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Abstract

This article represents an attempt to characterise the dynamics of a nonlinear duopoly

with price competition and horizontal product differentiation by accounting for non-

negativity constraints (on profits and the market demand). The model is set up by

following the tradition led by Bischi et al. (1998), according to which players have limited

information. The article shows several local and global phenomena of a two-dimensional

discrete time system when the price demand elasticity varies. It also points out the

differences from both a mathematical and economic point of views in terms of dynamic

outcomes when the non-negativity constraints are not binding and when they are binding.

This is done by combining mathematical techniques and simulation exercises.

Keywords Chaos; Local and global bifurcations; Price competition; Product dif-

ferentiation
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1 Introduction

This article represents an attempt to characterise local and global dynamics in a nonlinear

duopoly with price competition and horizontal differentiation. Particular attention is paid to

the role played by non-negativity constraints on quantities and profits in determining long-term

outcomes.

In both static and dynamic models of industrial economics and industrial organisation,

scholars often avoid dealing with microeconomic settings where the marginal willingness to pay
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of consumers is captured by non-linear inverse demand functions. The majority of contribu-

tions, in fact, was concerned with models characterised by linear demands. This assumption is

essentially made up for analytical tractability as well as for preserving concavity in the firm’s

optimisation problem and the uniqueness of the equilibrium. However, from an empirical point

of view, there exist robust estimations supporting the existence of (individual or market) in-

verse demand functions describing a non-linear course between price and quantity (Varian,

1982, 1990). This holds in models with both price competition (Bertrand) and quantity com-

petition (Cournot). We recall that when products are homogeneous firms choose to compete on

quantities (Singh and Vives, 1984). In fact, a classic result in the duopoly theory is that price

competition with homogeneous products leads to the unrealistic Bertrand paradox, resulting in

the zero profit condition for competitors. This result does no longer hold in the case of product

differentiation. In fact, as noted by Puu (2017), in the latter case the two firms have a kind

of monopoly power (monopolistic competition) and hence a price competition setting can also

be compatible with the existence of a Nash equilibrium with positive profits. Even empirically,

there are classic results that appear to confirm that on actual markets competition takes place

on prices when products are differentiated. (Gasmi et al., 1992).

Given the importance of studying problems related to product differentiation,1 our goal

is to analyse the dynamic properties of a two-dimensional discrete time model where firms

compete on prices. As obtaining and using information efficiently (as predicted by the rational

expectations paradigm) seems to be a too strong assumption which can lead to high costs

(Brock and Hommes, 1997), we assume that players have limited information and use a naïve

rule (bounded rationality) to set the price for the subsequent period.2 Roughly speaking, when

bounded rationality is introduced in economic models results are somewhat different from those

obtained under rational expectations, especially with regard to stability outcomes. In fact, in

the absence of full information models predict that instability holds under weak conditions3:

the instability of equilibria seems to be the rule rather than the exception and may represent an

explanation of the observed output fluctuations (quantity or price) in imperfectly competitive

markets.

With specific regard to the duopoly dynamics, the literature has essentially concentrated

on quantity-setting firms by assuming either linear demand (quadratic utility) or unit-elastic

demand (Cobb-Douglas utility). In a leading article, Bischi et al. (1999) draw attention on

1See Singh and Vives (1984) for the case of profit-maximising firms and Fanti et al. (2017) for the case of

managerial firms.
2Models with rational expectations are based on two main assumptions: rationality of agents (i.e., expecta-

tions of an economic agent are equivalent to mathematical expectations, which exploit all available information)

and homogeneity of expectations of all economic agents.
3Rational expectations models tend to explain the volatility of economic variables because of the existence

of exogenous (stochastic) shocks, while instability in models with bounded rationality is endogenous to the

model. See Agliari, Chiarella and Gardini (2006) for a critique to the use of rational expectations in dynamic

(nonlinear) models.
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the existence of heterogeneities between players (asymmetric map) that give rise to symmetry-

breaking bifurcations. They show that negligible differences in the basic parameters character-

ising duopolistic firms may cause qualitatively different dynamic evolutions as compared with

the case of a symmetric game (such as lack of synchronisation and coexistence of attractors),

i.e. the representative agent hypothesis dramatically matters for the outcome the economy

may follow. More recently, it has been pointed out that there may exist similar dynamic events

also when players are homogeneous and then the system characterising the dynamics of the

economy is symmetric (Fanti et al., 2012, 2015). Specifically, Fanti et al. (2012) develop a

nonlinear duopoly model with linear demand and managerial firms to show that the degree of

competition between managers is responsible for on-off intermittency, blow-out phenomena and

multistability, whereas Fanti et al. (2015) consider a model with homogeneous products, gen-

eral isoelastic demand and profit maximising firms finding that the elasticity of market demand

is responsible for local and global outcomes that cannot be observed in the case of unit-elastic

demand (coexistence of attractors, coordination failures and complex structures of the basins

of attraction). In this literature, some exceptions that study price competition with limited

information are the works of Fanti et al. (2013a), Ahmed et al. (2015) and Andaluz and Jarne

(2016). The first work considers a horizontally differentiated duopoly with homogeneous firms

and linear demand (symmetric map). The main aim is to show that the extent of product

differentiation is responsible for synchronised dynamics along the invariant diagonal and inter-

mittency. The work also discusses the transition from simple dynamics to complex dynamics

and describes the structure of the attractors and their basins. The second article concentrates

on the case of a differentiated duopoly with substitute goods where consumers’ demands are

defined by starting from a CES (Constant Elasticity of Substitution) utility function, showing

how different parameter configurations can affect the dynamics of the system. The third work,

instead, considers a vertically differentiated duopoly and compares local and global dynamics

of Cournot and Bertrand competition models. However, and most importantly, these articles

do not take into account non-negativity constraints on quantities and profits and their role in

long-term outcomes.

The present work emphasises the importance of economic constraints in determining dy-

namic outcomes when price competing firms do not have complete information. Results are

given by considering gradual reductions in a parameter that contributes to measure the demand

elasticity. This reduction may produce an increase in both unitary profits and marginal profits

that contributes to let the change of prices over time much more reactive (to capture the oppor-

tunity of higher profitability) than when the elasticity of market demand is lower. An increase

in the reactivity of firms in setting the price between two subsequent periods is responsible

for several phenomena (Neimark-Sacker bifurcations, multistability) that are impossible in the

case of unit-price elasticity. With regard to the role of economic constraints, the introduction

of a piecewise map that makes it feasible regions of the phase plan that were excluded from

previous studies leads to changes in the dynamics of the system properties that have required a
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thoughtful analysis. In particular, new forms of multistability and synchronisation phenomena

not observable in the absence of constraints may arise. From an economic point of view, it is

possible to observe time series characterised by periods in which production is positive space

out by periods without production or periods in which production is positive but leading to

a very low mark up of the price per unit of good with respect to the marginal cost. This

behaviour seems to mimic some of the phenomena observed in actual duopoly markets, as

price competition is fiercer than quantity competition (Ellison and Snyder, 2014; Newbery and

Greve, 2015).

In the literature, there are contributions that have introduced constraints on both the

demand side and the supply side (no zero production) in nonlinear duopoly models. As far

as the former group of works is concerned, we mention the article of Bischi and Lamantia

(2012) showing, in the basic Cournot model with linear reaction functions, that the existence

of constraints on the size of market demand can generate routes to complex dynamics by

starting from a situation where the Nash equilibrium is positive but unstable in the absence of

constraints. As far as the second group of works is concerned, the literature (Agliari, Gardini

and Puu, 2006; Tramontana et al., 2010) focuses on models with quantity competition and

perfect knowledge of the market demand (best reply). In particular, Agliari, Gardini and Puu

(2006) emphasise the possibility of obtaining multistability (attractors coexisting with a stable

Nash equilibrium) due to constraints on the supply side of the market. Finally, with the aim of

avoiding the unpleasant result that once a firm chooses to do not produce it definitely exits the

market, Tramontana et al. (2010) introduce a lower bound on the amount produced by each

single firm. Our price-setting mechanism resembles this assumption. However, different from

Tramontana et al. (2010) in the present work it is possible to obtain that the quantity demanded

by customers corresponding to a certain price at some time is null (with the opportunity to

re-enter to the market later). This is because competition (firms’ decisions) takes place on

prices and market demand is the result of such decisions.

The rest of the article is organised as follows. Section 2 develops a Bertrand game with

horizontal product differentiation in a standard static set up. Section 3 introduces a dynamic

mechanism of prices by assuming limited information as in Bischi et al. (1998) and shows that

reducing (ceteris paribus) the demand elasticity causes several local and global phenomena

(Neimark-Sacker bifurcation, multistability and so on) that cannot be observed in a model

with unit-elastic demand. Section 4 explores the role of economic non-negativity constraints

by adopting the critical curves technique. Section 5 outlines the conclusions.

2 The game

Consider a Bertrand duopoly with horizontal product differentiation and two types of agents:

firms and consumers. Firm 1 produces output of variety 1 (q1 ≥ 0) and firm 2 produces output
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of variety 2 (q2 ≥ 0). We assume that the indirect demand of product i = 1, 2 takes the

following form:

pi = Q
−1

η

i , (1)

where Qi = qi + dq−i, −i identifies the rival firm of i, η > 0 is a parameter that contributes

to measure the degree of demand elasticity, pi ≥ 0 is the consumers’ marginal willingness to

pay towards product of variety i produced by firm i and d is the degree of horizontal product

differentiation. The demand function in (1) modifies the general isoelastic demand function of

Fanti et al. (2015) by considering horizontally differentiated products. The direct demand of

product of variety i is then given by:

qi = max

�

0,
p−ηi − dp−η

−i

1− d2

�

. (2)

If qi > 0, (2) can be rewritten as follows:

qi =
p−ηi − dp−η

−i

1− d2
=

p−ηi
1− d2

−
dp−η
−i

1− d2
, (3)

from which it is possible to note that product i is an ordinary good if and only if d ∈ (−1, 1). In

particular, products are substitutes (resp. complements) if d > 0 (resp. d < 0), whereas they

tend to be perfect substitutes (resp. perfect complements) if d → 1 (resp. d → −1). When

d < 0 direct demands of products 1 and 2 are both always positive. In contrast, when d > 0

we have that qi > 0, i = 1, 2 ⇐⇒ p−i ∈
�
d
1

η pi, d
−
1

η pi

�
. This non-negativity condition plays a

relevant role in our model, as will be clear later in this article.

The production function of firm i has constant marginal returns to labour implying that

qi = Li, where Li is the labour force employed in ith firm (Correa-López and Naylor, 2004).

Then, firm i’s cost function is Wi(qi) = wLi = wqi, where w > 0 is the constant average

and marginal cost (wage) of producing an additional unit of output. Firm i maximises profits

Πi = max(0, pi − w)max(0, qi) with respect to pi, given p−i and the parameters of the model.

1) If w > d
−1

η p−i then it is not possible for firm i to realise positive profits. In such a case, the

objective of firm i is to avoid negative profits. Therefore, there exist two optimal solutions of

the price-setting problem for firm i. The first one is pi = w, implying that irrespective of the

market demand the profit of firm i is null. The second one is pi > d
−1

η p−i, implying that the

price is fixed at too high a level so that the demand of product of firm i is zero. 2) It is simple

to verify that if w < d
−1

η p−i then the solution of the optimisation problem of firm i is a price

pi such that the demand qi and profits Πi are positive. In this case, the optimisation problem

of firm i can be written as follows:

max
w<pi<d

−1
η p−i

(pi − w)

�
p−ηi − dp−η

−i

1− d2

�

. (4)

By computing marginal profits
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∂Πi

∂pi
=

p1−ηi (1− η) + p−ηi ηw − dpip
−η
−i

(1− d2)pi
, (5)

we have that

sgn

�
∂Πi

∂pi

�
= sgn (xi(pi)) , (6)

where

xi(pi) := (1− η)p−ηi + ηwp−η−1i − dp−η
−i . (7)

From (7) we get

lim
pi→d

−1
η p−i

xi(pi) = −ηdp−η
−i

�

1−
w

d
−1

η p−i

�

< 0, (8)

and

lim
pi→0+

xi(pi) = +∞. (9)

We have that the derivative of xi with respect to pi is given by x
′

i(pi) = −ηp−η−1i

	
1− η + (1+η)w

pi



.

If 0 < η < 1 then x′i(pi) < 0. Thus, xi(pi) is a monotonically decreasing function. If η > 1

then we have that function xi(pi) is first decreasing and then increasing. Therefore, in any case

there exists a unique point p̄i such that ∂Πi/∂pi > 0 for any pi < p̄i and ∂Πi/∂pi < 0 for any

pi > p̄i. As a consequence, p̄i is the solution of the problem of firm i.

Equilibria of the game. Let us now concentrate on the solution of the static game. We begin

the study by showing that (w,w) is not a Nash equilibrium of the game. Assume that player

2 plays w. Then, we will show that player 1 should play a price such that p1 > w. Given the

assumptions on the behaviour of player 2, we have that

Π1 = (p1 − w)max

�
0,
p−η1 − dw−η

1− d2

�
. (10)

If firm 1 played w it would get a payoff Π1 = 0, but we now show the existence of a price p1

that verifies system �
p−η1 − dw−η > 0

p1 > w
, (11)

and guarantees strictly positive profits to firm 1. For doing this, we have to distinguish between

two cases: product complementarity (d < 0, that is prices are strategic substitutes) and product

substitutability (d > 0, that is prices are strategic complements). Then, in order to get positive

profits it is sufficient to set p1 > w when d < 0 and w < p1 < d
−1

η w when d > 0.

We proceed further into the analysis by showing that Nash equilibrium (p01, w), with p01 > w,

cannot exist for the game. Specifically, we will see that given p01 player 2 should not play w.

From the arguments proposed in the solution of the optimisation problem it is sufficient to

prove that there exists a price p2 > w such that

q2 =
p−η2 − d (p01)

−η

1− d2
> 0. (12)

6



If fact, this strategy guarantees strictly positive profits for player 2. In particular, if d < 0 then

condition (12) is fulfilled for any p2 > w, whereas if d > 0 it is sufficient to set p2 such that

w < p2 < d
−1

η p01 so that condition (12) holds.

By concentrating on the existence of Nash equilibria such that prices of both firms are

strictly larger than w with p−i ∈
�
d
1

η pi, d
−
1

η pi

�
, i = 1, 2, we find that the optimality conditions

for interior points (first order conditions) imply that the equations

(1− η)p1−ηi + ηwpi
−η − dpip

−η
−i = 0, i = 1, 2, (13)

should hold at Nash equilibrium (p01, p
0
2).

As the game is symmetric, there exists at least a symmetric equilibrium (p0, p0), where p0

is solution of the following equation:

�
p0
1−η

(d+ η − 1)− (p0)−ηηw = 0. (14)

From (14), it follows that the Nash equilibrium is unique. This is given by:

E∗ := (p∗1, p
∗

2) =

�
ηw

d+ η − 1
,

ηw

d+ η − 1

�
. (15)

Then, equilibrium values of quantities and profits are respectively given by:

q∗1 =
(p∗1)

−η

1 + d
, q∗2 =

(p∗2)
−η

1 + d
, (16)

Π∗

1 =
w(1− d)

d+ η − 1
q∗1, Π∗

2 =
w(1− d)

d+ η − 1
q∗2. (17)

Remark 1 If η > 1 then Nash equilibrium (15) is well defined for any d > 0. However, the

existence of a Nash equilibrium is not guaranteed for any couple (d, η). In particular, if η < 1

(i.e., the market demand is sufficiently elastic) then d > 1− η (i.e., products 1 and 2 should be

sufficiently substitutes between each other), whereas if d < 0 (i.e., products are complements)

then η > 1− d > 1 (i.e., the market demand should be sufficiently anelastic for any given value

of the degree of product differentiation).

In this article, we concentrate on the analysis of the local and global dynamics of the model

when products are substitutes (i.e., prices are strategic complements) and the elasticity of

market demand is relatively low (η is sufficiently high), implying that the degree of substitution
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between product of firm 1 (e.g., Coca-Cola) and product of firm 2 (e.g., Pepsi Cola) is relatively

small for consumers.4 Therefore,

Assumption 2 d > 0 and η > 1.

We now show that under Assumption 2 non-symmetric Nash equilibria do not exist.

Proposition 3 If a Nash equilibrium exists for the game, it is a symmetric equilibrium.

Proof. Let (p01, p
0
2) be a Nash equilibrium of the game. Define

f(z) =
[(1− η) z + ηw]

1

η

(dz)
1

η

. (18)

From the optimality conditions it follows that the condition:

f(p02) =
p02
p01

=
1

f(p01)
, (19)

must hold in equilibrium. By absurd, let us assume that p01 > p02. Define also

f̃(z) =
(1− η) z + ηw

dz
, (20)

which is a monotonically increasing transformation of f(z). From (20) we have that the deriv-

ative of f with respect to z is given by

f̃ ′(z) =
−ηwd

(dz)2
< 0, (21)

as d > 0. Therefore, we get f(p1) < f(p2) for any p1 > p2. Then, equalities in (19) cannot

hold.

Remark 4 When d < 0 (i.e., products are complements and prices are strategic substitutes),

it is possible to have both symmetric and non-symmetric equilibria.

4See Gasmi et al. (1992) for a study of a Bertrand soft drink market duopoly where products are substitutes

and then prices and strategic complements (the reaction functions of firms are upward sloping). Empirical works

less support the case in which products are complements so that prices and strategic substitutes (the reaction

functions of firms are downward sloping). Then we do not present an analysis of such a case here. In a duopoly,

two variables are said to be strategic complements (resp. substitutes) when a firm’s action induces the rival

to take the same (resp. opposite) action. These concepts help describing how a firm reacts to price/quantity

change by a competitor to maximise profits.
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3 Dynamics

Time is discrete and indexed by t = 0, 1, 2, ... By following Bischi et al. (1998), we assume

that each player has limited information about the market demand. In order to overcome this

lacuna, player i uses an adjustment mechanism based on the local estimate of its own marginal

profits at time t (∂Πi/∂pi) to set the price for time t + 1. By abstracting from any possible

non-negativity (economic) constraint, the adjustment mechanism of firms in a framework where

the price is the strategic variable reads as follows (gradient dynamics):

p′i = pi + αpi
∂Πi

∂pi
, (22)

where ′ is the unit-time advancement operator, α > 0 is the speed of adjustment of firm i’s

price and ∂Πi/∂pi are determined by (5). Although players have limited information, they are

assumed to be able to get a local estimate of marginal profits in the current period. Therefore,

firm i increases (resp. decreases) its price at time t + 1 if ∂Πi/∂pi > 0 (resp. ∂Πi/∂pi < 0)

at time t. Eq. (22) is a Bischi-like gradient rule applied to a model with price competition,

where we have used the linear specification α(pi) = αpi. This means that a relative change

in price from time t to time t + 1, i.e.
p′i−pi
pi

, is proportional to firm i’s marginal profitability.

Some clarifications are now in order about differences between models of price competition and

models of quantity competition (such as the pioneering contribution of Bischi et al. and related

works) using this kind of adjustment mechanism. Starting right from Bischi et al. (1998),

we recall that the quantity adjustment mechanism proposed by the authors is related to the

following economic framework: each duopolistic firm does not know the quantity produced by

the rival and does not know market demand. Therefore, as technology requires one period of

time to bring the production process to completion and get products to the market (time-to-

build assumption), based on this mechanism, production is started at time t and the quantities

chosen by the firm will be available to the market at time t+ 1. Now, based on the quantities

produced by both firms consumers outline the market demand that was unknown to firms at

time t. Differently, in a price competition model with a time-to-build technology, the economic

framework changes. In particular, one should consider a market where firms offer a price for a

good that once ordered by customers requires a time lag in production (for example, the car

market). In this case, production decisions and the market demand at time t+ 1 are revealed

at time t. It is interesting to note that a literature has recently emerged about the study of

nonlinear duopoly dynamics resulting from the assumption (exogenous choice) that a firm is

a price setter and the rival a quantity setter (e.g., Naimzada and Tramontana, 2012; Wang

and Ma, 2014). However, given the above reasoning, the Cournot-Bertrand comparison in a

dynamic framework with bounded rationality may cause problems of time consistency between

the behaviour of agents on the demand side and the behaviour of agents on the supply side.

Therefore, it requires a deeper investigation and understanding of the modelling approach.

In the literature on nonlinear duopolies, analyses have often been restricted to the study of
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dynamic systems generated by equations similar to (22) on set

D = {p1, p2 : p1 ≥ 0, p2 ≥ 0}, (23)

without accounting for problems related to the existence of economic constraints (Fanti et al.,

2013a). However, these constraints (positivity of quantities, non-negativity of profits, etc.)

play a relevant role in the study of dynamic models in both cases of quantity competition and

price competition duopolies. In fact, the inclusion of non-negativity constraints may change

some (global) dynamic properties of the systems in comparison with the same models without

constraints, as is stressed, for instance, by Cánovas et al. (2008) and Fanti et al. (2013b) for

Cournot rivalry. Given these observations, in order to have an economically well-defined map

we have to consider non-negativity constraints to account for 1) the non-negativity of quantities

(qi ≥ 0), and 2) the condition that guarantees the non-negativity of profits. With specific regard

to this last point, we note that profits of firm i are given by Πi = (pi − w)qi. As the firm’s

strategic variable is the price and given both the hypothesis of constant marginal returns to

labour and the non-negativity of quantities, non-negativity of profits is guaranteed by setting

the price at a value larger than or equal to the average and marginal cost w. Therefore, even

though in this work we are assuming players with bounded rationality, at every date neither

firm 1 nor firm 2 wants to set pi < w, i = 1, 2. Then, we let w̄ = w+ε (ε > 0) be a lower bound

on the price of both products, representing a sort of "epsilon" stand-by price (mark up) to avoid

that firms voluntarily choose a price that leads to a zero profit condition (see Tramontana et al.,

2010 for the use of this kind of threshold in a Cournot model where players have full information

and naïve expectations). Parameter ε can be interpreted as follows. In a dynamic context, firms

prefer to set a precautionary price that will guarantee them non-negative profits even in the

case of small shocks on the cost side. The existence of a condition that guarantees the non-

negativity of profits makes a nonlinear Bertrand duopoly sharply different than a nonlinear

Cournot duopoly (where qi ≥ 0 always holds). In fact, in the latter kind of models where

dynamics of quantities are driven by an adjustment mechanism à la Bischi et al. (1998), it is

possible to have periods in which the profit is strictly negative. This is because the marginal

willingness to pay of consumers at time t is actually affected by decisions made by each firm

at time t− 1 on the basis of the behaviour of the rival at this last time. Indeed, we recall that

p′i = f(q′i, q
′

−i), where the quantities q
′

i and q′
−i are chosen independently by each firm at time t

in a Cournot model, so that p′i ≷ w, i = 1, 2.

By turning on to the study of a Bertrand model, we now restrict the analysis to set F given

by

F = {(p1, p2) ∈ A : T n(p1, p2) ∈ A, ∀n ≥ 0}, (24)

where A is defined as

A =
�
(p1, p2) ∈ R2 : p1 ≥ w̄, p2 ≥ w̄

�
. (25)

Now, given set A it is possible to identify two different regions: 1) region A∩B where both
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firms produce positive quantities and B is equal to

B =
�
(p1, p2) ∈ R2 : d

1

η p1 < p2 < d−
1

η p1
�
, (26)

and 2) region A\B where one of the two firms does not produce positive quantities (see Figure

1). Specifically, set B defined in (26) represents the set of prices such that quantities are non-

negative (see Eq. 3), whereas set A defined in (25) represents the set of prices such that profits

are non-negative. Set A can actually be considered as the set of initial conditions such that the

dynamics are well-defined and the set in which the behaviour at time t of both players should

be defined in such a way that the price at time t+ 1 is fixed.

Figure 1. The blue region (bounded by the straight lines p2 = d−
1

η p1 and p2 = d
1

η p1) shows

the set in which prices guarantees that both firms produce a positive quantity of both products.

The yellow (resp. green) area describes a portion of the region in which the combination of

prices such that the quantity produced by firm 2 (resp. firm 1) is zero and the quantity produced

by the rival is positive. The pink region represents combinations of prices that will never be

selected by firms as the profit, at least for one player, will be too low or even negative when

prices are set below (resp. to the left) of the straight line p2 = w (resp. p1 = w).

Gradient dynamics are economically well-defined only for trajectories that belong to A∩B

for any n, that is when both demands and profits are strictly positive. If the gradient dynamics

defines a trajectory for which the couple of prices (p1, p2) at a certain iterate belongs to one

of the two subsets (the yellow region or the green region in Figure 1) whose union defines set

A\B, then one of the two firms does not produce because the demand of consumers is zero (i.e.,

the price is fixed at too high a level in that case) and its profits are null. As the profit function

of that firm is null on the subset of A\B considered, the related marginal profit is zero. Then,

by following the mechanism of gradient dynamics the firm will continue to choose the same
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price for the next period. However, from an economic point of view, it seems more reasonable

to assume that the firm facing a zero-demand modifies its choices and then reduces the price

to make it more likely facing a positive demand and therefore positive profits. Specifically, we

assume that if the price of firm i is fixed at too high a level so that trajectories exit A ∩ B,

then production is zero and firm i will decide to reduce its price to get positive profits. This

rule can be summarised by the dynamic equation p′i = pi − β(pi − w̄), where β ∈ (0, 1).5 Now,

define

H(p1, p2) := p1 + α
p1−η1 (1− η) + p−η1 ηw − dp1p

−η
2

1− d2
, (27)

K(p1, p2) := p2 + α
p1−η2 (1− η) + p−η2 ηw − dp2p

−η
1

1− d2
, (28)

as the equations that characterise the gradient dynamics. Then, by assuming that firms unilat-

erally set the price and dynamically prefer a trajectory leading to positive profits rather than

zero profits (p′i ≥ w̄), then map T : A→ A that governs the dynamics of the system depending

on whether the non-negativity constraints are binding or not is specified in the following way

(for a pictorial view of how map T acts see Figure 2):

TA :

�
p′1 = H(p1, p2)

p′2 = K(p1, p2)
, (29)

if w̄ < p1 < d
−1

η p2, w̄ < p2 < d
−1

η p1, H(p1, p2) ≥ w̄ and K(p1, p2) ≥ w̄;

TB :

�
p′1 = p1 − β(p1 − w̄)

p′2 = K(p1, p2)
, (30)

if p1 ≥ d
−1

η p2, w̄ < p2 < d
−1

η p1 and K(p1, p2) ≥ w̄;

TC :

�
p′1 = H(p1, p2)

p′2 = p2 − β(p2 − w̄)
, (31)

if w̄ < p1 < d
−1

η p2, p2 ≥ d
−1

η p1 and H(p1, p2) ≥ w̄;

TD :

�
p′1 = w̄

p′2 = p2 − β(p2 − w̄)
, (32)

if p2 ≥ d
−1

η p1 and H(p1, p2) < w̄;

TE :

�
p′1 = p1 − β(p1 − w̄)

p′2 = w̄
, (33)

if p1 ≥ d
−1

η p2 and K(p1, p2) < w̄;

5We note that the price is always larger than w̄.

12



TF :

�
p′1 = w̄

p′2 = K(p1, p2)
, (34)

if w̄ < p2 < d
−1

η p1, K(p1, p2) ≥ w̄ and H(p1, p2) < w̄;

TG :

�
p′1 = H(p1, p2)

p′2 = w̄
, (35)

if w̄ < p1 < d
−1

η p2, H(p1, p2) ≥ w̄ and K(p1, p2) < w̄;

TH :

�
p′1 = w̄

p′2 = w̄
, (36)

if H(p1, p2) < w̄ and K(p1, p2) < w̄.

In general map T is not continuous or not smooth along boundaries that separate the

different regions of its definition. In particular, along the half-lines pi = w̄, p−i > w̄ the map

is continuous but not smooth, whereas along the half-lines pi = d
−1

η p−i, p−i > w̄ the map is

non-continuous. In addition, map T is non-invertible. This implies that given a point belonging

to set F , several preimages can exist. As map T is defined by eight different pieces, it is not

easy to classify the number of preimages associated to the regions of set F . Thus, in order to

study the absorbing areas, that is the regions bounded by critical curves of finite rank LCn,

with n = 0...l, we resort to numerical simulations. In what follows, we will see that in some

cases the critical curves involved in defining absorbing regions will be only those defined by

points such that the determinant of map TA is null. However, in other cases the lines that

define the boundaries in F of regions in which the single maps Ti (i = A, ...,H) hold may also

be involved.
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Figure 2. Regions of phase plane (p1, p2) bounded by map Ti (i = A, ..., H) are evidenced

by different colours. The dark-blue region is described by map TA. The green region is described

by map TB. The orange region is described by map TC . The yellow region is described by map

TD. The red region is described by map TE. The light-blue region is described by map TF .

The grey region is described by map TG. The aqua green region is described by map TH . The

pink region represents combinations of prices that will never be selected by firms as the profit,

at least for one player, will be too low or even negative when prices are set below (resp. to the

left) of the straight line p2 = w (resp. p1 = w).

Map T can produce only attractors at finite distance due to the presence of constraints.

Consider a sequence (p1, p2) with �p1, p2� → +∞. If pi takes a finite value then the sequence

will enter A\B region from which p′
−i = p−i − β(p−i − w̄) < p−i, i = 1, 2. Instead, if both

components of the sequence positively diverge, we have that H(p1, p2) < w̄ for p2 > αd
1−d2

and K(p1, p2) < w̄ for p1 >
αd
1−d2

. From this, it follows that there exists an iterate such that

(p1, p2) = (w̄, w̄). It is now sufficient to show that there exists a maximum value taken by p′i
when map TA works. By referring for simplicity to p′1 (for p

′

2 the line of reasoning is analogous),

H(p1, p2) is defined on set

Λ1 = {(p1, p2) ∈ R2 : p1 ≥ w̄, p2 ≥ w̄, p2 ≥ p1d
1/η}. (37)

As there exist feasible points in Λ1 for which p
′

1 = w̄, the solutions of the problem max
(p1,p2)∈Λ1

H(p1, p2)

coincide with the solutions of the problem max
(p1,p2)∈Λ2

H(p1, p2), where

Λ2 = {(p1, p2) ∈ R2 : p1 ≥ w̄, p2 ≥ w̄, p2 ≥ p1d
1/η, H(p1, p2) ≥ w̄}. (38)

It is easy to verify that Λ2 is a compact set and H(p1, p2) is a continuous function. By applying

the Extreme Value Theorem, we get the result. In particular, the solution will be located on

constraints p2 = w̄ or p2 = p1d
1/η depending on the value of parameters.

Map T defined in (29) has a unique fixed point (that coincides with Nash equilibrium 15),

whose coordinate value are E∗ = (p∗1, p
∗

2) =
�

ηw
d+η−1

, ηw
d+η−1

�
. Map T is symmetric, i.e. it does

not change if p1 and p2 are swapped, that is T ◦W = W ◦ T , where W : (p1, p2) → (p2, p1).

This implies that the diagonal ∆ = {(p1, p2) : p1 = p2} is an invariant manifold, i.e. the

dynamics lie on ∆ for every t by starting from p1(0) = p2(0). In this case, the behaviour of the

dynamic system is described by the restriction of T on ∆, and synchronised trajectories (i.e.,

p1(t) = p2(t) for every t) are governed by map T∆ : ∆→ ∆ defined as follows:

T∆ : p′ = f(p) := max {w̄, g(p)} , (39)

where g(p) := p+ α[p(1−η−d)+ηw]
pη(1−d2)

. We note that g(p) defines a unimodal function, first decreasing

and then increasing. Let pmin be the minimum of such an expression. If g(pmin) ≥ w̄ then the

dynamics of the map at every iterate will be governed by g(p). Instead, if we have g(pmin) < w̄
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then there exist two points p and p, with p < p, such that f(p) can be rewritten in the following

way:

f(p) =

�
p+ α[p(1−η−d)+ηw]

pη(1−d2)
, if p < p or p > p

w̄, if p ≤ p ≤ p
. (40)

The following proposition defines the local stability conditions of the fixed point of map T∆.

Lemma 5 Map g(p) always admits a fixed point p∗ = ηw
d+η−1

.

Proposition 6 If w̄ < p∗ then p∗ is a fixed point of f(p) and it is locally asymptotically stable

for α < αTH and unstable for α > αTH , where

αTH :=
2ηw(1− d2)

ηw(η2 − η + d)
�

ηw
d+η−1

�−η
− (1− η)2(d+ η − 1)

�
ηw

d+η−1

�1−η . (41)

If w̄ > p∗ then w̄ is a fixed point of f(p) and it is locally super stable.

If g(pmin) ≥ w̄ is true for every α then we have the classical process of period doubling when

α increases (f(p) = g(p)). Instead, when α varies map g(p) collides with constraint w̄ (Figure

3(a)). Then, the period doubling process undergoes a change, as shown in Figure 3(b). In

particular, for α > 30.1 the two-piece chaotic attractor is replaced with a n-period cycle (where

n depends on the value of α) and the points of the cycle are given by w̄ and its subsequent

n − 1 iterates (see Sushko et al., 2014 for an in-depth analysis on the role of a flat branch in

the definition of the map).

(a)
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(b)

Figure 3. Parameter set: d = 0.06, η = 1.34, w = 0.9 and w̄ = 2.12. (a) When α = 6 (solid

line), the stationary equilibrium of map for T∆ is locally asymptotically stable. When α = 28

(dashed line), the stationary equilibrium of map for T∆ is unstable (in this case there exists a

four-period cycle, as shown in the bifurcation diagram, Figure 3(b)) When α = 34 (dot-dashed

line), we note the change undergone by the map as the constraint w̄ is binding (see also the

bifurcation diagram). (b) Bifurcation diagram for α.

By using numerical simulations, in what follows we show some dynamic (global) phenomena

produced by map T when the constraints on quantities and profits are not binding. Therefore,

the dynamics of the model are described by (29), according to which prices change over time by

following a Bischi-like gradient adjustment mechanism. In the exercises summarised in Figures

4-12 we use the parameter set: d = 0.01, α = 10, β = 0.4, w = 0.92, ε = 0.14 and w̄ = w + ε,

and let η vary.

Let us begin the simulation exercise by considering η = 1.5, a situation for which the unique

attractor of map T is the Nash equilibrium of the game, E∗ (Figure 4). An increase in η causes

a transverse flip bifurcation (this holds at η ∼= 1.715), which in turn gives birth to a two-period

cycle out of the diagonal. This configuration of the phase plane is depicted in Figure 5 showing

for η = 1.745 that the unique attractor of the system is a two-period cycle out of the diagonal

(R1 and R2 in the figure). However, an investigation along the diagonal shows the existence

of a two-period cycle attracting for the map restricted on the diagonal (T∆), whose points are

labelled as V1 and V2 (not reported in Figure 5), but transversely unstable and then unstable

for map T . When η is around 1.75, this last two-period cycle becomes also transversely stable,

as depicted in Figure 6. The figure shows the phase plane for η = 1.8, where a stable two-period

cycle on the diagonal (red points V1 and V2), whose basin of attraction is light-grey coloured,

coexists with a two-period cycle out of the diagonal (black points R1 and R2), whose basin of

attraction is dark-grey coloured. Around η = 1.841 the two-period cycle out of the diagonal
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undergoes a Neimark-Sacker bifurcation. To this purpose, Figure 7 (plotted for η = 1.85)

shows the coexistence of two invariant closed curves (depicted in black and labelled Γ1 and

Γ2) out of the diagonal, attracting all trajectories that belong to the dark-grey region, and a

two-period cycle on the diagonal (red points V1 and V2), attracting all trajectories that belong

to the light-grey region. When η increases further, a saddle node bifurcation gives birth to an

additional attractor. Indeed, Figure 8 displays the coexistence of three attractors for η = 1.87.

In particular, we observe a two-period cycle along the diagonal (red points V1 and V2), whose

basin of attraction is depicted in yellow, and a couple of eight-period cycles, black points and

white points in the figure, whose basins of attraction are light-grey coloured and dark-grey

coloured, respectively. A further slight reduction in η (η = 1.88) causes the appearance of a

couple of four-piece chaotic attractors (the black one is Ψ11, Ψ12, Ψ13 and Ψ14, and the blue is

Ψ21, Ψ22, Ψ23 andΨ24, which are not reported in the figure to avoid confusion) and a four-period

cycle on the diagonal (red points V1, V2, V3 and V4), see Figure 9. Interestingly, when η = 1.885

the two four-piece chaotic attractors has become a unique two-piece chaotic attractor (depicted

in black and labelled Ψ1 and Ψ2 in Figure 10), which continues to coexist with a four-period

cycle on the diagonal (red points V1, V2, V3 and V4). Finally, for η = 2 the two-piece chaotic

attractor has become a unique chaotic attractor (Ψ), as shown in Figure 11.

Figure 4. Basin of attraction of the stable fixed point E∗ (a one-period cycle on the

diagonal) of map T for η = 1.5.
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Figure 5. A transverse flip bifurcation produced a two-period cycle (unstable diagonal),

R1 and R2. There exists no attracting cycle along the diagonal (η = 1.745).

Figure 6. A stable two-period cycle on the diagonal (red points V1 and V2), whose basin

of attraction is light-grey coloured, coexists with a two-period cycle out of the diagonal (black

points R1 and R2), whose basin of attraction is dark-grey coloured (η = 1.8).
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Figure 7. Coexistence of two invariant closed curves Γ1 and Γ2 (depicted in black) out

of the diagonal, born through a Neimark-Sacker bifurcation, that attract all trajectories that

belong to the dark-grey region, and a two-period cycle on the diagonal (red points V1 and V2),

that attracts all trajectories that belong to the light-grey region (η = 1.85).

Figure 8. A saddle node bifurcation gave birth to a third attractor. The figure shows

the coexistence of a two-period cycle along the diagonal (red points V1 and V2), whose basin

of attraction is depicted in yellow, and a couple of eight-period cycles, black points and white

points, whose basins of attraction are light-grey coloured and dark-grey coloured, respectively

(η = 1.87).
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Figure 9. A couple of four-piece chaotic attractors coexists with a four-period cycle on the

diagonal. The black chaotic attractor is denoted by Ψ11, Ψ12, Ψ13 and Ψ14 (this was done in

accordance with the left-to-right reading direction), whereas the blue one is denoted with Ψ21,

Ψ22, Ψ23 and Ψ24. The four-period cycle on the diagonal is denoted by red points V1, V2, V3

and V4 (η = 1.88).

Figure 10. A two-piece chaotic attractor, depicted in black and denoted by Ψ1 and Ψ2,

coexists with a four-period cycle on the diagonal, depicted in red and denoted by V1, V2, V3

and V4, (η = 1.885).
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Figure 11. A unique chaotic attractor Ψ (η = 2).

As explained above, the attractors related to all numerical exercises from Figure 4 to Figure

11 are generated by using map (29), whose dynamics are described by a Bischi-like gradient

mechanism. However, the other maps - from (30) to (36) - have been used to define the basins

of attraction. In fact, the relative simplicity of the basins of attraction obtained when only one

attractor for the system exists is closely related to the presence of economic constraints and

different adjustment mechanisms. If these constraints were not used, and then we considered

the hypothesis that the model was described only by (29) for each pair of positive prices

(in which case we would have values of prices corresponding to negative revenue per unit of

product and/or negative quantities for some iterates), then there would exist some sets of initial

conditions whose corresponding forward dynamics would not be well-defined. This means that

there would exist an iterate such that the trajectory should go in the region of negativity of

prices, thus making impossible the calculation of the subsequent iterates due to the existence

of an exponent term between 0 and 1 of prices. As an example, in Figure 12 we depict the

basin of attraction generated by assuming that the dynamics of the model are described only

by (29) for any (p1, p2) ∈ R2++ (see Fanti et al., 2013a for a study of the shape of the boundary

of the basin of attraction in a Bertrand model with linear demand but without constraints).
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Figure 12. Attractor and basin of attraction when no constraints are introduced for the

same parameter values as in Figure 11.

4 The role of constraints

In this section, we analyse the role of economic constraints on the dynamics of a nonlinear

Bertrand duopoly, where the price is the strategic variable.

Non-negativity of profits. In order to make the reading of the rest article as clear as possible,

we consider the following parameter set: d = 0.014, α = 33.9, β = 0.01, η = 1.4, w = 0.9,

w̄ = w + ε and let ε vary (an increase in ε captures a rise in the average and marginal cost of

production). For ε = 0.05, a unique ω-limit set exists for the system, as is shown in Figure 13(a).

We recall that as map T is non-differentiable and/or discontinuous along some lines, the critical

curves of rank-1 may be given by 1) the locus of points which are images of the set where the

Jacobian determinant vanishes T (det(J) = 0), where the set defined by det(J) = 0 is denoted

as LC−1, set of merging preimages, 2) the points where map T results to be non-differentiable,

3) the points where the map is not continuous. Critical curves of higher rank are given by the

forward iterates of rank-1 curves. With the parameter set used in the numerical simulations, the

attractor completely lies in the region of the phase plane where map TA acts. Then, we restrict

the analysis to the study of properties of map TA. Irrespective of the domain of definition,

TA is in general non-invertible and its LC−1 curves are a subset of points corresponding to

which the determinant of TA is zero, that is LC−1(TA) ⊆
�
(p1, p2) ∈ R2+ : det(J(TA)) = 0

�
.

Unfortunately, in this case the expression of the determinant of the Jacobian matrix does not

define a classical geometrical curve. However, through numerical simulations we are able to

verify that such a curve is made up of two branches, LCa
−1 and LCb

−1. Figure 13(b) shows the

portion of LCa
−1 (bold red line) involved in the definition of the absorbing region as well as its
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first three iterates (red lines). An increase in ε implies that lines pi = w̄ (i = 1, 2) become closer

and closer to the chaotic attractor. A border collision occurs at ε ∼= 0.283 and Figures 14(a)

and 14(b) show the role played by the constraint on the marginal cost of production (related

to the non-negativity of profits) in the definition of the shape of the attractor when ε = 0.4.

In this case, the dynamics of the attractor are defined by maps TA, TF and TG (the quantity

produced by both firms and demanded in the market are always positive). The existence of a

binding constraint (that prevents to set the prices below the marginal cost) has restricted the

area of the chaotic attractor. The dashed (resp. solid) portion of the lines in Figures 13(b)

and 14(b) describes the non-binding (resp. binding) part of the constraints. The constraints

are depicted in blue in both figures. The same graphical style is used with regard to both the

constraints on the non-negativity of unitary profits (the vertical and horizontal lines) and the

constraints on the quantities produced by firm 1 and firm 2 and demanded on the market (the

two lines with positive slope). The action of this kind of constraints has a natural effect from an

economic point of view, in the sense that it prevents firms from setting too high prices leading

to low or null demands and profits.

(a)
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(b)
Figure 13. (a) A unique chaotic attractor Ψ captures all the dynamics of the system. On

the attractor, quantities of both firms are positive and prices are larger than (the constraint)

w̄. (b) Critical curves generated by LC−1 and their subsequent iterates define the chaotic area

found by simulations in Figure 13(a).

(a)
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(b)

Figure 14. (a) A unique chaotic attractor Ψ captures all the dynamics of the system. On

the attractor, both quantities are positive but the non-negativity constraints on profits, i.e. the

vertical and horizontal dashed lines, are binding. (b) Critical curves generated by LC−1 and

by portions of the straight lines pi = w̄ (i = 1, 2).

Non-negativity of quantities. This part of the section is devoted to describe the role of the

constraints related to the non-negativity of quantities (the two lines with positive slope) on long-

term dynamics. We will see that when a border collision bifurcation occurs, these constraints

substantially modify the dynamics of the system. Specifically, they change the shape as well as

the type of the ω-limit set. This result accords with the analysis of Tramontana et al. (2010),

in which a Cournot model with constraints on the reaction curves of the firms is studied. By

starting from the parameter set used to plot Figures 14(a) and 14(b) and increasing d we have

a border collision when d ∼= 0.02402. This implies that the attractor collides with the non-

negativity constraints on quantities. By letting d increase further (d = 0.031), we have that

portions of the attractor lie in A\B region. Due to the reinjection mechanism introduced in

Section 3 for maps TB, TC, TD and TE, there is the birth of new portions of the attractor also in

A∩B region. Indeed, the emergence of zero profits caused by zero demand for a firm generates

(in this case) price strategies that were not possible when profits are positive at each iterate.

This phenomenon is illustrated in Figures 15(a) and 15(b). However, economic constraints

are responsible for other phenomena. In this regard, Figure 15(c) shows the coexistence of

two symmetric attractors, each of which is made up by a ten-period cycle (this holds for

d = 0.026). Nonetheless, the existence of a chaotic repeller significantly affects the convergence

of trajectories towards such a ω-limit set, as is shown in Figure 15(d). The existence of non-

negativity constraints and a reinjection mechanism induce a synchronisation of the trajectories

along the diagonal when d becomes larger. In this case, the symmetry is caused by the violation

of the constraints on profits of both firms and then by coming into play the definition TH of the
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map. Instead, the subsequent iterate acts either on map TA or map TH , so that the dynamics

will be synchronised on the diagonal. This causes the birth of a global attractor given by a four-

period cycle (d = 0.098). To this purpose, Figure 15(e) shows the time series of the difference

between p1 and p2. It clearly reveals that after the 19th iterate price dynamics are synchronised.

Of course, when the other parameters of the model change, the dynamics along the diagonal

can also be chaotic (to this purpose see the study of the dynamics along the diagonal in Section

3).

(a)

(b)
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(c)

(d)
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(e)

Figure 15. (a) A unique chaotic attractor Ψ captures all the dynamics of the system

(d = 0.031). Also in this case, the non-negativity constraints on profits are binding. Portions

of the attractor lie in a region where the quantity produced by one of the two firms is zero.

(b) Time series of the log of price (black), quantity (blue) and profit (red) of firm 1 associated

to a typical trajectory of the system when d = 0.031. We note that at some iterates of the

time series p1 and p2 simultaneously take relatively high values corresponding to the two new

portions of the attractor. By looking at Figure 15(b) one can note that when the price is set at

too high a level, both demand and profits are zero. However, at the next iterate, consumers’

demand and firms’ profits turn to be positive due to a sharp reduction in price. (c) Basins of

attraction (yellow and light-grey coloured) of two symmetric ten-period cycles (black and red

points). Note that for any attractor there exists one point out of cone of the non-negativity

constraints of quantities (d = 0.026). (d) Time series of the log of price (black), quantity (blue)

and profit (red) of firm 1 associated to a typical trajectory of the system when d = 0.026 (we

may note the long transient). (e) Time series of the difference between p1 and p2 for d = 0.098.

5 Conclusions

This article studied the dynamics of a nonlinear differentiated duopoly with price competition.

The main aim is to emphasise the role of economic non-negativity constraints on long-term

outcomes by assuming a Bischi-like gradient adjustment mechanism of prices (Bischi et al.,

1998). The literature on nonlinear duopolies has been developed since the leading articles of

Puu (1991) and Bischi et al. (1998), that analysed models with quantity competition with profit

maximising firms and where players are assumed to have, respectively, complete information

with static expectations and incomplete information with an adjustment mechanism based on

the local estimate of their own marginal profits.
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The study of the Bertrand duopoly in a nonlinear setting has been scarcely tackled out,

although an exception in this direction exists (Fanti et al., 2013a) that analysed dynamic

price competition models with horizontal product differentiation and linear market demand

and where profit-maximising firms have limited market knowledge. However, there are no

contributions accounting for economic non-negativity constraints on profits and quantities.

The existence of these constraints represents an important element that may substantially

affect long-term dynamic outcomes. The present article wanted to fill this gap by considering a

model with Bertrand rivalry. After an examination of the dynamics when prices are sufficiently

large and quantities are positive, the article analysed the case in which at least one of these

two conditions is violated. The existence of constraints can significantly affect the dynamics

of the system and makes it possible observing new phenomena, such as synchronisation, which

were not observable in the absence of them.
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