axes aligned and the orbits either intersect or have their axes directed in the same sense, then the
over-all optimal transfer orbit is that which is tangential to both terminals at an apse on each and which
passes through the apse most distant from the center of attraction”. Note that, in this case, the ratio of the
primary body-apocenter distance of the target orbit to that of the parking orbit is about 2.66. Therefore,
the apocenter of the target orbit is the apse most distant from the center of attraction, see Fig. 4.

When the value of ω2 is different from zero (or 180 deg), the analysis of the optimal, cotangential, transfer
trajectory is not so simple, but may be studied with the previous algorithm. For example, consider now
p2/p0 = 2, e0 = 0.2, e2 = 0.4, and ω2 = 60 deg and assume θ1 = 0 deg. From Eq. (37), it is found that
∆θ ' 147.8 deg, where a ' −0.3464, b = −1.2, and ψ ' −163.89 deg. This is a feasible value, since
f(θ1,∆θ) > 0, see also Fig. 5, where the function

G(θ1,∆θ) , g(θ1,∆θ)− e2 (39)

is drawn with g(θ1,∆θ) given by Eq. (31).
The solution corresponding to θ1 = 0 is θ2 ' 147.8 deg, see Eq. (11), while η1 ' 1.1010 from Eqs. (27)
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Figure 5: Function G(θ1,∆θ), see Eq. (39), when θ1 = 0 deg, p2/p0 = 2, e0 = 0.2, e2 = 0.4, and ω2 = 60 deg.

and (30) and η2 ' 1.2845 from Eq. (28) and (30). Having calculated the four parameters {η1, η2, θ1, θ2},
the transfer orbit characteristics are p1/p0 ' 1.2121, see Eq. (12), e1 ' 0.4545, see Eq. (13), and ω1 = 0 deg,
see Eq. (14). The dimensionless radial distance at the two maneuvers is r1/p0 ' 0.8333 from Eq. (17),
and r2/p0 ' 1.9698 from Eq. (18). Finally, the velocity variations are ∆V1/

√
µ/p0 ' 0.1212 from Eq. (21)

and ∆V2/
√
µ/p0 ' 0.1709 from Eq. (22), while the performance index is J ≡ ∆V/

√
µ/p0 ' 0.2921 from

Eq. (23). The transfer trajectory is illustrated in Fig. 6, which shows its tangency with both the initial and
the target orbit.
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Figure 6: Parking, target, and transfer orbits when θ1 = 0 deg, p2/p0 = 2, e0 = 0.2, e2 = 0.4, and ω2 = 60 deg.

The dimensionless velocity variation ∆V/
√
µ/p0 is easily calculated by varying the polar angle within

the range θ1 ∈ [0, 2π), see Fig. 7(a). Likewise, Fig. 7(b) shows the dimensionless functions ∆V1 = ∆V1(θ1)
and ∆V2 = ∆V2(θ1), while {p1, e1, ω1} and ∆θ are reported in Fig. 8. The function J = J(θ1) has a
minimum (with min(J) ' 0.2776) at a polar angle θ1 = θ?1 ' 82.4 deg, see Fig. 7(a), which corresponds
to the optimal transfer. Using the previous method, it is found that θ2 ' 223.07 deg, η1 ' 1.2016, and
η2 ' 1.1769. The characteristics of the transfer orbit are p1/p0 ' 1.4439, e1 ' 0.5607, and ω1 ' 51.7 deg,
the radial distances at maneuver points are r1/p0 ' 0.9742 and r2/p0 ' 3.2398, while the velocity variations
are ∆V1/

√
µ/p0 ' 0.2108, and ∆V2/

√
µ/p0 ' 0.0668, see Fig. 7(b). The optimal transfer orbit, whose

geometrical characteristics are much different from that corresponding to θ1 = 0, is illustrated in Fig. 9.
The joint use of Figs. 7 and 8 allows a tradeoff-analysis to be made between ∆V and the transfer
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Figure 7: Dimensionless velocity variations as a function of θ1 when p2/p0 = 2, e0 = 0.2, e2 = 0.4, and ω2 = 60 deg.

orbit characteristics or the velocity variation at the two TIMs. Using again the same parking and target
orbit as in the previous example, and assuming the maneuvers to be characterized by the same velocity
variation, that is, ∆V1 = ∆V2, Fig. 7(b) shows that two different values of polar angle are possible, i.e.
θ1 ' {26.6, 165.2} deg, with different total velocity variations ∆Vi/

√
µ/p0 ' {0.1438, 0.1527}, and distinct

orbital parameters of the transfer orbit, see Fig. 10. As an additional example, it is also possible to look
for the transfer orbit with the minimum eccentricity value. In fact, Fig. 8 shows that the minimum of the
function e1 = e1(θ1) is obtained at θ1 ' 186.83, when the eccentricity is e1 ' 0.0745, and the total velocity
variation is ∆V/

√
µ/p0 = 0.3054. The corresponding transfer trajectory is drawn in Fig. 11.

The last case study is consistent with that of the two satellites of the Galileo family named Doresa and
Milena (that is satellite 5 and 6 of Galileo constellation). Due to a malfunction of the Soyuz Fregat launch
vehicle, satellites Doresa and Milena were inserted into incorrect, highly elliptical orbits with semimajor
axis 26192 km and eccentricity 0.2330 [23], later partially corrected to a value of 27977 km and about 0.15,
respectively (more precisely, the eccentricity is 0.156 for satellite 5, and 0.15167 for satellite 6). Accordingly,
assume p2/p0 = 1.1019, e0 = 0.233, e2 = 0.1561, and ω2 = 0 deg. In this case, the proposed procedure gives
an optimal (dimensionless) velocity variation of about ∆V/

√
µ/p0 ' 0.0382 with an initial polar angle equal

to θ1 = 0 deg.

4. Conclusions

In this paper, the classical problem of two-impulse optimal cotangential transfer between two coplanar
elliptic orbits has been analyzed. Starting from a mathematical model that describes the spacecraft in
a general multiple-impulse scenario, the transfer orbit characteristics, in terms of eccentricity, semilatus
rectum, and apse line direction are obtained as a function of the angular position of the first tangential
maneuver. The minimum velocity variation required to complete the two-dimensional transfer is the output
of a semi-analytical method. A tradeoff-study that involves the mission performance index, the velocity
variation of each maneuver, and the characteristics of the transfer orbit, may be easily completed with the
aid of a set of graphs and compact analytical relations.

The proposed approach is useful for simplifying the analysis of complex mission scenarios that involve,
for instance, three (or more) tangential, impulsive, maneuvers. In that case, however, the number of free
mission parameters increases and the performance index becomes a function of multiple variables, so that a
suitable numerical algorithm is required for obtaining the minimum value of the total velocity variation.
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Figure 8: Spacecraft swept angle and transfer orbit characteristics as a function of θ1 when p2/p0 = 2, e0 = 0.2, e2 = 0.4, and
ω2 = 60 deg.
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Figure 9: Optimal transfer orbit when p2/p0 = 2, e0 = 0.2, e2 = 0.4, and ω2 = 60 deg.
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(a) θ1 = 26.6 deg and ∆Vi = 0.1438
√
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Figure 10: Transfer with equal ∆Vi when p2/p0 = 2, e0 = 0.2, e2 = 0.4, and ω2 = 60 deg.
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