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Abstract

This article aims at analysing a two-sector economic growth model with discrete delays. The
focus is on the dynamic properties of the emerging system. In particular, the work concentrates
on the study of the stability properties of the stationary solution and the conditions under
which oscillatory dynamics emerge (through Hopf bifurcations). In order to make the above
results more readable, it was proposed the stability crossing curves technique to characterise
the stability conditions in the plane of time delays. In addition, the article proposes some
numerical simulations to illustrate the behaviour of the system when the stationary equilibrium
is unstable.
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The Solow growth model (Solow, 1956) with physical capital accumulation is a
cornerstone in economic theory and several developments of it have been proposed in
the course of time, especially to account for human capital accumulation (Mankiw et
al., 1992) and environmental issues (the Green Solow model). A relevant assumption of
both the one-sector and two-sector Solow models is that production and accumulation
of physical and human capital take place immediately. However, this is one of the
main reasons why explaining fluctuations within such a framework is prevented. By
accounting for the stylised fact that these processes can actually require time, this
article contributes to the literature by considering a two-sector Solow-type set up
with a time-to-build technology including time delays between the initial investment
and its production capacity. This assumption enables the Solow growth model to
explain temporary or persistent fluctuations in economic variables.
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1 Introduction

Despite (or perhaps because of) its simplicity, the one-sector Solow growth model (Solow 1956)
with physical capital accumulation continues to be at the hearth of both the theory and empirics
of economic growth and development. Indeed, by using this framework scholars have been often
able to capture noteworthy aspects of the convergence towards long-term stationary values of per
capita income of countries. This is because of the assumption of declining marginal product of
capital, which in turn leads to a reduction in gross investments and the rate of economic growth.
With specific regard to the empirics of the Solow growth model, the leading article of Mankiw et
al. (1992) "takes Robert Solow seriously" (Mankiw et al., 1992, p. 407) and analyses whether a
version of the Solow growth model augmented with human capital (two-sector model) is able to fit
cross-country data related to the international variation and convergence in the standard of living
of countries. The conclusion of these authors is that the Solow model is an "excellent" set up to
explain the reasons why some (poor) countries grow faster than other (rich) countries do, as its
theoretical predictions are consistent with the empirical evidence.

From a theoretical point of view, there are interesting extensions produced over the years by
several authors. We recall here the contributions of Mirman (1973) in discrete time and Merton
(1975) in continuous time, introducing a stochastic component in the Solow model and character-
ising the asymptotic properties of the systems. These works were then reconsidered later, amongst
others, by Prandini (1994) and Schenk-Hoppé and Schmalfuß (2001). Another interesting extension
is represented by the introduction of a spatial component within the Solow model (the so-called spa-
tial Solow growth model). From a mathematical point of view, the dynamics of the system in this
case are described by a partial differential equation (Camacho and Zou, 2004; Capasso et al., 2010).
A study of the formal properties of the Solow model extended to the case of dynamics described
by a non-autonomous system and related to problems of population dynamics can also be found
in Guerrini (2006). In addition, thanks to the burgeoning interest to environmental concerns, the
Solow approach to economic growth has also become a useful tool to describe how the environment
is related to the production process. This is the case of the so-called Green Solow model by Brock
and Scott Taylor (2010), who show that one of the most influential empirical result in environmental
economics, that is the Environmental Kuznets Curve, is consistent with the theoretical one-sector
Solow growth model. Finally, we mention the recent work of Brianzoni et al. (2015) that represents
one of the first attempts to explain oscillatory dynamics in a deterministic Solow-type set up.

However, in its original version, the Solow model is not able to capture (temporary or persistent)
fluctuations in per capita income observed in the process of economic growth. In fact, the traditional
growth theory of Solow attempts to explain the behaviour of trend by ignoring cyclical fluctuations,
and variations around the trend are attributed to exogenous shocks. In order to get models able
to explain short-term and long-term fluctuations, economic theory has developed models with non-
trivial allocative problems (for instance, in an overlapping generations framework see the recent
contributions of Chen and Li, 2013, who consider the effects of child policies on long-term outcomes,
and Gori and Sodini, 2014, who study a model with endogenous labour supply and multiplicative
external habits) or disequilibrium Keynesian-type models (Naimzada and Pireddu, 2014).

One of the limiting assumptions of the augmented Solow model (preventing to explain fluctua-
tions) is that production and accumulation of human capital take place immediately. This may be
viewed as a limitation as these processes can actually require time. The purpose of this article is
to introduce a time-to-build technology in the classical two-sector Solow model (with physical and
human capital accumulation) that includes time delays between the initial investment and its pro-
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duction capacity. The introduction of a time-to-build technology for human capital, in fact, seems
to be a natural phenomenon in the process of accumulation and depreciation of it, given the time
required for its formation and use in production. This hypothesis was introduced by Zak (1999) in
a one-sector model with physical capital. However, in their works both Zak (1999) and Ferrara et
al. (2013) conduct only a local analysis and establish the existence of a Hopf bifurcation. This kind
of bifurcation explains the possibility of business cycles in these two frameworks but nothing is said
about their stability (see, for example, Ferrara et al., 2014 for some formal results concerning the
direction and stability of the Hopf bifurcation in a modified Solow model) and the behaviour of the
dynamic system when the time delay goes beyond its bifurcation value.

More generally, the existence of a Hopf bifurcation determines the emergence of regular cycles
(quasi-periodic behaviour) considered however by some scholars to be too simple to mimic business
cycles behaviours observed in actual markets. Unfortunately, numerical simulations seem to reveal
that the only relevant finding obtained in the unidimensional Solow model augmented with discrete
delays is that by increasing the time delay there is an increase in the extent of fluctuations but the
qualitative behaviours of trajectories do not change (after a quite long transient, in fact, a generic
trajectory shows only one maximum value and one minimum value). This result confirms that the
one-sector Solow model (even if augmented with time delays) cannot be used to explain temporary
or persistent fluctuations in income. Results change dramatically, however, as the Solow growth
model augmented with human capital accumulation and time delays becomes a useful set up able
to describe temporary or persistent fluctuations in economic variables.

In recent years, some phenomena related to economic growth have been analysed by using
methods of other disciplines. In particular, a promising field, which is known as physical economics,
uses the typical tools of thermodynamics to explain both the state and possible fluctuations of the
main macroeconomic variables. Based on the use of non-exact differential forms and the second
law of thermodynamics, some scholars have developed models characterised by a few number of
parameters but able to mimic some features of economic growth models, such as the existence of
different growth rates of per capita GDP. In this regard, an interesting approach is the one related
to the similarity that some authors establish between entropy and utility functions allowing some
macroeconomic behaviours to be microfounded. (see Richmond et al., 2013 for a general reference).
Another approach is the one proposed by Chakrabarti and Chatterjee (2004) and Chatterjee et al.
(2003, 2004) with the aim of describing the behavior of trading on the markets. For doing this,
the authors accounted for some fundamentals of the mathematical physics - specifically related to
the interaction amongst molecules of the ideal-gas - to identify some models (the so-called kinetic
models) showing results similar to those on income distribution.

The rest of the article proceeds as follows. Section 2 introduces a two-sector Solow growth model
augmented with human capital accumulation and time delays. Section 3 provides an analysis of the
stability properties of the dynamic system. Section 4 outlines the conclusions.

2 The model

The one-sector Solow growth model is a cornerstone of economic theory and it has been the object of
several generalisations. Specifically, in order to validate it empirically, in an important contribution
Mankiw et al. (1992) account for human capital accumulation. The dynamics of the model in that
case are described by a two-dimensional continuous time dynamic system. However, some results
of this augmented Solow model are based on the assumption that investments in physical capital
and human capital and production of goods that can be used as productive inputs occur at the
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same time. Indeed, it is important to note that transforming investments in productive stocks of
physical and human capital may require some gestation lags. As an example, one can think about
education, infrastructures and innovation.

In order to account for these assumptions, we modify the model of Mankiw et al. (1992) by
considering that the intensive production function at time t has the following expression:

y(t) = k(t− τ1)αh(t− τ2)β, (1)

where k(t− τ) and h(t− τ) are the stock of physical capital and the stock of human capital at time
t − τ , y(t) is production at time t, α is the output elasticity of physical capital, β is the output
elasticity of human capital and α+β ∈ (0, 1), implying that there exist decreasing returns in either
forms of capital.1 Now, define sk and sh as the (exogenous) fractions of income invested in physical
capital and human capital, respectively. By following the literature on time-to-build models, the
time delay enters also (physical and human) capital depreciation (Zak, 1999). In addition, according
with Mankiw et al. (1992) we let the depreciation rate δk = δh = δ. By accounting for physical and
human capital accumulation, the dynamics of the model are characterised by the following system
of delay differential equations:

� .

k = skk
α
τ1
hβτ2 − δkτ1.

h = shk
α
τ1
hβτ2 − δhτ2

, (2)

where kτ1 := k(t−τ1) and hτ2 := h(t−τ2) (we omit the time index for simplicity). The equilibrium
points of system (2) coincide with those of the corresponding system with no delays. Thus, there
exists a unique steady state (k∗, h∗), where

k∗ =

�
s1−βk sβh
δ

� 1
1−α−β

and h∗ =

�
sαk s

1−α
h

δ

� 1
1−α−β

.

In order to deal with the local stability of the equilibrium state we linearize system (2) around
(k∗, h∗) and get 





.

k = (α− 1)δ(kτ1 − k∗) +
�
βδsk
sh

�
(hτ2 − h∗),

.

h =

�
αδsh
sk

�
(kτ1 − k∗) + (β − 1) δ(hτ2 − h∗).

(3)

The characteristic equation of system (3) can be expressed as follows

det





(α− 1)δe−λτ1 − λ βδsk

sh
e−λτ2

αδsh
sk

e−λτ1 (β − 1) δe−λτ2 − λ




 = 0,

that is
λ2 + b1λe

−λτ1 + c1λe
−λτ2 + d0e

−λ(τ1+τ2) = 0, (4)

where
b1 = (1− α)δ > 0, c1 = (1− β)δ > 0, d0 = (1− α− β)δ2 > 0. (5)

1We are assuming that the growth rates of exogenous technological progress and population are zero. We normalise
the corresponding levels to one.
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In the coming sections, we shall analyze the distribution of the roots of Eq. (4) and the following
Lemma is helpful in our investigation.

Lemma 1 For the transcendental equation

P (λ, e−λτ1 , ..., e−λτm) = λn + p
(0)
1 λ

n−1 + · · ·+ p(0)n−1λ+ p(0)n

+
�
p
(1)
1 λ

n−1 + · · ·+ p(1)n−1λ+ p(1)n
�
e−λτ1 + · · ·

+
�
p
(m)
1 λn−1 + · · ·+ p(m)n−1λ+ p

(m)
n

�
e−λτm = 0,

as (τ1, τ2, ..., τm) vary, the sum of orders of the zeros of P (λ, e−λτ1 , ..., e−λτm) in the open right
half plane can change only if a zero appears on or crosses the imaginary axis (see Ruan and Wei,
2003).

Preliminary, we observe that if τ1 = τ2 = 0 then Eq. (4) becomes

λ2 + (b1 + c1)λ+ d0 = 0. (6)

It is easy to see that Eq. (6) is solved by λ = −(1 − α − β)δ and λ = −δ. All roots of (6) are
negative. Hence, the equilibrium point (k∗, h∗) is locally asymptotically stable.

3 Stability analysis

In this section we perform a stability analysis of dynamic system (2). In particular, Section 3.1
considers the case in which both time delays are positive and equal. Section 3.2 analyses the case
in which one of the delay is zero and the other one varies. Section 3.3 takes into account the case
of a positive time delay fixed in its stable interval by letting the other delay vary. Section 3.4
exemplifies the results obtained in the previous section by using the geometrical approach of the
stability crossing curves. In addition, in order to clarify the behaviour of the dynamics after the
equilibrium point is destabilised, this last section provides some numerical simulations.

3.1 Case τ 1 = τ 2 = τ

The characteristic equation (4) takes the form

P1(λ, τ) := λ
2 + (b1 + c1)λe

−λτ + d0e
−2λτ = 0. (7)

In order to examine the existence of simple purely imaginary roots of (7) and the transversality at
all corresponding bifurcation values, we use the following equation

P (λ, τ) := eλτP1(λ, τ) = e
λτλ2 + (b1 + c1)λ+ d0e

−λτ = 0. (8)

Substituting λ = iω, with ω > 0, into (8), we derive the real and imaginary parts
� �

ω2 − d0
�
cosωτ = 0,

�
ω2 + d0

�
sinωτ = (b1 + c1)ω.

(9)
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Lemma 2 Eq. (8) has a pair of purely imaginary roots ±iω1 (±iω2, respectively) at τ = τ j1 (τ = τ
j
2,

respectively), where

ω1,2 =
b1 + c1 ±

�
(b1 + c1)

2 − 4d0
2

, τj1,2 =
1

ω1,2

�π
2
+ 2πj

�
, (10)

with j = 0, 1, 2, ...

Proof. The statement follows from (9) considering the cases ω2 − d0 = 0 (cosωτ �= 0) and
ω2 − d0 �= 0 (cosωτ = 0). Notice the former cannot occur since it gives sinωτ = (b1 + c1)ω/(ω2 +
d0) = (b1 + c1) /(2

√
d0) > 1. The latter implies ω2 − (b1 + c1)ω + d0 = 0, whose discriminant is

(b1 + c1)
2 − 4d0 = (α+ β)2δ2 > 0. Furthermore, it is ω1 < ω2.

Let ω∗ ∈ {ω1, ω2} be a root of system (9) and τ∗ the corresponding value of τ . We need to
guarantee simple root and transversality at λ = iω∗ and τ = τ∗, respectively. Differentiating (8)
with respect to τ yields

�
λ2τeλτ + 2λeλτ − d0τe−λτ + b1 + c1

��dλ
dτ

�
= λ
�
d0e

−λτ − λ2eλτ
�
. (11)

Now, we use (11) to prove λ = iω∗ to be a simple root of (8). In fact, if it is not a simple root,
then λ

�
d0e−λτ − λ2eλτ

�
= 0. From (8) we obtain 2λeλτ + b1 + c1 = 0. Hence,

cosω∗τ∗ = 0 and − 2ω∗ sinω∗τ∗ + b1 + c1 = 0. (12)

We will show that these identities yield a contradiction. If ω∗ = ω1, then cosω1τ1 = 0. From (9)
and (12) we deduce ω21 − d0 = 0. The conclusion follows. Similarly, the case for ω∗ = ω2.

Next, from (11) we get

�
dλ

dτ

�−1
=

2λeλτ + b1 + c1

λ
�
d0e−λτ − λ2eλτ

� − τ
λ
,

which leads to

sign

�
dRe(λ)

dτ

�

τ=τ∗

= sign

�

Re

�
dλ

dτ

�−1�

τ=τ∗

= sign

�
2ω4

∗
+ 2ω2

∗
d0
�
cos2 ω∗τ∗ − sin2 ω∗τ∗

�
− ω3

∗
(b1 + c1) sinω∗τ∗ + ω∗d0 (b1 + c1) sinω∗τ∗

ω2
∗
[(−ω2

∗
+ d0) sinω∗τ∗]

2 + ω2
∗
[(ω2

∗
+ d0) cosω∗τ∗]

2

�

= sign {A} ,

where

A = 2ω3
∗
+ 2ω∗d0

�
cos2 ω∗τ∗ − sin2 ω∗τ∗

�
− ω2

∗
(b1 + c1) sinω∗τ∗ + d0 (b1 + c1) sinω∗τ∗.

Recalling that cosω∗τ∗ = 0 and sinω∗τ∗ = 1, one has

sign {A} = sign
�
(b1 + c1)ω

2
∗
− 4d0ω∗ + d0 (b1 + c1)

�
> 0.
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Notice that (b1 + c1)ω
2
∗
−4d0ω∗+d0 (b1 + c1) = 0 has discriminant equal to−4d0

�
(b1 + c1)

2 − 4d0
�
<

0. Hence sign {A} is positive. In conclusion

sign

�
dRe(λ)

dτ

�

τ=τ∗

> 0.

From the previous discussions and the Hopf bifurcation theorem, we can obtain the following result.

Theorem 3 Let τ02 be defined as in (10). The equilibrium (k∗, h∗) of system (2) is locally asymp-
totically stable for τ ∈ [0, τ02) and unstable for τ > τ02. System (2) undergoes a Hopf bifurcation at
the equilibrium (k∗, h∗) for τ = τ02.

3.2 Case τ 1 = 0, τ2 > 0

Eq. (4) becomes
λ2 + b1λ+ (c1λ+ d0) e

−λτ2 = 0, (13)

For ω > 0, we assume λ = iω is a root of (13) to detect the critical value of stability transition.
Then we get

ω2 = c1ω sinωτ2 + d0 cosωτ2, b1ω = d0 sinωτ2 − c1ω cosωτ2, (14)

which leads to
ω4 +

�
b21 − c21

�
ω2 − d20 = 0, (15)

where
b21 − c21 = (β − α)(2− α− β)δ2, d20 = (1− α− β)2δ4 > 0.

Let z = ω2, then (15) becomes
z2 +

�
b21 − c21

�
z − d20 = 0. (16)

We have the following conclusions.

Lemma 4 Eq. (15) has a unique positive root ω+, where

ω+ =

 !!"− (b21 − c21) +
�
(b21 − c21)

2
+ 4d20

2
,

and we can get the sequence of critical values of τ2 :

τ2,j =
1

ω+

#
cos−1

�
(d0 − b1c1)ω2+
c21ω

2
+ + d

2
0

�
+ 2jπ

$
, j = 0, 1, 2, ... (17)

Proof. The first part of the statement comes from solving Eq. (16). From (14), we derive

sin (ω+τ2) =

�
b1d0 + c21ω+

�
ω+

c21ω
2
+ + d

2
0

> 0, cos (ω+τ2) =
(d0 − b1c1)ω2+
c21ω

2
+ + d

2
0

. (18)

The critical values of τ for which the characteristic equation (13) has purely imaginary roots can
now be determined from (18).
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Let λ (τ2) be the root of (13) satisfying Re(λ (τ2)) = 0 and Im(λ (τ2)) = ω+. Substituting
λ (τ2) into the left hand side of (13) and taking derivative with respect to τ2, we have

�
2λ+ b1 + c1e

−λτ2 − (c1λ+ d0) τ2e−λτ2
�� dλ
dτ2

�
= (c1λ+ d0)λe

−λτ2 , (19)

which yields �
dλ

dτ2

�−1
=
(2λ+ b1) e

λτ2 + c1
(c1λ+ d0)λ

− τ2
λ
.

Using (13) we have

sign





d (Reλ)

dτ2

%%%%
τ2=τ2,j
ω=ω+





= sign





Re

�
dλ

dτ2

�−1

τ2=τ2,j
ω=ω+





= sign

�
c21ω

4
+ + 2d

2
0ω

2
+ + b

2
1d
2
0�

c21ω
2
+ + d

2
0

� �
ω2+ + b

2
1

�
ω2+

�

> 0.

The root λ(τ2) of (13) crosses the imaginary axis from left to right at τ2 = τ2,j as τ2 increases.
Furthermore, observe that λ = iω+ is a simple root of Eq. (13). If it is not simple, then from (19)
we must have (c1iω+ + d0) iω+e

−iω+τ2,j = 0, which is a contradiction. In view of above analysis,
we arrive at the following conclusions.

Theorem 5 Let τ2,j (j = 0, 1, 2, ...) be defined as in (17). The equilibrium (k∗, h∗) of system (2)
is locally asymptotically stable when τ2 ∈ [0, τ2,0) and unstable when τ > τ2,0. Moreover, system
(2) undergoes Hopf bifurcations at the equilibrium for τ2 = τ2,j (j = 0, 1, 2, ...).

3.3 Case τ 1 > 0, τ2 ∈ [0, τ2,0)
In order to study this case, we consider Eq. (4) with τ2 lying in its stable interval, i.e. τ2 = τ∗2 ∈
[0, τ2,0), and regarding τ1 as a parameter. Let λ = iω (ω > 0) be a root of (4), then we have

−ω2+b1iω(cosωτ1−i sinωτ1)+c1iω(cosωτ∗2−i sinωτ∗2)+d0 [cosω (τ1 + τ∗2)− i sinω (τ1 + τ∗2)] = 0.

Rewriting this equation according to its real and imaginary parts, we have

−ω2 + b1ω sinωτ1 + c1ω sinωτ∗2 = −d0 cosω (τ1 + τ∗2) , (20)

b1ω cosωτ1 + c1ω cosωτ
∗

2 = d0 sinω (τ1 + τ
∗

2) . (21)

Using the square condition and adding the equations, we obtain

�
−ω2 + b1ω sinωτ1 + c1ω sinωτ∗2

�2
+ (b1ω cosωτ1 + c1ω cosωτ

∗

2)
2 = d20,

namely

g(ω) = ω4 + (−2b1 sinωτ1 − 2c1 sinωτ∗2)ω3 +
�
b21 + c

2
1 + 2b1c1 cosω (τ1 − τ∗2)

�
ω2 − d20 = 0. (22)

Notice that g(0) = −d20 < 0 and g(ω) = +∞ as ω → +∞. Therefore, Eq. (22) has at least a
positive solution. Henceforth, assume Eq. (22) has finitely many positive roots ω1, ω2, ..., ωN . For
every fixed ωl, l = 1, 2, ..., N, there exists a sequence τ

j
1,l > 0 (j = 0, 1, 2, ...). Let

τ̃1 = min
)
τ j1,l, l = 1, 2, ..., N, j = 0, 1, 2, ...

*
. (23)
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For τ1 = τ̃1, Eq. (4) has a pair of purely imaginary roots ±iω̃. Let λ (τ1) be the root of Eq. (4)
near τ1 = τ̃1 satisfying Re(λ (τ̃1)) = 0, Im(λ (τ̃1)) = ω̃. Then, by differentiating the two sides of
Eq. (4) with respect to τ1, we obtain

�
2λ+ b1e

−λτ1 + c1e
−λτ∗2 − c1λτ∗2e−λτ

∗

2 − d0 (τ1 + τ∗2) e−λ(τ1+τ
∗

2) − b1τ1λe−λτ1
�� dλ
dτ1

�

= λ
�
b1λe

−λτ1 + d0e
−λ(τ1+τ

∗

2)
�
. (24)

Thus,

�
dλ

dτ1

�−1
=
2λ+ b1e−λτ1 + c1e−λτ

∗

2 − c1λτ∗2e−λτ
∗

2 − d0τ∗2e−λ(τ1+τ
∗

2)

λ
�
b1λe−λτ1 + d0e

−λ(τ1+τ∗2)
� − τ1

λ
. (25)

According to (4), one has that (25) rewrites as

�
dλ

dτ1

�−1
= −2λ+ b1e

−λτ1 + c1e−λτ
∗

2 + τ∗2
�
λ2 + b1λe−λτ1

�

λ
�
λ2 + c1λe−λτ

∗

2

� − τ1
λ
.

Then, �
dλ

dτ1

�−1

τ1=τ̃1

=
A1 + iA2

ω̃ (B1 − iB2)
− τ̃1
iω̃
,

with

A1 = b1 cos ω̃τ̃1 + c1 cos ω̃τ
∗

2 + τ
∗

2

�
b1ω̃ sin ω̃τ̃1 − ω̃2

�
, B1 = c1ω̃ cos ω̃τ

∗

2, (26)

A2 = 2ω̃ − b1 sin ω̃τ̃1 − c1 sin ω̃τ∗2 + b1ω̃τ∗2 cos ω̃τ̃1, B2 = c1ω̃ sin ω̃τ
∗

2 − ω̃2. (27)

Therefore, we have

sign

�
dRe(λ)

dτ1

�

τ1=τ̃1

= sign

�

Re

�
dλ

dτ1

�−1�

τ1=τ̃1

= sign (G(ω̃, τ̃1)) ,

where

G(ω̃, τ̃1) = A1B1 −A2B2 =
�
2ω̃2 + c21

�
ω̃ − b21ω̃ sin ω̃τ̃1 − 3c1ω̃2 sin ω̃τ∗2 + b1c1ω̃ cos ω̃(τ̃1 − τ∗2)

+ τ∗2
�
b1ω̃

3 cos ω̃τ̃1 − c1ω̃3 cos ω̃τ∗2 + b1c1 sin ω̃(τ̃1 − τ∗2)
�
. (28)

If A1B1 − A2B2 > 0 (resp. A1B1 − A2B2 < 0), then the pair of purely imaginary roots crosses
the imaginary axis from left (resp. right) to right (resp. left) at τ̃1. It remains to prove λ = iω̃ to
be a simple root of (4). Suppose this root is a repeated root. Then, (24) implies b1iω̃e

−iω̃τ1 +
d0e

−iω̃(τ1+τ
∗

2) = 0. Using (4), this means iω̃
�
iω̃ + c1e

−iω̃τ∗2
�
= 0, and so i (ω̃ − c1 sin ω̃τ∗2) +

c1 cos ω̃τ
∗

2 = 0. Consequently, we must have ω̃ = c1 sin ω̃τ
∗

2 and cos ω̃τ∗2 = 0, i.e. ω̃ = c1,
sin ω̃τ∗2 = 1 and cos ω̃τ∗2 = 0. Recalling that cosω (τ1 + τ

∗

2) = cosωτ1 cosωτ
∗

2 − sinωτ1 sinωτ∗2
and sinω (τ1 + τ

∗

2) = sinωτ1 cosωτ
∗

2 + cosωτ1 sinωτ
∗

2, we derive from (20),(21) that sinωτ1 = 0
and cosωτ1 = 0, which is clearly a contradiction.

According to the general Hopf bifurcation theorem for FDEs in Hale (1977), we derive the
following results on the stability and Hopf bifurcation of system (2).
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Theorem 6 Let τ̃1, A1, B1,A2, B2 and G(ω̃, τ̃1) be defined as in (23), (26), (27) and (28), τ2 ∈
[0, τ2,0).

1) If Eq. (22) has no positive root, then the equilibrium (k∗, h∗) of system (2) is locally asymp-
totically stable for τ1 ≥ 0.

2) If Eq. (22) has one positive root ω̃, then

a) if G(ω̃, τ̃1) > 0, the equilibrium (k∗, h∗) of system (2) is locally asymptotically stable for
τ1 ∈ [0, τ̃1) and the equilibrium point loses its stability via a Hopf bifurcation at τ1 = τ̃1;

b) if G(ω̃, τ̃1) < 0, the equilibrium (k∗, h∗) of system (2) is locally asymptotically stable for
τ1 ≥ 0.

3) If Eq. (22) has at least two positive roots, then there may exist a lot of stability switches
and the stability of (k∗, h∗) can change a finite number of times, at most, and eventually it
becomes unstable.

a) If G(ω̃, τ̃1) > 0 the equilibrium (k∗, h∗) of system (2) is locally asymptotically stable for
τ1 ∈ [0, τ̃1) and system (2) undergoes a Hopf bifurcation at the equilibrium (k∗, h∗) for
τ1 = τ̃1. The equilibrium (k∗, h∗) remains unstable for τ1 > τ̃1 until τ1 crosses a value
τ1 = τ

j
1,l such that G(ωl, τ

j
1,l) < 0. If τ̂1 is this stability switch, then a Hopf bifurcation

occurs at τ1 = τ̂1. As τ1 increases, the dynamic system may undergo a finite number of
stability switches.

b) If G(ω̃, τ̃1) < 0, the equilibrium (k∗, h∗) of system (2) remains locally asymptotically
stable when τ1crosses τ̃1 and it becomes unstable when τ1 crosses a value τ1 = τ j1,l
such that G(ωl, τ

j
1,l) > 0. A Hopf bifurcation occurs at this value. As τ1 increases, the

dynamic system may undergo a finite number of stability switches.

3.4 Stability crossing curves

The conditions expressed in Theorem 6 are difficult to be read as sign(A1B1−A2B2) depends not
only on the parameters of the model but also on the value of the time delay τ∗2 fixed in the interval
[0, τ2,0) as well as on τ̃1 defined in (23) and the corresponding ω̃ obtained by (4). In order to give
a clearer understanding of the dynamic properties of the model, a useful tool is represented by the
stability crossing curves, introduced by Gu et al. (2005) and extended by Lin and Wang (2012)
to study models with discrete delays in which in the characteristic equation also appears the term
e−λ(τ1+τ2), as in (4). The first step in this procedure is to define the intervals for ω such that
complex conjugate roots exist. Specifically, this coincides with the set of ω such that the following
function, defined by starting from the characteristic equation (4),

G(ω) := (δ2 − ω2)[δ2(1− α− β)2 − ω2]
�
[δ2(α+ β − 1) + ω2]2 − (α− β)2δ2ω2

�
(29)

is negative. We note that due to the simplicity of Eq. (4), G(ω) has an elementary expression
allowing us to get such intervals in explicit form.
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Proposition 7 G(ω) < 0 if and only if ω ∈ T , where

T := (aδ, bδ) ∪ (δ(1− α− β), δ) ,

where

a =
(β − α)sign(β − α) +

+
(α− β)2 + 4(1− α− β)
2

,

and

b =
(α− β)sign(β − α) +

+
(α− β)2 + 4(1− α− β)
2

.

Therefore, it is possible to identify a parametric representation (with respect to ω) in (τ1, τ2)-
plane of curves that mark the start of the birth or death of conjugate complex roots. Figures 1(a)
and 1(b) illustrate the case when sh = 0.24, sk = 0.2, α = 0.4, β = 0.35 and δ = 0.35. The
stability crossing curves define a bounded set in (τ1, τ2)-plane in which the system is stable (the
yellow region). A typical trajectory convergent towards the stationary equilibrium is depicted in
Figure 2(a) for τ2 = 9.28. Too high values of any of the two delays cause the destabilisation of
the equilibrium point (see Figure 2(b) that illustrates a limit cycle for τ2 = 12). These results
characterise the local properties of the model around (k∗, h∗). It is now interesting to note that,
according to the parameter setting, it is possible to have different dynamic phenomena by moving
away from the bifurcation values of the delays. In particular, there are cases in which the invariant
curve increases its length until a threshold value τ2 beyond which the invariant curve is destroyed
or it loses its stability. After this event, feasible trajectories do not exist for the system. Also,
there may exist other parameter settings such that the projection of the invariant curve on the
pseudo phase plane (k(t), h(t)) becomes self-intersecting when τ2 increases (Figure 2(c)). After a
sufficiently long transient, trajectories of both k(t) and h(t) are characterised by the existence of
two (relative) maximum values and minimum values. Increasing the value of τ2 further implies that
these intersections increase (as well as the number of relative maximum values and minimum values,
as is shown in the bifurcation diagram of Figure 4) until reaching a (possible) chaotic attractor, as
is shown in Figure 2(d). Figures 3(a)-3(d) show the time series of k(t) and h(t) (the blue line and
red line, respectively) for the values of τ2 corresponding to Figures 2(a)-2(d).
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(a)

12



(b)

Figure 1. (a) Graph of G(ω). G(ω) < 0 for ω ∈ (0.0875, 0.166468) ∪ (0.183968, 0.35). (b)
Stability crossing curves in (τ1, τ2) plane.
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(a)

(b)

14



(c)

(d)

15



Figure 2. Evolution of the pseudo phase plane (k(t), h(t)) when τ2 (the time delay in the
production of human capital) varies. (a) τ2 = 9.28. (b) τ2 = 12. (c) τ2 = 12.7. (d) τ2 = 12.89.

(a)
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(b)

(c)
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(d)

Figure 3. Time series corresponding to the values of τ2 in Figure 2. The blue (resp. red) line
is the time series of physical (resp. human) capital. (a) τ2 = 9.28. (b) τ2 = 12. (c) τ2 = 12.7. (d)
τ2 = 12.89.
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Figure 4. Bifurcation diagram for τ2.

Theorem 8 For small τ1 and τ2, with τ2 ∈ [0, τ2,0) satisfying d0−(b1 + c1) b1−(b1 − c1) d0τ2 > 0
and b1 + c1 − d0τ2 > 0, there exists τ c1 > 0 such that the equilibrium (k∗, h∗) of system (2) is
locally asymptotically stable for τ1 ∈ [0, τ c1) and unstable for τ1 > τ

c
1. System (2) undergoes a Hopf

bifurcation at the equilibrium (k∗, h∗) for τ1 = τ c1.

Proof. For small delays, e−λτ1 ∼= 1−λτ1, e−λτ2 ∼= 1−λτ2 and e−λ(τ1+τ2) ∼= 1−λ(τ1+ τ2). Then,
the characteristic equation (4) reduces to

λ2 + b1λ (1− λτ1) + c1λ (1− λτ2) + d0 [1− λ(τ1 + τ2)] = 0. (30)

Let λ = iω (ω > 0) be a root of (30). Then

ω2 (1− b1τ1 − c1τ2) = d0, b1 + c1 = d0(τ1 + τ2). (31)

Thus, we find

ω =

,
d20

d0 − (b1 + c1) b1 − (b1 − c1) d0τ2
:= ωc, τ1 =

b1 + c1
d0

− τ2 := τ c1.

The root λ = iωc is a simple root of (30). Otherwise, one has

2iωc + b1 (1− iωcτ c1)− b1iωcτc1 + c1 (1− iωcτ2)− c1iωcτ2 − d0(τ c1 + τ2) = 0,
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and so in particular the contradiction 1−b1τ c1−c1τ2 = 0. Next, we need to verify the transversality
condition. From Eq. (30), differentiating with respect to τ1, we get

�
dλ

dτ1

�−1
=
2λ+ b1(1− λτ1) + c1(1− λτ2)− b1λτ1 − c1λτ2 − d0(τ1 + τ2)

(d0 + b1λ)λ
.

We conclude that

sign

�
dRe(λ)

dτ1

�

τ=τc
1

= sign

�

Re

�
dλ

dτ1

�−1�

τ=τc
1

= sign

�
2d0 (1− b1τ c1 − c1τ2)

b21ω
2 + d20

�
> 0,

which completes the proof.

Remark 9 Using (5) we have d0 − (b1 + c1) b1 = −
�
(1− α)2 + αβ

�
δ2 < 0. Hence, the condition

d0 − (b1 + c1) b1 − (b1 − c1) d0τ2 > 0 cannot hold if b1 − c1 ≥ 0. Therefore, let us assume that
b1 − c1 < 0, i.e. α > β. In this case, the conditions d0 − (b1 + c1) b1 − (b1 − c1) d0τ2 > 0 and
b1 + c1 − d0τ2 > 0 are equivalent to

(1− α)2 + αβ
(α− β) δ < τ2 <

2− α− β
(1− α− β) δ .

In addition, notice that
(1− α)2 + αβ
(α− β) δ <

2− α− β
(1− α− β) δ

if and only if
(1 + α)β2 +

�
2α2 − 3α− 1

�
β + α3 − 4α2 + 5α− 1 > 0.

For example, this inequality is satisfied for 5 − 2
√
5 < α < 1 since the discriminant of the corre-

sponding equation is ∆ = α2 − 10α+ 5 < 0.

4 Concluding remarks

This article has performed a detailed study of the model of Mankiw et al. (1992) by considering
time-to-build technologies. In particular, the dynamic properties of the resulting system have been
studied, and the application of both the theorems on Hopf bifurcations for delayed dynamical system
and recent mathematical techniques such as the stability crossing curves has allowed us to obtain
several results (which are of interest also from an economic point of view). In fact, the coexistence
of time delays in the accumulation of human capital and physical capital (that is, there is a time
lag from the initial investment to the time in which they can be used as productive inputs) can
destabilise the stationary equilibrium of the system and then make it a Solow-like model able to
explain persistent fluctuations in economic variables without introducing stochastic components in
the analysis (Mirman, 1973).

Further developments of the issues covered in this work can be those of endogenising individ-
ual saving behaviours by using models with optimising agents (Ramsey models) or some other
approaches (e.g., kinetic models).
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