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Abstract— 

 

 

Index Terms— Temperature emissivity separation, 

Hyperspectral thermal images. 

 

I. INTRODUCTION 

yperspectral Remote Sensing in the Long Wave InfraRed 

(LWIR), provides useful information for geophysical and 

surveillance purposes. In general, the spectral radiance 

measured in the 8 – 12 µm region of the electromagnetic 

spectrum (LWIR) provides information about both the 

temperature and the chemical composition of the observed 

material through its emissivity. These features promise benefits 

in several remote sensing applications including detection of 

specific materials and mapping areas affected by 

pollutants/gases ([1], [2]). 

The radiance measured by an LWIR hyperspectral sensor, is 

determined by the radiance emitted by the atmosphere and by 

the radiance leaving the observed surface (ground-leaving 

radiance) modified by the atmospheric path transmission.  The 

ground-leaving radiance includes the surface emission, which 

depends on the temperature and emissivity of the observed 

material, and the atmospheric thermal emitted radiance 

reflected by the surface itself. Hyperspectral LWIR data 

exploitation requires the solution of two main problems: 1) 

compensation of the atmospheric effects for ground leaving 

radiance retrieval (Atmospheric Compensation-AC, [3]), 2) 

separation of the contribution due to the temperature and the 

emissivity in the ground leaving radiance (Temperature and 

Emissivity Separation-TES, [5]). These two problems are 

generally treated separately.  

In this paper, we focus on the problem of separating the 

temperature from the spectral emissivity assuming that a given 

atmospheric compensation algorithm ([3], [4]) has provided the 

radiometric quantities needed to derive the ground-leaving 

radiance from the at-sensor radiance. TES is a challenging task 

because it is an ill-posed problem where the number of 

parameters to be estimated is higher than the number of 

available observations. Specifically, denoting as 
BN  the number 

of the sensor spectral channels, TES consists in estimating 
BN

+1 unknowns (i.e, the 
BN  samples of the surface emissivity and 

the surface temperature) by exploiting the 
BN  observations 

corresponding to the samples of the ground leaving radiance in 

the sensor channels. 

  During the last decades, many scientists have approached this 

underdetermined problem from different perspectives and 

several algorithms were proposed to solve the problem in the 

case of multispectral data and, more recently, in the case of 

hyperspectral data. One of the most popular algorithm is that 

described in [5] whose improved version has been recently 

proposed in [6]. In [7], starting from the high spectral resolution 

of hyperspectral data, the analysis of the relationship between 

surface self-emission and atmospheric downward emitted 

spectral radiance in a narrow spectral region is exploited to 

derive the stepwise refining TES (SRTES) algorithm.  SRTES 

uses the residue of atmospheric downward emitted spectral 

radiance in the calculated surface emission as a criterion, and 

adopts a stepwise refining method to determine both the 

emissivity at the location of an atmospheric emission line in a 

narrow spectral region and the surface temperature. In [8] the 

separation between temperature and emissivity is obtained by 

applying an iterative search algorithm that exploits a linear 

constraint on the spectral emissivity (Linearly Spectral 

Emissivity Constraint LSEC). All the cited algorithms stem 

from the common assumption that the emissivity of natural and 

man-made materials is spectrally smooth (spectral smoothness 

assumption).  

In this paper, starting from the spectral smoothness assumption, 

we model the spectral emissivity as a vector lying in a subspace 

(emissivity subspace) having dimension K  lower than the 

number of sensor bands ( BN ). This model, in conjunction with 

the statistical model of the noise affecting hyperspectral data, is 

exploited to reformulate the TES problem as a statistical 

estimation framework. Approaching such a problem by means 

of the maximum likelihood estimation theory ([10]), we derive 

(Section II) a class of TES algorithms, based on the orthogonal 

subspace projection, which will be referred to as Subspace 

Based TES (SBTES), hereinafter. Several algorithms originate 

from the proposed approach, depending on the specific basis 

matrix adopted to span the emissivity subspace. In this paper, 

following the SBTES approach, we derive (Section III) two 

algorithms by exploiting two different assumptions about the 

emissivity subspace. Furthermore, we investigate the influence 

Subspace Based Temperature and Emissivity 

Separation Algorithms in LWIR hyperspectral 

data 
N. Acito(1), M. Diani(1), G. Corsini(2) 

(1)Accademia Navale – Dip. Armi Navali – Viale Italia 72 – 57127 Livorno (Italy) 
(2) Department of Information Engineering, University of Pisa – Via Caruso 16 – 56122 Pisa (Italy) 

 

e-mail: n.acito@iet.unipi.it, m.diani@iet.unipi.it, g.corsini@iet.unipi.it 

 

H 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

of noise and of the emissivity subspace approximation error on 

the performance of the algorithms falling in the SBTES class 

(Section IV). The analysis is carried out by exploiting both 

theoretical performance bounds and simulation results. Finally, 

an extensive experimental analysis is proposed in order to 

discuss the performance of the two specific SBTES algorithms 

derived in this work. 

 

II. SUBSPACE BASED TES ALGORITHMS 

Let us denote as L  the 1BN   vector whose components are the 

spectral samples of the at-sensor radiance taken at the central 

wavelengths 
1 2, ,...,

BN    of the adopted sensor. In the LWIR 

spectral range the noisy version of the at-sensor radiance ( L ) 

can be written as ([9]):  

 

 ,

N

gl t



 

  

L L N

L D L ε L
 (1) 

where 
L  is the 1BN   vector of the spectral upwelling 

atmospheric radiance, D  is the B BN N  diagonal matrix whose 

diagonal elements are the spectral samples of the atmospheric 

spectral transmittance τ , N  is the random noise that is 

modelled as a multivariate Gaussian random vector with zero 

mean and covariance matrix 
NΓ . In (1) we denoted as  ,gl tL ε  

the 1BN   vector of the spectral ground-leaving radiance 

making explicit the dependence of such a quantity on the 

surface temperature t  and the surface spectral emissivity ε . 

Specifically: 

     

 

, 1gl BB L

BB L

t t

t







    

     

L ε D ε D ε

D D ε L
 (2) 

where,  BB tD  and 
L

D are 
B BN N  diagonal matrices whose 

diagonal entries are the spectral radiance of a black body at 

temperature t  (Planck’s law) and the spectral downwelling 

atmospheric radiance ( 
L ), respectively.  

Assuming that the radiometric quantities τ , 
L  and 

L  are 

known and by inverting  eqs. (1) and  (2), the noisy vector 

 ,tY ε  is obtained as: 

      

   

1 1,
N

BB L

t t

t t

 



          

 

Y ε D L L L D ε D N

D D D
 (3) 

Eq. (3) mathematically states the TES problem where we need 

to estimate 
BN +1 unknowns, i.e. t  and the 

BN  elements of ε , 

by exploiting the 
BN  noisy observations in  ,tY ε . The problem 

is obviously ill-posed, and to come with a solution some 

assumptions or constraints have to be considered in order to 

reduce the number of unknowns or increase the number of 

equations.    

In this work, we approach this undetermined problem, by 

exploiting the commonly used smoothness assumption for the 

emissivity spectrum. Specifically, the low pass behavior 

experienced in the spectral emissivity of most of the existing 

materials and the consequent high degree of spectral correlation 

among the elements of ε , suggest that the emissivity spectrum 

can be considered as lying into a subspace S  having rank K  

lower than that of the original data space (
BN ). Denoting as U   

the 
BN K  matrix containing the basis vectors for the emissivity 

subspace S , the generic emissivity spectrum Sε  is modelled 

as: 

 ε U a  (4) 

where a  is the 1K   vector of the components of ε  on the basis 

U . Assuming known the basis matrix U (such hypothesis will 

be discussed in Section III), the emissivity model in eq. (4) 

makes the inversion problem in (3) well-posed: the number of 

unknowns is reduced to 1K   (the K  elements of a  and the 

temperature) that is strictly less than the number 
BN  of noisy 

observations. 

Notice that, according to the assumptions made, the vector 

 ,tY ε  has a multivariate Gaussian distribution with mean 

vector  t  D U a  and covariance matrix 1 1

N N 

   Γ D Γ D . Thus, 

the TES problem can be approached by resorting to the 

statistical estimation theory. Specifically, the Maximum 

Likelihood (ML, [10]) estimate T̂  of  t  is obtained as (see 

Appendix I): 

 

   
2

ˆ arg min
t

T t

t t

 

  P Y
 (5) 

where    denotes the Euclidean norm, 

1 
2

N 


  Y Γ D Y  (6) 

and  t
P  is the projection matrix on the orthogonal 

complement of the subspace spanned by the basis matrix  tU  

defined as: 

   
1 

2
Nt t


   U Γ D D U  (7) 

The estimate ε̂  of the emissivity spectrum is obtained according 

to the subspace model in eq. (4) as: 

 

ˆˆ

ˆ T̂


 

 

ε U A

A U Y
 (8) 

where “  ” denotes the Moore–Penrose pseudo inverse and Â  

is the ML estimate of the vector a  (see Appendix I). 

Eqs. (5)-(8) define a class of TES algorithms based on the 

assumption that ε  lies onto the emissivity subspace S . Such a 

class of algorithms will be referred to as Subspace Based TES 

(SBTES), hereinafter. In practice the basis matrix U of S  is not 

known and it has to be estimated starting from certain 

hypotheses. Depending on the adopted basis matrix estimate, 

different SBTES algorithms can be obtained.  
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It worth noting that, in deriving the SBTES algorithms we have 

implicitly assumed known the noise covariance matrix 
NΓ . In 

most practical cases, this information is not available. Several 

approaches can be followed to deal with such an issue. The 

simplest is to suppose the noise components in each band 

identically distributed and statistically independent so that 
2

N Γ Ι ( I  is 
B BN N  identity matrix and 2  is the variance of 

each component). More sophisticated approaches can be 

derived by replacing 
NΓ  with an estimate obtained from the 

available data. To this purpose, one of the numerous algorithms 

for noise estimation in hyperspectral data proposed in the 

literature ([11], [12], [13]) can be adopted. 

III. EMISSIVITY SUBSPACE MATRIX DEFINITION 

The specific form of the estimated basis matrix depends on the 

hypotheses made about the variability of the emissivity spectra 

within the data set of interest. Specifically, we can follow two 

different approaches to estimate U :  

1. an unsupervised approach, where the structure of the basis 

matrix is defined without any auxiliary information about 

the emissivity spectra;  

2. a knowledge based approach, where the definition of the 

basis matrix is driven by the availability of specific 

information (e.g. a dictionary) about the emissivity spectra.  

Depending on the adopted approach two sub-classes of SBTES 

algorithms can be defined: the Unsupervised SBTES 

(USBTES) and the Knowledge based SBTES (KSBTES). In the 

following, in order to clarify these concepts, we derive two 

algorithms one for each sub-class. Particularly, by exploiting 

the assumption that the generic emissivity spectrum can be 

approximated as a piecewise polynomial function of the sensor 

central wavelengths, we derive an USBTES algorithm named 

Polynomial SBTES (Pol-SBTES). Then, assuming that a 

dictionary of the emissivity spectra is available, we define a 

basis estimation strategy that leads to a KSBTES algorithm 

named Dictionary based SBTES (D-SBTES). 

A. Polynomial SBTES (Pol-SBTES). 

In order to derive the Pol-SBTES algorithm, we assume that in 

a given set of adjacent and contiguous sensor channels the 

emissivity spectrum can be approximated as a p-order 

polynomial function of the corresponding central wavelengths. 

Particularly, let us divide the set of all the sensor channels into 

M  non-overlapping sections, and let us denote as 

 1, 2, ,, ,...,m m m w mR     the set of the central wavelengths of the 

sensor channels falling in the m-th section. BN
w

M
  is the 

number of elements of the m-th section.  

 In each section the emissivity spectrum is modelled as: 

   

0

    
p

m l

l m

l

a R   


     (9) 

The relationship in eq. (9) can be rewritten in vector form as: 

 m m mp ε Λ a  (10) 

where      1, 2, ,, ,...,
T

m m m w m        ε ,      
1 0, ,...,

T
m m m

m p pa a a
 
 

a  and 

 m pΛ  is the  1w p   matrix defined as: 

 

1

1, 1,

1

2, 2,

1

, ,

1

1

1

p p

m m

p p

m m

m

p p

w m w m

p

 

 

 







 
 
 
 
 
  

Λ  (11) 

Accordingly, the entire spectrum ε  can be approximated as: 

 p ε Λ a  (12) 

where a  is the  1 1M p    vector obtained by appending all the 

vectors 
ma  and  pΛ  is the  1BN M p   matrix: 

 

 

 

 

1

2

M

p

p
p

p

 
 
 
 
 
  

Λ 0 0

0 Λ 0
Λ

0 0 Λ

 (13) 

Notice that, eq. (12), subject to the constraint  1 BM p N   (i.e. 

1w p  ), can be interpreted as the subspace representation of 

the emissivity spectrum (eq. (4)) where the basis matrix for the 

emissivity subspace is  pΛ . Thus, the Pol-SBTES algorithm 

is obtained by applying the procedure defined in eqs. (5)-(8) 

where the estimated basis matrix U  is defined as in eq. (13) (

 pU Λ ). 

One of the most popular TES algorithm, named Linearly 

Spectral Emissivity Constraint (LSEC, [8]), can be viewed as a 

special case of the Pol-SBTES. It was derived by approximating 

the emissivity spectrum in M  non-overlapping sections of the 

total set of sensor channels, as a linear function of the 

corresponding central wavelengths. Thus, such a method can be 

viewed as the Pol-TES algorithm when a first order polynomial 

approximation ( 1p  ) is assumed. However, it is worth noting 

that the cost function  t  adopted by the Pol-TES algorithm 

accounts for the noise covariance matrix 
NΓ  (eq. (7)), whereas 

the LSEC in its original formulation does not account for 

random noise affecting the at-sensor radiance. The Pol-TES 

algorithm with 1p   coincides with the LSEC when the 

assumption 2

N Γ Ι  is made.  

B. Dictionary based SBTES (D-SBTES). 

When a dictionary V  containing the spectral emissivities of 

several natural or man-made materials is available, it can be 

exploited to estimate a basis matrix for the emissivity subspace, 

thus obtaining the D-SBTES algorithm. Several strategies can 

be defined to extract U  from the dictionary V . In this work, 

we exploit the idea that in the LWIR portion of the 

electromagnetic spectrum, the variability of the dictionary 

atoms gv , 1,...,g G  around their spectral mean value g  can 

be well represented on a subspace S  having rank K , i.e.: 

    1,...,g g g G  v U b  (14) 

where, G  is the number of dictionary atoms, gv  is the g-th 

dictionary atom after spectral mean removal ( g g g v v ) and 
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U  is the basis matrix of S . U  may be obtained by searching 

for the basis matrix that solves the following constrained 

minimum mean square error problem: 

2

1

2 2

1 1

1
arg min

1 1
. . :        with  0< 1

G

g g

g

G G

g g g

g g

G

s t
G G

 



 

  
   

  

    



 

U v U b

v U b v

 (15) 

The solution of this problem is obtained by using the well-

known Singular Value Decomposition (SVD, [14]) algorithm, 

i.e. retaining the singular vectors that address a fraction of the 

mean atoms power (
2

1

1
 

G

g

gG 

 v ) greater than 1  . To have a 

good subspace representation,   must be close to zero (for 

instance 0.01  ) 

It is worth noting that, to derive the basis matrix U accounting 

for the mean spectrum of each atom gv  (and of the generic 

spectral emissivity ε ), the 1BN   vector with all unit entries ( 1

) has to be added to the basis matrix U , thus obtaining 

,   U U 1 . 

The dictionary V  can be constructed by using in-field 

emissivity measurements or by exploiting spectral libraries 

made available for the scientific community in the last years. 

Examples of open access spectral libraries are: the ASTER 

spectral library ([15]) hosted by Jet Propulsion Laboratory 

(JPL), the Moderate Resolution Imaging Spectrometer 

(MODIS) UCSB Emissivity Library made available by the 

Institute for Computational Earth System Science of the 

University of California  ([16]), and the London Urban 

Micromet data Archive (LUMA, [17]) including emissivity 

spectra of urban materials.    

IV. PERFORMANCE ANALYSIS 

This Section has two main objectives: the discussion of the 

performance of a generic SBTES algorithm and the analysis of 

the specific estimation performance attained by two of the 

SBTES algorithms introduced in Section III, i.e. the Pol-SBTES 

algorithm with 1p   (Pol-SBTES-1) and the D-SBTES 

algorithm. The general discussion about the temperature and the 

emissivity estimators is focused on the impacts of noise and of 

the subspace approximation error and is carried out by 

exploiting both theoretical results and experimental evidences. 

Analytical expressions (derived in Appendix II) are adopted to 

obtain bounds on the accuracy of both the temperature and the 

emissivity estimators. Performance analysis of the 

Pol-SBTES-1 the D-SBTES algorithms, is carried out on 

simulated data.  

Since simulated data play an important role throughout this 

Section, we start by describing the adopted simulation strategy 

in Section IV.A. Then, in Section IV.B, we discuss the 

performance of a generic SBTES algorithm. Finally, in Section 

IV.C, we present and analyze the results obtained on simulated 

data by Pol-SBTES-1 and D-SBTES.    

A. Simulation strategy. 

At-sensor radiance data are simulated according to the 

simulation strategy outlined in the block diagram of Figure 1.  

Starting from the dictionary TOT
V  obtained by merging the 

ASTER, the MODIS and the LUMA spectral libraries, an 

emissivity spectrum ε  is extracted.  According to the radiative 

transfer model in eqs. (1) and (2), the radiometric quantities τ , 


L  and 
L  are generated by MODTRAN for a given set of the 

geometric and atmospheric parameters characterizing the 

acquisition environment. We refer to airborne applications and 

consider a flight altitude of 1 km.   

The radiometric quantities, the surface temperature t  and the 

emissivity spectrum ε  are combined according to eqs. (1)-(2) 

to obtain the at-sensor spectral radiance *
L . This spectrum is 

properly transformed in the sensor spectral domain ( L ) 

accounting for the sensor specifications. For this purpose, we 

refer to the Hyperspectral Thermal Emission Spectrometer 

(HyTES, [21]) that is an airborne imaging spectrometer with 

256 spectral channels between 7.5 and 12 m, with a Full Width 

Half Maximum (FWHM) of 35 nm and a spectral sampling of 

17 nm. Generally, the bands covering the spectral range from 

7.5 to 8 m affected by strong atmospheric absorption are 

discarded. The resulting number of spectral bands is 229BN  .  

 

Figure 1. Block diagram of the simulation strategy. 

Finally, the noisy at-sensor radiance  N
L  is obtained by 

considering a Gaussian additive noise with zero mean and 

diagonal covariance matrix. The method adopted to generate 

the noise covariance matrix attempts to obtain realistic noise 

realizations and deserves a detailed description. Specifically, 

we assume that the instrument is photon noise limited so as to 

have a noise variance per band proportional to the at-sensor 

radiance ([21]): 

     

 

2

2

,N l ph l l

ph l

l

L L    


 



 


 (16) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

where l is the band index, 
l  is the central wavelength of the l-

th band,  2 ,N l L   is the noise variance in the l-th band, and 2  

is a wavelength independent multiplicative factor (the quantum 

efficiency is assumed constant). Accordingly, the noise 

covariance matrix can be expressed as 2

0N  Γ Γ , 
0Γ  being the 

diagonal matrix with l-th diagonal entry 
 l

l

L 


. The Signal to 

Noise Ratio (SNR) defined as: 

 
 

 

2
1

02
2

2
1

2
0 0

1

1

N

B

B

SNR L
SNR L

N

SNR L
N







  

 

Γ L

Γ L

 

can be set by choosing the multiplicative factor 𝜎2.  

(17) 

B. On the performance of SBTES algorithms. 

Assuming known the radiometric quantities τ , 
L  and 

L , the 

performance of a generic SBTES algorithm depends on several 

factors such as: the ability of the adopted basis matrix U  to 

properly address the emissivity spectrum ε ; the random noise 

affecting the at-sensor radiance data; the specific values of the 

surface temperature and of the emissivity spectrum.   

In the following we discuss the impact of some of these factors 

on the performance of both the estimators T̂  and ε̂ .   

Let us start with T̂  and let us denote as ε  the error due to the 

approximation of ε  on the subspace spanned by U , i.e. : 

  ε U a ε  (18) 

Letting    
1 

2
Nt t


  D Γ D D ,  the random vector Y  in eq. (6) can 

be rewritten as: 

   

   

1 
2

T T N

T T

t t

t t


      

    

Y U a D ε Γ N

U a D ε W
 (19) 

where 
Tt  is the true temperature of the observed surface, and 

the noise term 
1 

2
N


 W Γ N  is a zero mean Gaussian distributed 

vector with identity covariance matrix.  

The cost function  t  in eq. (5) can be rewritten so as to 

highlight the contribution of the subspace approximation error 

(  , Tt tεΩ ) and that of the random noise (  tW
Ω ): 

         

     

     

   

2 2

, ,

,

,

T T

T T

T T

t t t t t t t

t t t t

t t t t

t t













     

  

   

 

ε W

ε

W

P Y Ω Ω Ω

Ω P U a

Ω P D ε

Ω P W

 (20) 

In the following, we will analyze the effects of the 

approximation error and the noise separately. Notice that, in 

absence of both approximation error (  ε 0  and then  t 
ε

Ω 0 ) 

and noise (  t 
W

Ω 0 ),    
2

, Tt t t  Ω  is a convex function of t  

having its minimum in 
Tt t . It has always positive values 

except for 
Tt t where it is zero, i.e.  Tt t P  projects the data 

 Tt U a  on the orthogonal complement of the subspace spanned 

by  TtU . In such a case the generic SBTES algorithm, provides 

the correct value of the surface temperature.  

When only the approximation error is present  t  can be 

expressed as: 

     

       

2

2

, ,

, 2 , , ,

T

T

T T T

t t t t

t t t t t t t



 

   

    ε ε

Ω

Δε Ω Ω Ω
 (21) 

The scalar function  ,t Δε  depends on Δε  and has the effect 

of deviating the minimum of  t  from 
Tt t , thus inducing an 

estimation error that depends on the specific value of the vector 

Δε  and, of course, on the adopted basis matrix. We use an 

example on simulated data to clarify this. Specifically, we refer 

to the HyTES sensor ( 229BN  ) and we consider the emissivity 

spectrum 
Tε  of the dictionary TOT

V corresponding to the man-

made material named “Oxidized Galvanized Steel Metal” 

(Figure 2 a)). According to the simulation strategy in Sub-

section IV.A, we obtain the at-sensor radiance for a given 

atmosphere (generated by MODTRAN) and a surface 

temperature of 30 °C ( 30Tt C  ). 

For this example, we consider the D-SBTES algorithm where 

the basis matrix U  is estimated from TOT
V according to the 

SVD based procedure in Sub-Section II.B. Setting 0.01   we 

obtain U  having rank 8K  . The spectrum 
Tε  is viewed as the 

sum of two orthogonal components: that lying on the subspace 

spanned by U  ( T

 U U ε , Figure 2 a)) and the approximation 

error Δε .  

According to eq. (19), in Figure 2 b) we plot  
2

, Tt tΩ ,  ,t Δε  

and  t  for t  ranging from 20°C to 40°C. Note that  
2

, Tt tΩ  

is indeed a convex function of t  and has its minimum value in 

Tt t  (green point). On the contrary, in this example,  ,t Δε  is 

a decreasing monotonic function of t , and its effect on the cost 

function  t  is to shift the value of t  where the minimum is 

reached (red point in Figure 2 b)). In this specific case  t  

attains its minimum in 33t C   ( ˆ 33T C  ) 

 
 

(a) (b) 

Figure 2. (a) Representation of the emissivity spectrum 
Tε  and of 

its approximation on the basis U  obtained by setting 0.01   (


U  denotes the pseudo inverse of U ) ; (b) representation of the 

three terms  
2

, Tt tΩ ,  ,t Δε  and  t  obtained by using the 

basis matrices U . 

The error on T̂  decreases with decreasing values of Δε  which 

depends on the specific basis matrix U . To improve the 

subspace based emissivity approximation and reduce Δε , more 
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basis vectors can be added to U  (by increasing its rank K ). In 

Figure 4 we plot the functions  
2

, Tt tΩ ,  ,t Δε  and  t  

corresponding to the basis matrices obtained by setting 

0.008   ( 9K  , Figure 4 a)) and 0.0004   ( 24K  , Figure 

4 b)). For completeness, in Figure 3 we plot the subspace 

approximation of  
Tε  on the two basis matrices ( 9K  , Figure 

3 a) and 24K  , Figure 3 b)). 

  
(a) (b) 

Figure 3. Representation of three terms  
2

, Tt tΩ ,  ,t Δε  and 

 t  obtained by using two different basis matrices U  with rank: 

a) 9K  , b) 24K  , respectively. 

 

Notice that, the effects of the approximation error already 

decreases when the rank is increased by one. In Figure 4 a)  the 

value of t  where  t  has its minimum is 31.5 . The error in 

the temperature estimate vanishes when the basis matrix with 

24K   is adopted (Figure 4 b)). In this case,  ,t Δε  is 

negligible and  t  is actually coincident with  
2

, Tt tΩ . Such 

a basis matrix provides a very low Δε  as witnessed by the 

approximated spectrum in Figure 3 b).  
 

  
(a) (b) 

Figure 4. Representation of the emissivity spectrum 
Tε  and of its 

approximation on the basis Û  obtained by setting: a)  0.008   

( 9K  ) and b) 0.0004   ( 24K  ). 

In order to analyze the performance of the SBTES algorithms 

with respect to noise, let us assume  ε 0  so as to have 

     
2

, Tt t t t  
W

Ω Ω . The discussion about the noise impact 

can be performed by considering the Cramer-Rao Lower Bound 

(CRLB, [10]) for the estimation of the deterministic parameter 

t . The CRLB is the lower bound for the variance of any 

estimator of t . Thus, the CRLB provides insights about the 

maximal theoretical accuracy that can be achieved by 

temperature estimation methods. 

In our case the analysis of the CRLB is even more interesting 

because T̂  in eq. (5) is the ML estimator of t . Thus, it has the 

asymptotical properties of being unbiased and achieving the 

CRLB ([10]). 

The analytical expression of the CRLB is derived in Appendix 

II, whereas in this Section, we exploit such an expression to 

discuss the dependence of the estimation performance on the 

parameters that define the approached problem. The CRLB for 

the estimators of t  based on the subspace model in eqs. (3) and 

(4) can be written as: 

 
     

       

2
1

1 1 12

1
,

 
t T

T T

T N BB T

CRLB t
t t

t t






 

  

 

a

P D ε

D Γ D D

ε U a

 
(22) 

where, 
Tt  is the true value of the temperature,    1

BB TtD  is the 

diagonal matrix whose l-th entry    1
,BB l Td t  is the derivative of 

the Plank’s law with respect to the temperature at the central 

wavelength 
l , i.e.: 

     1
, ,

T

BB l T BB l

t t

d t d t
t

 






 (23) 

and ε  is the component of ε  lying on the subspace spanned by 

U . 

The expression of the CRLB in eq. (22) shows that the 

temperature estimation accuracy depends on the noise 

covariance matrix  

NΓ  (and then on the SNR ) and on the specific 

value of 
Tt . To make explicit the dependence on the SNR let us 

consider the assumption about the noise covariance matrix in 

Section IV.A:  2

0N  Γ Γ . Letting: 

   

       

1 
2

0 0

1 1 12
0 0 BB

t t

t t









   

  

U Γ D D U

D Γ D D

 (24) 

and then: 

   

       

0

1 1

0

1

1

t t

t t





 

 

U U

D D

 (25) 

it can be easily proved that  Tt


P  does not depend on  , and  

   

 
     

2

,0

,0 2
1

0

, ,

1
,

 

t T t T

t T

T T

CRLB t CRLB t

CRLB t
t t





 


 

a a

a

P D ε

 (26) 

Since 2  is inversely proportional to SNR (eq. (17)), it is 

evident from eq. (26) that  ,t TCRLB t a  increases by decreasing

SNR . 

To numerically analyze such a dependence, we use an example 

similar to that introduced in the previous part of this section. 

Namely, we consider the D-SBTES algorithm and the spectrum 

Tε , the at-sensor radiance is obtained by specifying the 

atmosphere and the surface temperature 
Tt , and the coefficient 

2  is chosen so as to obtain the desired SNR . According with 

the assumption  ε 0 , the vector a  is set to T

 U ε .  

We derive the numerical values of  ,t TCRLB t a  for various SNR  

and 
Tt , when the basis matrix U  is obtained by setting 0.01   

( 8K  ). In Figure 5 a) the square root values of  ,t TCRLB t a  for 
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SNR  ranging from 20  to 60 dB  are shown. We can note that, as 

expected, the accuracy improves for increasing SNR : the lower 

bound for the standard deviation of the temperature estimator 

decreases as SNR  increases for all the considered surface 

temperatures. We can also note that, we obtain better 

performance with lower values of the surface temperature.  

The expression in eq. (20) shows that the impact of noise on the 

estimation performance depends also on the rank K  of the 

emissivity subspace basis matrix. Specifically, it shows that

 ,t TCRLB t a  is inversely proportional to the Euclidean norm of 

the projection of    1

Tt D ε  onto the subspace spanned  Tt


P  

that has rank BN K . When BN K  decreases ( K increases), 

such a norm decreases too. As a consequence, it is expected that 

 ,t TCRLB t a increases with K . This is evident in Figure 5 b) that 

plots the values of the square root of  ,t TCRLB t a  for different 

values of K  and SNR  for the previously introduced example. 

 

  
(a) (b) 

Figure 5. (a) Square root of the CRLB for the surface temperature 

estimator obtained by using the D-SBTES algorithm with a basis 

matrix having rank 8K  . (b) Square root of the CRLB obtained 

by varying the rank of emissivity subspace basis matrix. 

The fact that the impact of noise on the performance of the 

SBTES algorithms augments as K  increases is not quite 

intuitive. In fact, by augmenting K  the statistical power of the 

noise term  tW
Ω  in eq. (20), decreases because it is obtained 

by projecting the white noise vector W  on the subspace with 

rank 
BN K . So, we would expect an improvement in the 

estimation performance as K  increases. Actually, by increasing 

K , the curvature of  
2

, Tt tΩ  decreases (see Figure 6) and its 

minimum becomes less distinguishable in the presence of noise 

even if the value of the noise variance decreases. 

  

Figure 6.  
2

, Tt tΩ  for 30Tt C   obtained by basis matrices with 

different ranks: 8K  , 24K   and 50K  . 

Finally, the expression of the CRLB in eq. (20), leads to 

conclude that SBTES algorithms provide in general the worst 

performance on low-emissivity materials. In fact,  TCRLB t  is 

inversely proportional to      
2

1
 T Tt t  P D ε , which is lower 

than
2

 ε . So, at low values of 
2

 ε  correspond high values of  

 ,t TCRLB t a . This is exemplified in Figure 7 a), which shows the 

values of  ,t TCRLB t a  for three materials of the TOT
V  

dictionary having very low emissivity (
1ε ), low emissivity (

2ε ) 

and high emissivity (
3ε ), respectively. These numerical results 

have been obtained by applying the D-SBTES algorithm with 

0.01  ( 8K  ) and by setting 30 Tt C   and 30 dBSNR .  For 

completeness, in Figure 7 b) we plot the three spectra.  

Figure 7 a) shows that, performance actually gets worse when 

the emissivity decreases. 

 

 

 
 

(a) (b) 

Figure 7. (a) Square root of the CRLB for the surface temperature 

estimator obtained by applying the D-SBTES algorithm to three 

spectra and by setting 0.01  ( 8K  ), 30 Tt C   and 30 dBSNR

; (b) emissivity spectra of the materials considered in the example. 

To discuss the performance of the estimator of the spectral 

emissivity in eq. (8), we analyze the relative mean square error 

 ,t ε  defined as: 

  

 
  2

 2

ˆ
,

E
t




ε ε
ε

ε
 (27) 

where E  is the statistical expectation operator. Assuming Â  as 

an unbiased estimator of a  (the ML estimator is asymptotically 

unbiased), and considering the model in eq. (18),  ,t ε  is 

rewritten as:  

   

 
  

 2

 2

 2

 2

, ,

ˆ

,

W

W

t t

E

t

 




 

 



ε
ε a

ε

U A a

a
ε

 (28) 

where,  ,W t a  depends on noise and on ε  through the estimate 

of  t .  

 Again, we discuss separately the impact of noise and of the 

approximation error. In absence of noise, it is evident from eq. 

(28) that  ,t ε  increases with increasing values of ε . 

Performance improvement is obtained by reducing the 

approximation error, for instance, by augmenting the rank K  of 

the matrix U . 

To discuss the impact of noise when  ε 0 , we exploit the 

results derived in Appendix II. Specifically, we consider that 

for any unbiased estimator of a  (and ε ), a lower bound for

 ,W t a  is: 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

 
 

          

,02

 2

 2

,0 0 ,0 0 0

,
,

, , ,  

LB T

LB T

LB T T t T T T

t
t

t tr t CRLB t t t


 




 

    

a
a

ε

a B a U U b a

 

(29) 

with:  

     

     

1

0 0 0

1

0 0,

T T

T T T

T T

t t t

t t



    
 

  

B U U U U

b a D U a

 (30) 

Notice that, in writing the expression of  ,LB Tt a  we have 

implicitly assumed the noise covariance matrix model 

presented in Section IV.A in order to make explicit the 

dependence of such a lower bound on SNR . The general 

expression of  ,LB Tt a  is derived by the results in Appendix II. 

Here again we can say that, the analysis of  ,LB Tt a  gives 

insights about the best theoretical accuracy of the emissivity 

estimator. We would like to stress that, in our case, such an 

analysis is more significant because of the asymptotical 

properties of the adopted ML estimator. 

The expression of  ,LB Tt a  highlights that, as expected, the 

performance of the emissivity estimator decreases when that of 

the temperature estimator worsens. In fact,  ,LB Tt a  is directly 

proportional to  ,t TCRLB t a . 

Furthermore, eq. (29) also shows that  ,LB Tt a  increases as 

SNR decreases ( 2  increases). We give a numerical evidence 

by considering the previously introduced example concerning 

the spectrum 
Tε . Specifically, in Figure 8 a) we plot the values 

of  ,LB Tt a  (in percent) obtained by applying the D-SBTES 

algorithm with 8K   and for SNR  ranging from 20  to 60 dB . 

Such a figure shows the performance improvement achieved 

with increasing SNR . Figure 8 a), also shows that the 

performance depends on the true temperature values and that 

the accuracy slightly improves by decreasing 
Tt . 

 

  
(a) (b) 

Figure 8. (a) Values of  ,LB Tt a  obtained by using the D-SBTES 

algorithm with a basis matrix having rank 8K   for SNR  ranging 

from 20  to 60 dB .  (b) Values of  ,LB Tt a  obtained by varying the 

rank of the emissivity subspace basis matrix. 

As to the dependence of  ,LB Tt a  on K , we observe that, the 

matrix  0 TtB  is a positive semidefinite matrix, so by adding 

columns to U  and increasing its rank K  (and that of  0 TtU ), 

the sum of its eigenvalues (i.e. its trace) augments.  ,0 ,t TCRLB t a

has been proved to increase with K . Increasing trend with K  

is expected also for the term    
 2

0 0 ,  T Tt t


 U U b a . In fact, it is 

the squared Euclidean norm of the vector obtained by the linear 

combination of the columns of U  with coefficients given by 

   0 0 ,T Tt t

U b a . Adding components to the basis U  (and so to 

 0 TtU ) we add components to the aforementioned linear 

combination and, consequently, its squared Euclidean norm is 

expected to increase. Thus, we can conclude that  ,LB Tt a

increases by augmenting the rank of the basis matrix. 

Numerical evidence is given in Figure 8 b) where the values of

 ,LB Tt a  obtained by applying the D-SBTES in the case of the 

spectrum 
Tε , are plotted for different values of  K  ranging from 

8 to 50 and for two different values of SNR . 

Finally, eq. (29) shows that the value of  ,LB Tt a  strictly 

depends on the norm of the emissivity spectrum ( U a ). 

Specifically, we note that for low emissivity spectra, 

 ,0 ,t TCRLB t a  is expected to have high value, conversely, 

   
 2

0 0 ,  T Tt t


 U U b a has low values. Thus, the specific 

relationships between the performance of the emissivity 

estimator and the norm of the emissivity spectrum is not pretty 

clear. To clarify this point, we derived the values of  ,LB Tt a  in 

the case of D-SBTES algorithm (with 8K  ) for all the spectra 

in the TOT
V dictionary.   

In Figure 9, we plot the values of  ,LB Tt a  as a function of the 

mean Euclidean norm of the emissivity spectra when 30 Tt C   

and 30 dBSNR .  Figure 9 clearly shows that  ,LB Tt a  has the 

highest values for the lowest emissivity spectra. Thus, in 

general, we have the worst performance for the lowest 

emissivity spectra. 

  
Figure 9. Values of  ,LB Tt a  versus the mean Euclidean norm of 

the emissivities in the TOT
V dictionary. Results obtained by 

applying the D-SBTES algorithm with 8K   and by setting 

30 Tt C   and 30 dBSNR . 

To conclude this section, we would like to stress that, though 

the effects of noise and ε  have been analyzed separately, 

actually they act jointly. The analysis has shown that the 

performance of SBTES algorithms strongly depends on the 

basis matrix U adopted for addressing the emissivity subspace. 

Specifically, we have shown that U  has to provide a good 

representation of the emissivity spectra in the analyzed data set 

thus having low representation error vectors ( ε ). High rank 

matrices are generally suitable to meet this requirement. On the 

other hand, the rank of U  must be as small as possible in order 

to reduce the performance degradation due to random noise. 

Thus, U  be carefully designed so as to provide a “good” and 

“compact” representation of the emissivity spectra populating 

the data set of interest. 
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C. Experimental results on simulated data. 

In this Sub-Section, the combined effects of noise and of the 

representation error are numerically analyzed on simulated 

data. To show that the performance of a given SBTES algorithm 

depends on the adopted basis matrix, we derive numerical 

results for two of the algorithms introduced in Section III: 

Pol-SBTES-1 and D-SBTES. 

 

The test set is simulated according to the procedure summarized 

in Section IV.A. Specifically, for a given atmosphere and a 

given surface temperature
Tt , we generated the at-sensor 

radiance for the 357 spectra 
qε  ( 1,...,357q  ) in the TOT

V  

dictionary. For each radiance spectrum we derived 100 noisy 

at-sensor radiance samples by adding 100 realizations of noise 

vectors generated according to the model introduced in Section 

IV.A. The resulting number of samples in the test set was 

35700. As concerns the atmosphere, results discussed in the 

following were derived by considering a flight altitude of 1 Km 

and the mid-latitude summer MODTRAN atmospheric model. 

On the basis of the root mean Euclidean norm: 

 21
q q

BN
  ε  (31) 

the spectra 
qε  are grouped in three classes: high emissivity 

spectra (“High”, 0.6q  ), low emissivity spectra (“Low”,

0.1 0.6q  ) and very low emissivity spectra (“Very Low”

0.1q  ). For each class, the following performance indexes are 

computed: 

   

   

    
 2

1
 ,

1
 ,

ˆ, ,

T T q
Q

Q

T T T T q
Q

Q

T T q T q T

t t
N

t t
N

t E T t t

 

 



 

 

  
 

ε

ε

ε ε

 (32) 

In eq. (32), Q denotes the set of indexes addressing the spectra 

of a given class, 
QN is the total number of spectra in that class, 

 Tt  and  T Tt  are the relative mean square error on the 

emissivity estimates (defined in eq. (27)) and the root mean 

square error on the temperature estimates averaged over the 

elements of that class, respectively.    

Several experiments are carried out by using D-SBTES, 

Pol-SBTES-1 and by varying the SNR  and the rank K  of the 

adopted basis matrix.  

Before starting with the analysis of the simulation results, we 

give insights about the relationship between the specific value 

of SNR  and the impact of noise on the at-sensor radiance. To 

this purpose, let us consider the spectrum 
Tε  adopted in the 

examples presented in Section IV.B. In Figure 10 we compare 

the spectral at-sensor radiance ( L ) for a hypothetical surface 

with emissivity 
Tε  and temperature 30 Tt C  , with its noisy 

version (  N
L ) when the noise realizations are generated by 

setting SNR to 25 dB , 30 dB  and 40 dB , respectively.   

   

  
(a) (b) 

 
(c) 

Figure 10. Comparison between the at-sensor radiance spectrum 

L  and its noisy version  N
L  obtained by adding Gaussian noise 

with 25 SNR dB (a), 30 SNR dB  (b) and 40 SNR dB (c). 

Figure 10 a)-c) show that noise significantly impacts on the at-

sensor radiance when 25 SNR dB , noise impact is moderate 

with 30 SNR dB  and becomes negligible for 40 SNR dB .  

As to the discussion on the performance of the algorithms, let 

us start by showing the results obtained by the D-SBTES 

algorithm on the high emissivity spectra. In Figure 11 we plot 

the values of  T Tt (Figure 11 a)) and  Tt  (in percent, Figure 

11 b)) obtained by setting 30 Tt C   and by considering four 

different values of SNR  and three different values of K . As 

expected, the performance improves when SNR increases, i.e. 

both  T Tt  and  Tt  decrease by augmenting SNR . Focusing 

on the results obtained with 8K  ,  T Tt  ranges from a value 

of about 2 °C for 30 SNR dB to 0.5 °C for 45 SNR dB . 

Similarly,  Tt  is about 4.3% at 30 SNR dB  and reduces to 1%  

when 45 SNR dB . 

  
(a) (b) 

Figure 11. D-SBTES performance on high emissivity spectra for

SNR  ranging from 30 to 45 dB and 2,8,38K  . a) Values of  T Tt

; b) values of  Tt  in percent. 

For 2K   (low rank basis matrix) both the performance indexes 

do not change significantly by reducing the noise. This is due 

to the fact that the basis matrix with rank 2K   does not 

properly address the emissivity subspace, and the performance 

is almost entirely influenced by the high approximation error 

ε .  

Results in Figure 11 also show that, when noise is not negligible 

(low SNR ), by augmenting the rank of the basis matrix and 
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reducing the approximation error ( ε ), the performance of the 

algorithm does not necessarily improve. Focusing on 

30 SNR dB , we note that both  T Tt and  Tt  reduce their 

values when we switch from 2K   to 8K  . However, by 

further increasing K  to 38 , the values of both the indexes grow. 

This confirms the conclusion drawn in Section IV.B that in 

presence of noise the performance of a generic SBTES 

algorithm degrades by increasing the rank of the basis matrix. 

Of course, such an effect vanishes when the noise is negligible. 

In fact, with 45 SNR dB , both  T Tt and  Tt  have decreasing 

trend for increasing values of K .   

Similar conclusions can be drawn for the Pol-SBTES-1 

algorithm whose performance indexes, evaluated on high 

emissivity spectra and with 30 Tt C  , are shown for 

completeness in Figure 12.  

  
(a) (b) 

Figure 12. Pol-SBTES-1 performance on high emissivity spectra 

for SNR  ranging from 30 to 45 dB and 2,8,38K  . a) Values of 

 T Tt ; b) values of  Tt  in percent. 

According to the general discussion in Section IV.B, it is 

expected that both the algorithms attain the worst performance 

on the lowest emissivity spectra. Experimental evidence is 

given in Figure 13 where we plot the values of  T Tt (Figure 

13 a)) and  Tt  (Figure 13 b)) obtained by D-SBTES and 

Pol-SBTES-1 on simulated data regarding the three classes of 

spectra “High”, “Low” and “Very Low”. Specifically, the 

presented results were obtained by setting 35 SNR dB  and 

8K  .   

  
(a) (b) 

Figure 13. Estimation performance of D-SBTES and Pol-SBTES-1 

obtained on the High, Low and Very Low classes of emissivity 

spectra when SNR is set to 35 dB and 8K  . (a) Values of  T Tt ; 

(b) values of  Tt  in percent. 

Figure 13 a) and b) clearly show that, regardless of the adopted 

algorithm, the lowest values of both the performance indexes 

are obtained for the class of high emissivity spectra, and the 

highest values pertain the class of very low emissivity spectra. 

Furthermore, results in Figure 13 show that the performance of 

a given SBTES algorithm strictly depends on the specific 

structure of the adopted basis matrix. In fact, with the same K  

we obtain different values of the performance indexes by 

applying D-SBTES and Pol-SBTES-1. Specifically,  with 8K   

and 35 SNR dB , D-SBTES outperforms Pol-SBTES-1 for all 

the classes of emissivity spectra.  

To deepen the comparison between the two algorithms a further 

experiment is discussed. In such an experiment, we compare the 

two algorithms when the corresponding basis matrix allows low 

approximation errors to be obtained on the considered data set. 

For this purpose, the rank K  of the adopted basis matrix is 

chosen so as to attain a relative approximation error 
ε

ε
 less 

than 2% for all the spectra of the TOT
V  dictionary. For D-

SBTES, the minimum value of K  that meets such requirement 

is 8, whereas for Pol-SBTES-1 is 24. In Figure 14 we plot the 

values of  T Tt (Figure 14 a)) and  Tt  (Figure 14 b)) obtained 

on the class of High emissivity spectra by the two algorithms 

and for SNR  ranging from 20 to 50 dB. 

  
(a) (b) 

Figure 14. Estimation performance of D-SBTES  and Pol-SBTES-

1 obtained on the High emissivity spectra with 20,...,50 SNR dB . 

(a) Values of  T Tt ; (b) values of  Tt  in percent. 

Figure 14 shows that D-SBTES outperforms Pol-SBTES-1 for 

low values of SNR , where noise effects are not negligible with 

respect to those of the emissivity approximation error ε . This 

is basically due to the fact that D-SBTES makes use of a basis 

matrix with rank much lower than that adopted by 

Pol-SBTES-1. For high SNR , the two algorithms have quite 

similar performance. This is not surprising because for high

SNR , the performance are basically determined by ε , and, in 

this experiments, the ranks of the basis matrices adopted by the 

two algorithms are chosen so as to have approximation errors 

in the same order of magnitude. Similar conclusions can be 

drawn by considering the class of low emissivity spectra and 

that of very low emissivity spectra. For completeness, in Figure 

15 we show the values of the performance indexes obtained for 

these two classes of emissivity spectra. As expected, the 

performance of both the algorithms decreases when the spectral 

emissivity decreases.  Figure 15 confirms that D-SBTES 

provides the best performance.  
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(a) (b) 

  
(c) (d) 

Figure 15. Estimation performance of D-SBTES  and 

Pol-SBTES-1 with 20,...,50 SNR dB  obtained on: (a)-(b) Low 

emissivity spectra and (c)-(d) Very Low emissivity spectra. 

Further experiments are carried out in order to show the 

dependence of the algorithms performance on the specific value 

of the surface temperature. For this purpose, three temperatures 

are considered: 20 C , 30 C  and 40 C . In Figure 16 we plot 

the performance indexes for the D-SBTES algorithm for 

different SNR  and for the three considered temperatures. 

Results refer to the class of high emissivity spectra and were 

obtained by setting 8K  . Similarly, in Figure 17 we present the 

results obtained by Pol-SBTES-1 with 24K  .   

  
(a) (b) 

Figure 16. Estimation performance of D-SBTES obtained, by 

setting 8K  , on High emissivity spectra with 20,...,50 SNR dB  

and  surface temperatures of 20 C , 30 C  and 40 C : (a) values 

of   T Tt ; (b) values of  Tt  in percent. 

  
(a) (b) 

Figure 17. Estimation performance of Pol-SBTES-1 obtained, by 

setting 24K  , on High emissivity spectra with 20,...,50 SNR dB  

and  surface temperatures of 20 C , 30 C  and 40 C : (a) values 

of   T Tt ; (b) values of  Tt  in percent. 

Results in Figure 16 and Figure 17 show that both the 

algorithms provide better performance with low temperatures. 

This is particularly true for low SNR . The effects of the surface 

temperature vanishes when noise is negligible. Very similar 

results (not reported here) were obtained by applying the 

algorithms to low and very low emissivity spectra.  

To conclude this section we give examples concerning the 

results provided by the two algorithms in terms of estimated 

temperature and estimated spectral emissivity. Specifically, we 

considered three spectra of the dictionary having very low 

emissivity (
1
ε ,

1
0.08  ), low emissivity (

2
ε ,

2
0.41  ) and high 

emissivity (
3ε ,

3
0.9  ). For each of them we simulated the 

noisy at-sensor radiance assuming 30Tt C   and we applied 

both D-SBTES with 8K   and Pol-SBTES-1 with 24K  . In 

Figure 18 we show the results obtained when SNR was set to 

30 dB . Specifically, in Figure 18 a) we plot the temperature 

estimates provided by the two algorithms whereas in Figure 18 

b)-d) we plot the estimates of the spectral emissivity for the 

three considered spectra. As expected the worst performance is 

obtained by applying both the algorithms to 
1
ε . Conversely, the 

best performance in terms of estimated temperature and 

retrieved spectrum is obtained for the high emissivity spectrum 

3ε .  

  
(a) (b) 

  

  
(c) (d) 

Figure 18. Results obtained by applying the D-SBTES and the 

Pol-SBTES-1 algorithms to three simulated noisy radiances with 

30 SNR dB . (a) Temperatures estimates; (b) emissivity estimates 

on the very low emissivity spectrum; (c) emissivity estimates on the 

low emissivity spectrum; (d) emissivity estimates on the high 

emissivity spectrum. D-SBTES was applied by setting 8K   and 

Pol-SBTES-1 was applied by setting 24K  . 

The performance of both the algorithms considerably    

improves when high SNR is considered. It is exemplified in 

Figure 19 a)-d) that show the results obtained by applying the 

two algorithms to data simulated with 50 SNR dB . 
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(a) (b) 

  
(c) (d) 

Figure 19. Results obtained by applying the D-SBTES and the 

Pol-SBTES-1 algorithms to three simulated noisy radiances with 

50 SNR dB . (a) Temperatures estimates; (b) emissivity estimates 

on the very low emissivity spectrum; (c) emissivity estimates on the 

low emissivity spectrum; (d) emissivity estimates on the high 

emissivity spectrum. D-SBTES was applied by setting 8K   and 

Pol-SBTES-1 was applied by setting 24K  . 

V. CONCLUSIONS  

In this paper a class of TES algorithms, named SBTES, was 

derived by exploiting the assumption that the emissivity spectra 

of natural and man-made materials can be well represented in a 

given subspace of the original data space. Specifically, by 

combining the subspace model with the Gaussian model for the 

noise affecting LWIR hyperspectral data, the ML estimators of 

both the surface temperature and the spectral emissivity were 

derived. The SBTES approach originates several TES 

algorithms whose specific form depends on the particular basis 

matrix adopted to address the emissivity subspace. In this paper, 

two algorithms were presented. The first, named Pol-SBTES-p, 

was obtained by assuming that the emissivity spectrum can be 

approximated as a piecewise polynomial function (of degree p) 

of the sensor central wavelengths. Such a method does not 

require a-priori information about the materials in the 

considered data set. The second proposed algorithm, named 

D-SBTES, exploits the availability of a given dictionary of 

emissivity spectra to estimate the subspace basis matrix. 

Pol-SBTES-p and D-SBTES are not the only algorithms that 

can be derived within from the SBTES general framework. 

Many other algorithms can be obtained by using different basis 

vectors such as, for instance, those defining the Discrete Cosine 

Transform or those derived from a given discrete wavelet 

mother function.  

Issues related to the noise and the subspace approximation 

errors were analyzed in relation to the performance of SBTES 

algorithms. Such an analysis was carried out by using 

theoretical bounds on the accuracy of the temperature and 

emissivity estimators and experimental results obtained on 

simulated data. The analysis led to several general conclusions. 

Firstly, it revealed that the basis matrix adopted by the 

SBTES algorithm must be designed so as to meet two 

conflicting requirements. On one hand, it should have high rank 

in order to reduce the subspace approximation error as much as 

possible. On the other hand, it should have low rank in order to 

reduce the detrimental impact of the noise on the estimation 

performance.  

Secondly, the analysis showed that, regardless of the specific 

adopted algorithm, the worst performance is obtained on the 

materials having low spectral emissivity. Furthermore, in 

presence of noise, we obtain the best performance for the 

materials with the lowest surface temperature.    

Those general conclusions are in compliance with the results 

obtained by applying the Pol-SBTES-1 and the D-SBTES 

algorithms to simulated data. The comparison between the two 

algorithms showed that D-SBTES gives the best overall 

performance. This is basically due to the fact that dictionary 

based basis estimation yields compact and accurate 

representation basis. Of course, it is expected to work well on 

those materials whose spectral emissivity features are 

sufficiently represented in the dictionary that originates the 

basis matrix. Anomalous (with respect to the dictionary) 

spectral emissivities may result in very poor performance. For 

example, think of an object (e.g. a specific gas) having a narrow 

band spectral feature not present in the dictionary atoms.     

It is worth noting that, the proposed analysis does not claim 

to be exhaustive. Several open issues still remain. For instance, 

it could be interesting to study how performance of SBTES 

algorithms depends on the specific values of the atmospheric 

model parameters such as the water vapor concentration or the 

atmospheric temperature profile. It would also be interesting to 

analyze the impact of the errors of the atmospheric 

compensation on the estimation performance of the SBTES 

algorithms. The issues to analyze are too many to enclose them 

in a single paper. However, the methodological approach 

presented in this work is surely suitable to extend the analysis 

of the SBTES algorithms to other issues and is our intention to 

face with some of them in the near future.   

We conclude by remarking that, although it would be 

interesting to extend our analysis to real LWIR hyperspectral 

data, we are unable to do so because of the lack of appropriate 

experimental data sets. In fact, such an analysis would require 

a great amount of atmospheric compensated hyperspectral 

images equipped with precise measurements of the surface 

temperature and emissivity spectra performed on a per-pixel 

basis. Such extensive data set is not available and simulation is 

the only tool to perform accurate sensitivity analysis and get 

reliable conclusions in realistic scenarios while having the 

control and full knowledge of each important parameter. 

 

APPENDIX I 

In this appendix we derive the expression of the ML 

estimators of t  ( T̂ ) and a  ( Â ) reported in eq. (5) and eq. (8). 

According to the multivariate Gaussian assumption and the 

subspace model in eq. (4), the log-likelihood function for  ,tY ε  

can be written as: 
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    
2

1 
2

1
log ; ,

2
f t u t


      YY a Γ Y D U a  (I-1) 

where, 1 1 2

N N  

      
Y

Γ D Γ D D Γ  and u  is a constant depending 

on the determinant of 
Y

Γ . The maximum likelihood estimates 

of t  and a  are obtained by solving the following optimization 

problem ([10]): 

    

  

    

,

,

2
1 

2

ˆˆ, arg max log ; ,

arg min ,

,

t

t

T f t

t

t t




 

     

a

a

Y

A Y a

a

a Γ Y D U a

 (I-2) 

Taking the derivatives of  ,t a  with respect to a  and equating 

it to zero we derive ([10]): 

   
 +

t t A U Y  (I-3) 

with  

     
1 1  

2 2
Nt t t

 
      YU Γ D U Γ D D U  (I-4) 

and 
1 

2
N 


  Y Γ D Y . In eq. (I-3) the super-script “  + ” denotes the 

Moore–Penrose pseudo inverse. Replacing a  with  tA  in the 

expression of  ,t a  we can write: 

       

   
2

 +

min , ,t t t t

t t

    

   

a
a A

Y U U Y
 (I-5) 

Denoting as      
 +

t t t P U U  the projection matrix on the 

subspace spanned by  tU  and as      
 +

t t t   P I U U ( I  is 

B BN N  identity matrix) the projection matrix on its orthogonal 

complement, eq. (I-4) can be rewritten as: 

   
2

t t  P Y  (I-5) 

Now, we can obtain T̂  as: 

     ˆ arg min , arg min
t t

T t t t   A  (I-6) 

and: 

   
 +

ˆ ˆ ˆT T  A A U Y  (I-3) 

APPENDIX II 

In this appendix, we first derive the Fisher information 

matrix and its inverse for the unbiased estimators of the 

deterministic parameters t  and a  in the subspace based 

estimation problem defined by eqs. (3) and (4). Then, exploiting 

these results, we obtain the expression of the Cramer-Rao 

Lower Bound (CRLB) for the unbiased estimators of the 

surface temperature t  (in absence of emissivity approximation 

error 0 ε ), and the lower bound for the emissivity estimation 

error.  

According to the model introduced in Section II, the 

observation vector Y  is Gaussian distributed with mean vector 

 ,t
Y
μ a  and covariance matrix 

Y
Γ :   

   

   

1 1

,

BB L

t t

t t

 



 

  

  

 

Y

Y Ν

μ a D U a

Γ D Γ D

D D D

 (II-1) 

In the case of Gaussian observations the Fisher information 

matrix  ,t
Y

F a  is given by ([10], pag. 47):      

     1, , ,
T

t t t  
Y Y

F a A a Γ A a  (II-2) 

where  ,tA a  is the 1BN K   matrix containing the partial 

derivatives of the mean vector with respect to the parameters t  

and a , i.e.:  

     , , , ,t t t
t

  
    

Y YA a μ a μ a
a

 (II-3) 

 In our case, it can be easily proved that: 

     

   

1
,

,

BBt t
t

t t


  




 



Y

Y

μ a D U a

μ a D U
a

 (II-4) 

where    1

BB tD  is the diagonal matrix whose l-th entry    1
,BB ld t  

is the derivative of the Plank’s law with respect to the 

temperature at the central wavelength 
l . 

Combining eqs. (II-3) and (II-4) and recalling that the 

covariance matrix 
Y

Γ  is symmetric,  ,t
Y

F a  can be rewritten as: 

             

           

     

 
1 1

1 1
1 1 12 2

1 1

2 2

, ,  ,  
T

BB BB

t t t t t

t t t

t t t





 

 

        
   

    

      

Y

Y N

Y N

F a D U a U D U a U

D Γ D Γ D D

U Γ D U Γ D D U

 (II-5) 

After some algebraic calculation we obtain  ,t
Y

F a  in the 

following block form: 

 ,
Tc

t
 

  
 

Y

b
F a

b R
 (II-6) 

where        1 1T Tc t t     a U D D U a  is a scalar quantity, 

     1T
t t   b U D U a  is a 1K   vector and    

T
t t R U U  is a 

K K  invertible matrix. According to the block matrix 

inversion formula: 

 
 

1

1

1 1

1 1

,
1

   ,

T

t

t

 







 

 
  

 
 
  
 

Y

a

b R

F a

R b F a

 (II-7) 

with: 
1Tc    b R b  (II-8) 

and 

 1 1 1 11
, Tt



       aF a R R b b R  (II-9) 

The first element on the diagonal of  1 ,t

YF a  is the CRLB for 

the unbiased estimators of the parameter t  (  ,tCRLB t a ) ([10]). 

Accounting for the expressions of c , b  and R , it can be written 

as: 
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 
     

         

 2
1

1

1
,

 
t

T T

CRLB t
t t

t t t t t







  

     
 

a

P D U a

P I U U U U

 (II-10) 

The remaining diagonal entries of  1 ,t

YF a  (i.e. those of 

 1 ,t

aF a ) are the CRLBs for the unbiased estimators of the 

elements of a . 

In order to derive a lower bound for the estimation error on 

the emissivity vector, let us start by defining the mean square 

estimation error as: 

 
2

ˆ,t E   
 

a ε ε  (II-11) 

 with E  denoting the statistical expectation operator.  

According to the adopted subspace model: 

      
    

ˆ ˆ,  

ˆ ˆ

T
T

T
T

t tr E

tr E

        
  

      
  

a U A a A a U

U A a A a U

 (II-12) 

where tr  denotes the trace of a matrix. For the generic 

unbiased estimator of a , the statistical expectation in eq. (II-12) 

coincides with its covariance matrix 
Â

C , for which the 

following inequality holds ([10]):  

 1

ˆ ,t 
aA

C F a 0  (II-13) 

where  0  is to be interpreted as positive semidefinite. As a 

consequence we can write: 

 1

ˆ ,T Tt     
aA

U C U U F a U 0  (II-14) 

Now combining eqs. (II-12) and (II-14), we obtain: 

   

    1

, ,

, ,

LB

T

LB

t t

t tr t

 

 



  a

a a

a U F a U
 (II-15) 

that applies to any unbiased estimator of  ε U a . 

Recalling eq. (II-9) and the specific expressions of R , b  and  

 , the lower bound in eq. (II-15), is rewritten as: 

      
       

1

 2
1

,

,  

T T

LB

t

t tr t t

CRLB t t t






     
 

     

a U U U U

a U U D U a

 (II-16) 
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