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Abstract

This paper aims at studying price dynamics in two different continuous time cobweb models
with delays closed to [Hommes, 1994]. In both cases, the stationary equilibrium may be not
representative of the long-term dynamics of the model, since it is possible to observe endogenous
and persistent fluctuations (super-critical Hopf bifurcations) even if a deterministic context
without external shocks is considered. In the model in which markets are in equilibrium at
every time, we show that the existence of time delays in the expectations formation mechanism
may cause chaotic dynamics similar to those obtained by [Hommes, 1994] in a discrete time
context. From a mathematical point of view, we apply the Poincaré-Lindstedt perturbation
method to study the local dynamic properties of the models. In addition, several numerical
experiments are used to investigate global properties of the systems.
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JEL Classification D21; E32; C61; C62

1 Introduction

The cobweb model represents a cornerstone in economic theory, especially with regard to the study
of economic dynamics. Its importance is emphasised by an intense and ongoing scientific debate
that can be found on this topic. From a mathematical point of view, the majority of contributions in
the literature focused on price dynamics has tackled this issue in discrete time models (for instance,
[Hommes, 1994; Gallas and Nusse, 1996; Dieci and Westerhoff, 2010]), more rarely in continuous
time models (see [Gandolfo, 2010]) and only recently in a stochastic framework (see [Brianzoni et
al., 2008]).

More precisely, the cobweb model describes how the dynamics of prices evolves in an independent
market for a non-storable commodity that takes a positive amount of time to be produced. Given
the lag from production decisions to the time products are available to the market, expectations
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formation mechanisms become an important determinant of movements in prices. Recently, several
scholars have introduced time delays in different classes of economic models, for instance in the
study of time-to-build technologies and economic growth ([Asea and Zak, 1999; Boucekkine et
al., 2002, 2005; Bambi, 2008; Ferrara, et al., 2014]), or by considering continuous time models
with delays (delay differential equations) in contexts traditionally dealt with either discrete time
(difference equations) or continuous time (ordinary differential equations), as in [Matsumoto and
Szidarovszky, 2014]).

By taking into account motivations and assumptions of models with time-to-build technologies,
this paper aims at studying price dynamics described by a single delay differential equation in
two different kinds of cobweb models. The former model considers disequilibrium dynamics of
actual prices with static expectations (i.e., producers expect that the current price depends on
one of its observed past values), where price adjustments are driven by the excess demand in the
market of the single good considered. The latter one analyses equilibrium dynamics of expected
prices (demand and supply are equal at every time period) by assuming the adaptive expectations
formation mechanism used by [Hommes, 1994] and [Gallas and Nusse, 1996]. With this behavioural
rule, producers expect that current prices depend on past values but they are revised according to
a prediction error.

The classical cobweb model - studied by [Kaldor, 1934] and [Ezekiel, 1938] - represents one of
the first attempts to characterise nonlinear dynamics in economic theory. Historically, time series of
prices of nonstorable commodities are subject to (sometimes markedly significant) fluctuations, not
only in the short term but also in the long term. This is due to, e.g., technological requirements,
i.e. farmers cannot adjust production immediately when price shocks are observed, the growth of
market demand for food, climate changes and so on. Currently, this phenomenon also calls attention
of governments in several countries in the European Union because of the possible concerns that
volatility of prices of perishable goods may cause at the macroeconomic level. The cobweb model
essentially served to try to explain the reasons for persistent price fluctuations in the agricultural
sector. In its classical formulation with linear supply and demand, it describes an economy where
farmers operate in a market where production must be chosen before prices are observed and
they have static expectations. In this context, the possible long-term outcomes range amongst
convergence towards the steady-state equilibrium value of price, cycle of period two and unbounded
fluctuations, depending on the relative slope of demand and supply.

Subsequently, [Nerlove, 1958] has contributed to this literature by adding adaptive expectations
to the cobweb model with linear supply and demand, because of the critique to static expectations
to provide adequate explanations of market price oscillations. After several years of silence, the
renewed interest in the study of nonlinear dynamics has induced some scholars to take the cobweb
framework into account as a tool to analyse more in depth the dynamics of prices and also to ques-
tion the rational expectations paradigm.1 Related to the rational expectation hypothesis, we note
that in a context of strong economic fluctuations can be very expensive and inefficient to predict
the behaviour of economic variables in a very sophisticated way. It can therefore be convenient to
take into account some behavioural rules based on adaptive adjustment mechanisms (see [Bischi et
al., 1998]). [Artstein, 1983] and [Jensen and Urban, 1984] extended the classical cobweb model by

1 Under the assumption of rational expectations of agents, fluctuations in economic variables are due to exogenous
or external shocks, while with bounded rationality fluctuations are endogenous to the model. The cobweb model is one
the most important example of the dispute between models with exogenously-driven fluctuations and endogenously
driven fluctuations. In fact, it clearly shows the possibility of having cyclical movements in prices without external
shocks.
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allowing for non-monotonic supply and demand curves and showed that if either the supply curve
or demand curve is non-monotonic, chaotic dynamics can arise even if producers have static expec-
tations, while [Chiarella, 1988] and [Hommes, 1994, 1998] have stressed the importance of nonlinear
supply and demand curves and adaptive expectations of producers as a source of chaotic motions.
Later, [Onozaki et al., 2000] has revisited the cobweb model by considering adaptive adjustments
on the quantity produced instead of adaptive expectations on prices in a discrete time model, while
[Gori et al., 2014] develop a continuous time version with discrete delays (that characterise the
length of production cycle) of [Onozaki et al., 2000] by assuming an economy comprised of homo-
geneous producers that operate as adapters and use the (expected) profit-maximising quantity as
a target to adjust production.

By taking into account continuous time versions without delays of the models cited above, the
stationary equilibria result to be asymptotically stable since they are partial equilibrium economic
models (based on the "ceteris paribus Marshallian hypothesis") described by a unidimensional
equation. In contrast, when continuous time versions with discrete delays of cobweb models are
considered, then in both cases of disequilibrium dynamics of actual prices and equilibrium dynamics
of expected prices, the stationary equilibrium may be not representative of the long-term dynamics
of the model, since super-critical Hopf bifurcations may generate persistent fluctuations. In addition,
if markets are in equilibrium at every time the existence of time discrete delays in the expectations
formation mechanism may cause chaotic dynamics similar to those obtained by [Hommes, 1994] in
a discrete time context.

The rest of the paper is organised as follows. Sections 2 sets up the model to study disequi-
librium dynamics of actual prices. Section 3 characterises local stability properties of the result-
ing one-dimensional delay differential equation. Section 4 considers approximating expressions of
the bifurcating periodic solutions through the Poincaré-Lindstedt perturbation method. Section 5
analyses the case of equilibrium dynamics of expected prices by assuming adaptive expectations
as in [Hommes, 1994] and [Gallas and Nusse, 1996]. It provides some numerical experiments to
validate the theoretical results as well as to have some insights about global dynamics. Section 6
outlines the conclusions.

2 The model: disequilibrium dynamics of actual prices

We assume the existence of a partial equilibrium competitive economy to describe the behaviour
of a market for a single non-storable commodity. The demand of this commodity is determined by
the marginal willingness to pay of consumers and negatively depends on current price, p(t). By
assuming a time-to-build technology as in [Asea and Zak, 1999], we consider the existence of a lag
from the time production decisions are made to the time products are ready for sale. Moreover,
the supply of goods positively depends on price expectations, pe(t). In line with [Hommes, 1994]
and [Gallas and Nusse, 1996], we introduce the following specifications for demand and supply,
respectively:

D(p(t)) = a− bp(t), a ≥ 0, b > 0, (1)

S(pe(t)) = arctan(λpe(t)), λ > 0. (2)

The classical linear demand function (1) derives from the maximisation of a quadratic utility
function of consumers, as for instance in [Dixit, 1979]. With regard to the supply side, the first
branch (small quantities) of the graph of (2) captures the existence of administrative or managerial
costs in the short run, the central part of it describes the usual properties of supply curves, while
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in the last branch of its graph (large quantities) the function increases slowly, for instance because
of capacity constraints in technology (see [Chiarella, 1988] and [Hommes, 1991, 1994]).

With regard to price expectations, we assume that producers take the price observed at the
time production decisions are made as the one that will prevail when goods will be available for
sale, that is pe(t) = p(t − τ), where τ ≥ 0 is the discrete time delay. Indeed, technology requires
a period of time τ to bring the production process to completion and get products to the market.
This assumption may well capture the behaviour of actual agricultural markets. In this section we
assume that expectations will not be realised so that a price adjustment mechanism over time is
required. By considering the classical continuous time adjustment process based on excess demand
(see [Gandolfo, 2010]), price dynamics is described by the following delay differential equation:

ṗ = A · Z(p, pd), A > 0, (3)

where we have omitted the time index, pd := p(t − τ), Z(p, pd) := D(p) − S(pd) is the excess
demand, ṗ = ∂p/∂t and A is a coefficient that captures the speed of price adjustment determined
by the Walrasian auctioneer. Equation (3) formalises the Walrasian assumption for which the price
increases (resp. reduces) if Z(p, pd) > 0 (resp. Z(p, pd) < 0). By using (1), (2), Eq. (3) becomes:

ṗ = A [a− bp− arctan(λpd)] . (4)

It is important to stress that in a competitive market, equilibrium is determined (and exchanges
take place) by the point at which supply and demand are equal, that is ṗ = 0 in system (4), that
is zero excess demand means that the system is in equilibrium (alternatively, the price does not
vary). Therefore, it is of importance to study the stability conditions of the stationary equilibrium.
This because starting from an equilibrium situation, there may exist forces (e.g., accidental causes)
for which the system is no more in equilibrium. Studying stability of system (4) is relevant also
because by considering an initial condition, a trajectory that converges (resp. do not converge)
towards the stationary equilibrium implies that exchanges take (resp. do not take) place in the
market. In what follows, we analyse the conditions for which the system will move towards (or
will diverge from) its steady state. The Walrasian auctioneer drives the price movement when the
system is out of equilibrium. If there is a positive (resp. negative) excess demand, the price goes up
(resp. down). We will see that the discrete time delay parameter τ is an important determinant of
the stability/instability of the supply and demand system (4). This kind of disequilibrium dynamic
analysis of actual prices resembles the one of [Gandolfo, 2010, pp. 169-175] related to a continuous
time cobweb model without delays, where demand and supply are linear functions. Our purpose,
in this context, is to show that the classical results of stability of the stationary equilibrium are not
robust to the generalisation proposed. We remark that we are performing a (Marshallian) partial
equilibrium analysis in a competitive market for a single good by assuming well-behaved functions
that generate a unique equilibrium for the economy. We are aware that these assumptions, that
hold only through specific hypotheses on the behaviours of economic agents in the neoclassical
microeconomic theory [Mas-Colell et al., 1995], may be restrictive. However, the purpose of this
work is actually to show that even in a highly simplified model where demand is not equal to
supply, the hypothesis of an adjustment mechanism based on the Walrasian auctioneer may be
not able to generate trajectories that converge towards the steady-state equilibrium value of price
(disequilibrium dynamics of actual prices). In addition, in a context in which demand is always
equal to supply (equilibrium dynamics of expected prices), we will see in Section 5 that the dynamics
of prices may be not stable in the long term.
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In contrast with models where agents have rational expectations (perfect foresight in a deter-
ministic context), in our dynamic setting agents are assumed to be not able to perfectly foresee the
behaviour of economic variables in the future. This can be justified from the fact that in a context
of strong economic fluctuations it can be very expensive and inefficient to predict the behaviour of
economic variables in a very sophisticated way. It can therefore be convenient to take into account
some behavioural rules based on adaptive adjustment mechanisms [Bischi et al., 1998].

From (4) the following lemma holds.

Lemma 1 Eq. (4) has a unique stationary equilibrium p∗ ≥ 0, where a− bp∗ = arctan(λp∗).

Proof. By setting ṗ = 0 and pd = p for all t gives a − bp = arctan(λp). A graphical inspection
shows that functions ϕ(p) = a− bp and ψ(p) = arctan(λp) have only one point in common.

Remark 2 If a = 0, then p∗ = 0. If a > 0, then 0 < p∗ < a/b.

3 Local analysis

In order to study the local properties of the model, we introduce the change of variable x = p− p∗
and take a Taylor expansion of the resulting equation at zero. Then, Eq. (4) becomes

ẋ = a0x+ a1xd + a2x
2
d + a3x

3
d +O(x4d), (5)

where

a0 = −Ab < 0, a1 = −
Aλ

1 + λ2p2
∗

< 0, a2 =
λp∗
A

a21 ≥ 0, a3 = −

�
1− 3λ2p2

∗

�

3A2
a31. (6)

By considering the linear part of (5) we get

ẋ = a0x+ a1xd,

whose associated characteristic equation is

ξ = a0 + a1e
−ξτ . (7)

If τ = 0, then (7) has the only root ξ = a0 + a1 < 0. Thus, the trivial equilibrium is stable when
there is no delay. As τ increases, the stability properties of the equilibrium point will change if
(7) has zero or a pair of purely imaginary eigenvalues. It is immediate that the case ξ = 0 is not
possible since it would give the contradiction a0 + a1 = 0. Next, we look for the existence of a
root ξ = iω for (7). Without loss of generality, since the complex roots of (7) appear as complex
conjugate pairs, we may assume that ω > 0. Now, ξ = iω (ω > 0) is a root of (7) if and only if ω
solves iω = a0 + a1e

−iωτ . Separating the real and imaginary parts of this equation, we obtain

ω = −a1 sinωτ, −a0 = a1 cosωτ. (8)

Eliminating τ from (8) gives
ω2 = a21 − a20.
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Lemma 3 If |a1| > |a0|, then (7) has pair of purely imaginary roots ξ = ±iω0 at a sequence of
critical values τ j, j ∈ N0 = N ∪ {0}, where

ω0 =
�

a21 − a20 and τ j =
1

ω0

�
arctan

�
ω0
a0

�
+ (2j + 1)π

�
. (9)

Remark 4

1. If b ≥ λ/(1 + λ2p2
∗
), then |a1| > |a0| does not hold. In particular, this holds if b ≥ λ being

λ/(1 + λ2p2
∗
) ≤ λ.

2. If b < λ/(1 + λ2p2
∗
), then |a1| > |a0| is equivalent to

p∗ <
1

λ

�
λ− b

b
. (10)

When a = 0, condition (10) is always satisfied since p∗ = 0. When a > 0, its validity depends
on parameters a, b and λ. Recalling that p∗ < a/b, inequality (10) may be valid choosing
parameters a, b and λ such that

a

b
≤
1

λ

�
λ− b

b
.

For example, this can be achieved by taking λ = 2b and a ≤ 1/2.

Remark 5 Since ω0 > 0, then from (8) we deduce sinω0τ0 > 0 and cosω0τ0 < 0. Hence,
ω0τ0 ∈ (π/2, π).

Lemma 6 For τ = τ j, j ∈ N0, ξ = ±iω0 are simple roots of (7) and

d (Reξ)

dτ

				
τ=τj

> 0.

Proof. A direct calculation shows that ξ = iω0 is a simple root of (7). Let ξ(τ) = µ(τ) + iω(τ)
denote a root of (7) satisfying µ(τj) = 0 and ω(τj) = ω0. Differentiating the characteristic equation
(7) with respect τ , we get �

dξ

dτ

�−1
= −

1

(ξ − a0) ξ
−

τ

ξ
.

Hence,

sign



d (Reξ)

dτ

				
τ=τj

�

= sign





Re

�
dξ

dτ

�−1					
τ=τj





= sign

�
1

ω20 + a20

�
= 1.

This completes the proof.

The above result implies that the pair of pure imaginary roots crosses the imaginary axis from
the left to the right as τ continuously varies from a number less than τ j to one greater than τ j .
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Proposition 7

1. When |a1| ≤ |a0|, all roots of the characteristic equation (7) have negative real parts.

2. When |a1| > |a0|, (7) has a pair of simple imaginary roots ±iω0 at τ = τj, j ∈ N
0. Further-

more, if τ ∈ [0, τ0), then all roots of (7) have negative real parts, while if τ = τ0, then all
roots of (7) except ±iω0 have negative real parts. Finally, if τ ∈ (τ j , τj+1) for j ∈ N0, (7) has
2(j + 1) roots with positive real parts.

Proof. From the previous analysis we know that, if |a1| ≤ |a0|, then (7) has no purely imaginary
root iω with ω > 0. Since ξ = 0 is not a root of (7), for any τ ≥ 0, (7) has no roots on the imaginary
axis. A result of [Ruan and Wei, 2003, Corollary 2.4, p. 867] leads to the conclusion of point 1 of
the proposition. If |a1| > |a0|, (7) has purely imaginary roots ±iω0 if and only if τ = τj and ω0
are given in (9). The statement on the number of eigenvalues with positive real parts follow from
the previous Lemma and Rouché’s Theorem (see [Dieudonné, 1960, Theorem 9.17.4]).

Summarizing our discussion, we have the following results.

Theorem 8 Let ω0 and τj, j ∈ N
0, be defined as in (9).

1. If b ≥ λ/(1+λ2p2
∗
), then the equilibrium p∗ of (4) is locally asymptotically stable for all τ ≥ 0.

2. If b < λ/(1+λ2p2
∗
), then the equilibrium p∗ of (4) is locally asymptotically stable for τ ∈ [0, τ0)

and unstable for τ > τ0. Furthermore, (4) undergoes a Hopf bifurcation at the equilibrium p∗
when τ = τ j, j ∈ N

0.

We now consider some numerical simulations to demonstrate some properties of Eq. (4). By
assuming a = 1, b = 0.1, λ = 2 and A = 1, system (4) admits an equilibrium at p∗ ≃ 0.674 that
undergoes a Hopf bifurcation for τ ≃ 2.436. Figure 1.a shows the limit cycle generated for τ = 3.
Several numerical experiments seem to suggest that more complex phenomena cannot exist for this
model. Figure 1.b depicts in the (λ, τ) plane the stability/instability regions of the system, and
shows that it is more likely to have cyclical dynamics if the degree of reaction in the supply of goods
is relatively high. The yellow (resp. red) region in Figure 1.b represents a parametric space where
exchanges take place (resp. do not take place) in the market.

Figure 1. (a) Hopf bifurcation for τ . (b) Stability (yellow)/instability (red) regions in the (λ, τ)
plane for a = 1, b = 0.1 and A = 1.
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4 Approximating expressions of the bifurcating periodic so-

lutions

In the previous section, we have seen that below the critical value τ0 of time delay τ no periodic
solution exists, while above τ = τ0 such a solution does exist. Formally, we have not proved the
stability of the limit cycle but we have only suggested its existence by using numerical simulations.
Nevertheless, by focusing on the case a = 0 proposed by [Hommes, 1994] in a discrete time context,
it is possible to characterise the local stability properties of the Hopf bifurcation and also to have
an approximate solution of the limit cycle for values of τ close to the bifurcation one. To this end,
we apply the Poincaré-Lindstedt perturbation method (see, e.g., [MacDonald, 1978]).

We first re-scale variable t by setting s = ω(ε)t, where ε is a small positive number so that
solutions which are 2π/ω periodic in t become 2π periodic in s. Hence, given p∗ = 0, (5) can be
written as

ω
dx(s)

ds
= a0x (s) + a1x (s− ωτ) + a3x (s− ωτ)3 + · · · , (11)

where

a0 = −Ab < 0, a1 = −Aλ < 0, a2 = 0, a3 =
Aλ3

3
> 0. (12)

According to Poincaré-Lindstedt method, the solution of (11) is expanded into a series of ε in the
form

x(s) = x0(s)ε+ x1(s)ε
2 + x2(s)ε

3 + · · · , (13)

where the definition of the xj(s) (j = 0, 1, 2, ...) is clear. The frequency and the delay are expanded
in a similar way 


ω = ω (ε) = ω0 + ω1ε+ ω2ε2 + · · · ,

τ = τ (ε) = T0 + T1ε+ T2ε
2 + · · · ,

(14)

where

T0 = τ0 =
1

ω0

�
arctan

�
ω0
a0

�
+ π

�
and ω0 = A

�
λ2 − b2 (b < λ). (15)

By taking into account (13) and (14), we obtain that the delayed term x (s− ωτ) written in a power
series in ε as

x (s− ωτ) = x0(s− ωτ)ε+ x1(s− ωτ)ε2 + x2(s− ωτ)ε3 + · · · , (16)

where xj(s− ωτ) stands for

xj(s− ωτ) = xj(s− ω0T0)− x′j(s− ω0T0)
�
(ω1T0 + ω0T1)ε+ (ω2T0 + ω1T1 + ω0T2)ε

2 + · · ·
�

+
1

2
x′′j (s− ω0T0) [(ω1T0 + ω0T1)ε+ · · · ]

2
− · · · ,

with the prime denoting differentiation with respect to s.
By substituting (13), (14) and (16) in (11) and equating the coefficients of the various terms

involving powers of ε we get the following three equations

O (ε) : ω0
dx0(s)

ds
= a0x0(s) + a1x0 (s− ω0T0) , (17)

O
�
ε2
�
: ω0

dx1(s)

ds
+ω1

dx0(s)

ds
= a0x1(s)− a1x

′

0(s−ω0T0)(ω1T0+ω0T1)+a1x1(s−ω0T0), (18)
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O
�
ε3
�
: ω0

dx2(s)

ds
+ ω1

dx1(s)

ds
+ ω2

dx0(s)

ds
= a0x2(s)− a1x

′

0(s− ω0T0)(ω2T0 + ω1T1 + ω0T2)

+
1

2
a1x

′′

0(s− ω0T0)(ω1T0 + ω0T1)
2

+ a1x2(s− ω0T0)− a1x
′

1(s− ω0T0)(ω1T0 + ω0T1) + a3x0(s− ω0T0)
3. (19)

The solution of (17) is of the form

x0(s) = A0 sin s+B0 cos s, (20)

where A0 and B0 are constants. Substituting (20) in (17), we find that A0 and B0 can be arbitrary.
For the sake of simple calculation, we impose the initial conditions x0(0) = 0 and x′0(0) = 1 to get

x0(s) = sin s. (21)

Similarly, the term x1(s) in the perturbation series (13) is governed by (18). Let

x1(s) = A1 sin s+B1 cos s+C1 sin (2s) +D1 cos (2s) +E1, (22)

where A1, B1, C1,D1 and E1 are constants. Inserting (22) into (18), and with (21), we obtain
an equation about sin s, cos s, sin (2s) and cos (2s). Then, by equating to zero the corresponding
coefficients, we get the values of the unknown parameters. More precisely, one has

ω1 = T1 = 0

C1 = −
(a0 + a1)a1ω0

4(a0 + a1)2ω20 + (−a0a1 + a21 − 2a
2
0)
2
, (23)

D1 =
(a0a1 − a21 + 2a

2
0)a1

2 [4(a0 + a1)2ω20 + (−a0a1 + a21 − 2a
2
0)]

2
, (24)

E1 = −
1 + a1

2(a0 + a1)
, (25)

and A1, B1 arbitrary. For simplicity, we take A1 = B1 = 0. Thus, we can pick the non-trivial
solution to be

x1(s) = C1 sin (2s) +D1 cos (2s) +E1, (26)

with C1,D1 and E1 given in (23)-(25).
Finally, let

x2(s) = A2 sin s+B2 cos s+C2 sin (2s) +D2 cos (2s) +E2 sin (3s) + F2 cos (3s) +G2

be solution of (19), with A2, B2, C2,D2, E2, F2 and G2 constants. By substituting x2(s) in (19) and
using (21) and (24), the comparison of coefficients and the use of (12) and (15) gives:

ω2 =
3a3a

2
1

4a1ω0
= −

Aλ2

4
�

λ2 − b2
< 0 and T2 =

3a3
�
a0 − a21τ0

�

4a1ω20
=

λ2(b+Aλ2τ0)

4A
�

λ2 − b2
> 0.
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After finding the perturbed parameter values, we can write down the approximate bifurcated peri-
odic solution of (4) as

x(s) =

�
τ − τ0
T2

x0(s) +
τ − τ0
T2

x1(s) + · · · ,

where x0(s), x1(s) are given in (21) and (26) respectively, and τ ≈ τ0 + T2ε2, ω ≈ ω0 + ω2ε2. As
ω1 = T1 = 0, we know that T2 determines the direction of the Hopf bifurcation and ω2 determines
the period of the bifurcating periodic solutions (see Figures 2.a and 2.b). We are now able the state
the main result of the section.

Theorem 9 Let a = 0. The Hopf bifurcation of (4) at p∗ = 0 when τ = τ0 is super-critical and
the bifurcating periodic solutions exist for τ > τ0. Moreover, its period decreases as τ increases.

By adapting the previous formulas for p∗ = 0 we have

x(s) = εx0(s) + ε2x1(s) = [sin s] ε+ [C1 sin (2s) +D1 cos (2s) +E1] ε
2

where

ε =
τ − τ0
T2

a0 = −Ab < 0, a1 = −Aλ < 0, a2 = 0, a3 =
Aλ3

3
> 0.

T0 = τ0 =
1

ω0

�
arctan

�
ω0
a0

�
+ π

�
and ω0 = A

�
λ2 − b2 (b < λ).

with C1, D1 and E1 defined by (23), (24) and (25), respectively.
We note that when a = 0 we have that C1 < 0, while the numerator of D1 is A3λ

�
λ2 − bλ− 2b2

�
.

Since λ > b we get D1 = 0 when λ = 2b, D1 > 0 for λ > 2b and D1 < 0 for b < λ < 2b. Finally,
with regard to E1 we have that sign(E1) = sign(1−Aλ). Then, E1 = 0 when λ = 1/A; E1 > 0 for
λ < 1/A; E1 < 0 for λ > 1/A.

Figure 2. Lindstedt approximation for parameter set: a = 0, b = 0.1, λ = 2, A = 1 and
τ ∼= 0.811523. (a) phase plane. (b) Time plot.
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5 The model: equilibrium dynamics of expected prices

While in the previous section we have studied disequilibrium dynamics of actual prices in a cobweb
model, in this section we follow [Hommes, 1994] and [Gallas and Nusse, 1996] and consider the
dynamics of expected prices in a market where it is assumed that for any t demand equals supply
(equilibrium dynamics). Specifically, by assuming that producers have adaptive expectations, and
demand and supply of goods are given by (1) and (2), the market equilibrium condition at time t
implies that

D(p(t)) = S(pe(t)). (27)

Then, from (27) the price that equates demand and supply for any t as a function of parameters
and expected price is the following:

p(t) =
a

b
−
1

b
arctan(λpe(t)). (28)

It is now important to specify the expectations formation mechanism of prices. To this purpose,
we follow [Hommes, 1994] and [Gallas and Nusse, 1996] that assume - in a discrete time model -
that the new expected price is a weighted average of the old expected price and the old actual price
(adaptive expectations), that is

pet+1 = (1−w)pet +wpt, (29)

where 0 < w ≤ 1 is a parameter that captures the weight of the actual price in (29). By taking into
account the approach of [Berezowski, 2001] and [Matsumoto and Szidarovszky, 2014], we introduce
a continuous time version of (29) with discrete time delays so that the expected price dynamics
may be written as follows:

σ
∂pe(t)

∂t
+ pe(t) = (1−w)pe(t− τ) +wp(t), (30)

where σ ≥ 0 is a parameter that weights the inertia of expected price changes. The notion of inertia
is taken from physical sciences. It however has a strong economic interpretation in our context. In
fact, in several economic models, movements in prices (and also other in other economic variables,
such as wages) are subject to some frictions, e.g. sticky prices, that influence their evolution over
time. When σ = 0 the law of motion of expected prices is described by a first-order nonlinear
difference equation and replicates the model of [Hommes, 1994] Eq. (30) tells us that the evolution
of expected prices is a weighted average of the expected price at time t− τ and the actual price at
time t. Then, by using (28) at time t− τ and (30) we get:

σ
∂pe(t)

∂t
+ pe(t) = (1−w)ped +w

�
a

b
−
1

b
arctan(λped)

�
, (31)

where
ped := pe(t− τ).

Equilibria of (31) are obtained by setting equation (31) to zero. Doing this, we get the existence
of a unique equilibrium pe

∗
≥ 0, where a − bpe

∗
= arctan(λpe

∗
). Notice that pe

∗
= 0 for a = 0 and

0 < pe
∗
< a/b for a > 0. By setting

x = σ (pe − pe
∗
)
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and using the Taylor expansion around zero in (31) gives the following equation

ẋ = a0x+ a1xd + a2x
2
d + a3x

3
d +O(x4d), (32)

where

a0 = −
1

σ
< 0, a1 =

1−w

σ
−

wλ

bσ
�
1 + λ2(pe

∗
)2
� ,

a2 =
2wλ3pe

∗

bσ2
�
1 + λ2(pe

∗
)2
�2 ≥ 0, a3 =

2wλ3
�
1− 3λ2(pe

∗
)2
�

bσ3
�
1 + λ2(pe

∗
)2
�3 .

(33)

Noting that

|a1| > |a0| ⇔

					
1− w −

wλ

b
�
1 + λ2(pe

∗
)2
�

					
> 1

⇔ b <
wλ

(2−w)
�
1 + λ2(pe

∗
)2
� ,

from section 3, Lemmas 3, 6 and Proposition 7 we easily obtain the following results about the
stability of equilibrium p∗ of Eq. (31).

Theorem 10 Let ω0 and τ j, j ∈ N0, be defined as in (9), with a0 and a1 given by (33).

1. If b ≥ wλ/
�
(2−w)(1 + λ2(pe

∗
)2)
�
, then the equilibrium pe

∗
of (31) is locally asymptotically

stable for all τ ≥ 0.

2. If b < wλ/
�
(2−w)(1 + λ2(pe

∗
)2)
�
, then the equilibrium pe

∗
of (31) is locally asymptotically

stable for τ ∈ [0, τ0) and unstable for τ > τ0. Furthermore, (31) undergoes a Hopf bifurcation
at the equilibrium pe

∗
when τ = τj, j ∈ N

0.

Remark 11 Assume b < wλ/
�
(2−w)(1 + λ2(pe

∗
)2)
�
, i.e. (2 − w)(1 + λ2(pe

∗
)2)b < λw. Then we

derive (1−w)(1 + λ2(pe
∗
)2)b < λw. From

sign(a1) = sign

�

1−w −
wλ

b
�
1 + λ2(pe

∗
)2
�

�

= sign
�
(1−w)

�
1 + λ2(pe

∗
)2
�
b−wλ

�
,

we must have a1 < 0.

With regard to this model, we prefer to concentrate on global properties of the systems and we do
not deepen the study of the stability properties of the limit cycle generated by the Hopf bifurcation.
However, the same approach used in Section 4 may be applied to this purpose. The curve in Figure
3 illustrates the combinations of parameters λ, a and τ that generate a Hopf bifurcation. For values
of the parameters below the curve, the fixed point is locally stable. Above the curve the fixed point
is unstable.

12



Figure 3. Stability and instability region in the parameter space (a, λ, τ).

Now, we note that through numerical experiments it is possible to inquire about the dynamics of
the model in the case parameters range in a region for which the stationary equilibrium is unstable
(see Figure 4.a). This model is characterised by several parameters that affect in a non trivial way
long-term dynamics. Then, in order to study global dynamics, in what follows we fix b = 0.25 and
w = 0.3 (that are the same values used by [Hommes, 1994]) and let the other parameters vary.
As expected, we note that σ (inertia) plays a stabilising role. In fact, by starting from a = 0.7
λ = 4.8 and τ = 12 and by considering small values of σ, Eq. (31) is a small perturbation of the
corresponding discrete time model and then it is characterised by chaotic dynamics. For larger
values of σ we observe that the dynamics become increasingly regular up to have a stable fixed
point for σ > 1.437 (see Figure 4.b).

Figure 4. (a) The figure shows that there exists a linear and increasing relationship between σ and
τ0 (this result may be formally proved starting from the expression of τ0). (b) Bifurcation diagram
for σ. See the main text for parameter values.

2 The same parameter set is used by Hommes (1994) to prove the existence of chaotic dynamics.
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In order to study the role of time delay (τ) on long-term dynamics, we fix the degree of inertia
at σ = 0.8, while also choosing λ = 4.8 as in [Hommes, 1994]. Then, for relatively small values of
τ (τ < 0.2) the stationary equilibrium is stable for every value of a due to a sufficiently high value
of σ (see Figure 5.a). A change in a has the sole effect of affecting the position of the equilibrium.
By considering a high value of τ , for example τ = 1, there exists a range of values of a (about
−0.85 < a < 0.85) such that the equilibrium undergoes a Hopf bifurcation and a limit cycle arises
(see Figure 5.b). By increasing τ further, Figures 5.c and 5.d show the existence of intervals of
parameter a with respect to which the dynamics of the state variable are characterised by the
existence of several maxima and minima (period-doubling bifurcation) and chaotic dynamics. In
this last case σ is large enough. However, the existence of chaos can be detected by numerical
calculations of the largest Lyapunov exponent (see for example Wolf et al., 1985).

Figure 5. Bifurcations diagrams for a plotted with respect to four different values of τ : (a) τ = 0.1.
(b) τ = 1. (c) τ = 3. (d) τ = 5.
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By using the parameter set a = 0.8, b = 0.25, w = 0.3, σ = 0.6, λ = 4.8, Figures 6.a, 6.b and 6.c
show the evolution of the attractor of the system for increasing values of τ in the (pe(t), pe(t− τ))
plane. Finally, Figure 6.d shows the time plot corresponding to the case τ = 5 when chaotic
behaviour exists. Parameter τ captures the time required to technology to produce and bring
products on the market. Then, higher values of τ reflect technologies for which this happens in long
time, as for instance holds in agricultural markets. The figures point out that complex dynamics
are favoured by higher values of τ . This appears to be in line with some empirical studies related to
time series of prices in agricultural goods (for instance [Yang and Brorsen, 1992; Su et al., 2014]).

Figure 6. Evolution of the attractor of the system. (a) τ = 1.5. (b) τ = 2.5. (c) τ = 5. (d) Time
plot for τ = 5.

6 Conclusions

This paper has studied the dynamics of prices in two different kinds of continuous time cobweb
models with time delays. In the former model, we have concentrated on disequilibrium dynamics of
actual prices with static expectations. In the latter one, we have extended the discrete time model
of [Hommes, 1994] and [Gallas and Nusse, 1996] and studied equilibrium dynamics of expected
prices by taking into account adaptive expectations.
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We have shown that time delays are responsible of different outcomes depending on whether
one wants to consider disequilibrium dynamics of actual prices or equilibrium dynamics of expected
prices. Specifically, in the case of disequilibrium dynamics a sufficiently large time delay in the
time-to-build technology may generate a super-critical Hopf bifurcation and periodic dynamics; on
the other hand, markets characterised by an equilibrium between demand and supply at every time
period, by requiring that actual prices generate such an equilibrium, induce markedly significant
adjustment phenomena that may be responsible for chaotic dynamics in expected (and actual)
prices.

Though the study of models with delay differential equations is not new in economics, some
tools and techniques (bifurcation diagrams, Poincaré-Lindstedt approximation method, and so on)
are not widely used in the literature dealing with economic dynamics, with some exceptions (for
instance, [Matsumoto and Szidarovszky, 2011, 2014]). So we hope that the study of delay differ-
ential equations in an influential economic model such as the cobweb framework can spread these
techniques in the related scientific community. Finally, studying this kind of models in a stochastic
(i.e., non-deterministic) context could be fruitful for a possible future research agenda, that may
also include a development of the topic by using a model with distributed time delays.

Acknowledgements The authors gratefully acknowledge three anonymous reviewers for com-
ments and suggestions. The usual disclaimer applies.

References

Artstein, Z. [1983] "Irregular cobweb dynamics," Econ. Lett. 11, 15—17.
Asea, P. K. & Zak, P. J. [1999] "Time-to-build and cycles," J. Econ. Dyn. Control 23, 1155—

1175.
Bambi, M. [2008] "Endogenous growth and time-to-build: the AK case," J. Econ. Dyn. Control

32, 1015—1040.
Berezowski, M. [2001] "Effect of delay time on the generation of chaos in continuous systems.

One-dimensional model. Two-dimensional model—tubular chemical reactor with recycle," Chaos
Soliton. Fract. 12, 83—89.

Bischi, G. I., Stefanini, L. & Gardini, L. [1998] "Synchronization, intermittency and critical
curves in a duopoly game," Math. Comput. Simulat. 44, 559—585.

Boucekkine, R., de la Croix, D., & Licandro. O. [2002] "Vintage human capital, demographic
trends, and endogenous growth," J. Econ. Theory 104, 340—375.

Boucekkine, R., Licandro, O., Puch, L. A. & del Rio, F. [2005] "Vintage capital and the dynamics
of the AK model," J. Econ. Theory 120, 39—72.

Brianzoni, S., Mammana, C., Michetti, E. & Zirilli, F. [2008] "A stochastic cobweb dynamical
model," Discrete Dyn. Nat. Soc. 2008, 1—18.

Brock, W. A. & Hommes, C. H. [1997] "A rational route to randomness," Econometrica 65,
1059—1095.

Chiarella, C. [1988] "The cobweb model. Its instability and the onset of chaos," Econ. Model.
5, 377—384.

Dieci, R. & Westerhoff, F. [2010] "Interacting cobweb markets," J. Econ. Behav. Organ. 75,
461—481.

Dieudonné, J. [1960] Foundations of Modern Analysis (Academic Press, New York (NY)).

16



Dixit, A. [1979] "A model of duopoly suggesting a theory of entry barriers," Bell J. Econ. 10,
20—32.

Ezekiel, M. [1938] "The cobweb theorem," Q. J. Econ. 52, 255—280.
Ferrara, M., Guerrini, L. & Sodini, M. [2014] "Nonlinear dynamics in a Solow model with delay

and non-convex technology," Appl. Math. Comput. 228, 1—12.
Gallas, J. A. C. & Nusse, H. E. [1996] "Periodicity versus chaos in the dynamics of cobweb

models," J. Econ. Behav. Organ. 29, 447—464.
Gandolfo, G. [2010] Economic Dynamics (Fourth Ed. Springer, Berlin).
Gori, L., Guerrini, L. & Sodini, M. [2014] "Hopf bifurcation in a cobweb model with discrete

time delays," Discrete Dyn. Nat. Soc. 2014, Article ID 137090, 1—8.
Hommes, C. H. [1991] "Adaptive learning and roads to chaos," Econ. Lett. 36, 127—132.
Hommes, C. H. [1994] "Dynamics of the Cobweb model with adaptive expectations and nonlinear

supply and demand," J. Econ. Behav. Organ. 24, 315—335.
Jensen, R. V. & Urban, R. [1984] "Chaotic price behavior in a non-linear cobweb model," Econ.

Lett. 15, 235—240.
Kaldor, N. [1934] "A classificatory note on the determination of equilibrium," Rev. Econ.

Studies 1, 122—136.
Mas-Colell, A., Whinston, M. D. & Green, J. R. [1995] Microeconomic Theory (Oxford Univer-

sity Press, New York).
MacDonald, N. [1978] Time Lags in Biological Models. Lecture Notes in Biomathematics 27

(Springer-Verlag, Berlin).
Matsumoto, A. & Szidarovszky, F. [2011] "Delay differential neoclassical growth model," J.

Econ. Behav. Organ. 78, 272—289.
Matsumoto, A. & Szidarovszky, F. [2014] "Discrete and continuous dynamics in nonlinear mo-

nopolies," Appl. Math. Comput. 232, 632—642.
Nerlove, M. [1958] "Adaptive expectations and cobweb phenomena," Q. J. Econ. 72, 227—240.
Onozaki, T., Sieg, G. & Yokoo, M. [2000] "Complex dynamics in a cobweb model with adaptive

production adjustment," J. Econ. Behav. Organ. 41, 101—115.
Onozaki, T., Sieg, G. & Yokoo, M., [2003] "Stability, chaos and multiple attractors: a single

agent makes a difference," J. Econ. Dyn. Control 27, 1917—1938.
Ruan, S. & Wei, J. [2003] "On the zeros of transcendental functions with applications to stability

of delay differential equations with two delays," Dyn. Cont. Dis. Ser. A 10, 863—874.
Su, X., Wang, Y., Duan, S. & Ma, Y. [2014] "Detecting chaos from agricultural product price

time series," Entropy 16, 6415—6433.
Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. [1985] "Determining Lyapunov exponents

from a time series," Physica D 16, 285—317.
Yang, S. R., Brorsen, B. W. [1992] "Nonlinear dynamics of daily cash prices," Am. J. Agr.

Econ. 74, 706—715.

17


