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This article aims at analysing a two-sector economic growth model with discrete delays. The focus

is on the dynamic properties of the emerging system. In particular, this study concentrates on the

stability properties of the stationary solution, characterised by analytical results and geometrical

techniques (stability crossing curves), and the conditions under which oscillatory dynamics emerge

(through Hopf bifurcations). In addition, this article proposes some numerical simulations to illus-

trate the behaviour of the system when the stationary equilibrium is unstable. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4963372]

The Solow growth model (Solow, 1956) with physical cap-

ital accumulation is a cornerstone in economic theory,

and several developments of it have been proposed in the

course of time, especially to account for human capital

accumulation (Mankiw et al., 1992) and environmental

issues (the Green Solow model). A relevant assumption of

both the one-sector and two-sector Solow models is that

the production and accumulation of physical and human

capital take place immediately. However, this is one of

the main reasons why explaining fluctuations within such

a framework is prevented. By accounting for the stylised

fact that these processes can actually require time, this

article contributes to the literature by considering a two-

sector Solow-type set up with a time-to-build technology

including time delays between the initial investment and

its production capacity. This assumption enables the

Solow growth model to explain temporary or persistent

fluctuations in economic variables.

I. INTRODUCTION

Despite (or perhaps because of) its simplicity, the one-

sector Solow growth model (Solow, 1956) with physical cap-

ital accumulation continues to be at the hearth of both the

theory and empirics of economic growth and development.

Indeed, by using this framework, the scholars have been

often able to capture noteworthy aspects of the convergence

towards long-term stationary values of per capita income of

countries. This is because of the assumption of declining

marginal product of capital, which in turn leads to a reduc-

tion in gross investments and the rate of economic growth.

With specific regard to the empirics of the Solow growth

model, the leading article of Mankiw et al. (1992) “takes

Robert Solow seriously” (Mankiw et al., 1992, p. 407) and

analyses whether a version of the Solow growth model aug-

mented with human capital (two-sector model) is able to fit

cross-country data related to the international variation and

convergence in the standard of living of countries. The con-

clusion of these authors is that the Solow model is an

“excellent” set up to explain the reasons why some (poor)

countries grow faster than other (rich) countries do, as its

theoretical predictions are consistent with the empirical

evidence.

From a theoretical point of view, there are interesting

extensions produced over the years by several authors. We

recall here the contributions of Mirman (1973) in discrete

time and Merton (1975) in continuous time, who introduce a

stochastic component in the Solow model and characterise

the asymptotic properties of the systems. These works were

then reconsidered later, amongst others, by Prandini (1994)

and Schenk-Hopp�e and Schmalfuß (2001). Another interest-

ing extension is represented by the introduction of a spatial

component within the Solow model (the so-called spatial

Solow growth model). From a mathematical point of view,

the dynamics of the system in this case are described by a

partial differential equation (Camacho and Zou, 2004;

Capasso et al., 2010). A study of the formal properties of

the Solow model extended to the case of dynamics

described by a non-autonomous system and related to prob-

lems of population dynamics can be found in Guerrini

(2006). In addition, thanks to the burgeoning interest to

environmental concerns, the Solow approach to economic

growth has also become a useful tool to describe how the

environment is related to the production process. This is the

case of the so-called Green Solow model by Brock and

Scott Taylor (2010), who show that one of the most influen-

tial empirical results in environmental economics, that is,

the Environmental Kuznets Curve, is consistent with the

theoretical one-sector Solow growth model. Finally, we

mention the recent work of Brianzoni et al. (2015) that rep-

resents one of the first attempts to explain oscillatory

dynamics in a deterministic modified Solow-type set up,

with a non-concave production function and heterogeneous

agents.
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However, in its original version, the Solow model is not

able to capture (temporary or persistent) fluctuations in per

capita income observed in the process of economic growth. In

fact, the traditional growth theory of Solow attempts to

explain the behaviour of trend by ignoring cyclical fluctua-

tions, and variations around the trend are attributed to exoge-

nous shocks. In order to get models able to explain short-term

and long-term fluctuations, economic theory has developed

models with non-trivial allocative problems (for instance, in

an overlapping generations framework, see the recent contri-

butions of Chen and Li (2013), who considered the effects of

child policies on long-term outcomes, and Gori and Sodini

(2014), who studied a model with endogenous labour supply

and multiplicative external habits) or disequilibrium

Keynesian-type models (Naimzada and Pireddu, 2014).

One of the limiting assumptions of the augmented Solow

model (preventing to explain fluctuations) is that production

and accumulation of human capital take place immediately.

This may be viewed as a limitation, as these processes can

actually require time. The purpose of this article is to intro-

duce a time-to-build technology in the classical two-sector

Solow model (with physical and human capital accumulation)

that includes time delays between the initial investment and

its production capacity. The introduction of a time-to-build

technology for human capital, in fact, seems to be a natural

phenomenon in the process of accumulation and depreciation

of it, given the time required for its formation and use in pro-

duction. This hypothesis was formerly introduced by Zak

(1999) in a one-sector model with physical capital. However,

in their works, both Zak (1999) and Ferrara et al. (2013) con-

ducted only a local analysis and established the existence of a

Hopf bifurcation. This kind of bifurcation explains the possi-

bility of business cycles in these two frameworks, but nothing

is said about their stability (see, for example, Ferrara et al.
(2014) for some formal results concerning the direction and

stability of the Hopf bifurcation in a modified Solow model)

and the behaviour of the dynamic system when the time delay

goes beyond its bifurcation value.

More generally, the existence of a Hopf bifurcation

determines the emergence of regular cycles (quasi-periodic

behaviour), considered however by some scholars to be too

simple to mimic business cycle behaviours observed in the

actual markets. Unfortunately, numerical simulations seem

to reveal that the only relevant finding obtained in the unidi-

mensional Solow model augmented with discrete delays is

that by increasing the time delay there is an increase in the

extent of fluctuations, but the qualitative behaviours of tra-

jectories do not change (after a quite long transient, in fact, a

generic trajectory shows only one maximum value and one

minimum value). This result confirms that the one-sector

Solow model (even if augmented with time delays) cannot

be used to explain temporary or persistent fluctuations in

income. However, the results change dramatically, as the

Solow growth model augmented with human capital accu-

mulation and time delays becomes a useful set up able to

describe temporary or persistent fluctuations in economic

variables.

It is interesting to note that in recent years there exists a

burgeoning interest in studying some nonlinear phenomena

related to economic growth by also applying the methods of

other disciplines. In particular, a promising field, which is

known as physical economics, uses the typical tools of ther-

modynamics to explain both the state and possible fluctuations

of the main macroeconomic variables. Based on the use of

non-exact differential forms and the second law of thermody-

namics, some scholars have developed models characterised

by a few number of parameters but able to mimic some fea-

tures of economic growth models, such as the existence of dif-

ferent growth rates of per capita Gross Domestic Product

(GDP). In this regard, an interesting approach is the one

related to the similarity that some authors establish between

entropy and utility functions, allowing some macroeconomic

behaviours to be microfounded (see Richmond et al. (2013)

for a general reference). Another approach is the one proposed

by Chakrabarti and Chatterjee (2004) and Chatterjee et al.
(2003, 2004) with the aim of describing the behavior of trad-

ing on the markets. For doing this, the authors accounted for

some fundamentals of the mathematical physics—specifically

related to the interaction amongst the molecules of the ideal-

gas—to identify some models (the so-called kinetic models),

showing results similar to those empirically observed on

income distribution.

The rest of the article proceeds as follows. Section II

introduces a two-sector Solow growth model augmented

with human capital accumulation and time delays. Section

III provides an analysis of the stability properties of the

dynamic system. Section IV outlines the conclusions.

II. THE MODEL

The one-sector Solow growth model is a cornerstone of

economic theory, and it has been the object of several general-

isations. Specifically, in order to validate it empirically in an

important contribution, Mankiw et al. (1992) account for

human capital accumulation. The dynamics of the model in

that case are described by a two-dimensional continuous time

dynamic system. However, some results of this augmented

Solow model are based on the assumption that investments in

physical capital and human capital and production of goods

that can be used as productive inputs occur at the same time.

Indeed, it is important to note that transforming investments

in productive stocks of physical and human capital may

require some gestation lags. As an example, one can think

about education, infrastructures and innovation.

In order to account for these assumptions, we modify

the model of Mankiw et al. (1992) by considering that the

intensive production function at time t has the following

expression:

yðtÞ ¼ kðt� s1Þahðt� s2Þb; (1)

where kðt� sÞ and hðt� sÞ are the stock of physical capital

and the stock of human capital at time t� s, y(t) is produc-

tion at time t, a is the output elasticity of physical capital, b
is the output elasticity of human capital and aþ b 2 ð0; 1Þ,
implying that there exist decreasing returns in either forms

of capital. (We are assuming that the growth rates of exoge-

nous technological progress and population are zero. We
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normalise the corresponding levels to one.) Now, define sk

and sh as the (exogenous) fractions of income invested in

physical capital and human capital, respectively. By follow-

ing the literature on time-to-build models, the time delay

also enters (physical and human) capital depreciation (Zak,

1999). In addition, according to Mankiw et al. (1992), we let

the depreciation rate dk ¼ dh ¼ d. By accounting for physi-

cal and human capital accumulation, the dynamics of the

model are characterised by the following system of delay dif-

ferential equations:

_k ¼ skka
s1

hb
s2
� dks1

_h ¼ shka
s1

hb
s2
� dhs2;

(
(2)

where ks1
:¼ kðt� s1Þ and hs2

:¼ hðt� s2Þ (we omit the

time index for simplicity). The equilibrium points of system

(2) coincide with those of the corresponding system with no

delays. Thus, there exists a unique steady state ðk�; h�Þ;
where

k� ¼
s1�b

k sb
h

d

� � 1
1�a�b

and h� ¼
sa

ks1�a
h

d

� � 1
1�a�b

:

In order to deal with the local stability of the equilibrium

state, we linearize system (2) around ðk�; h�Þ and get

_k ¼ a� 1ð Þd ks1
� k�ð Þ þ

bdsk

sh

� �
hs2
� h�ð Þ;

_h ¼ adsh

sk

� �
ks1
� k�ð Þ þ b� 1ð Þd hs2

� h�ð Þ:

8>>><
>>>:

(3)

The characteristic equation of system (3) can be expressed as

follows:

det
a� 1ð Þde�ks1 � k

bdsk

sh
e�ks2

adsh

sk
e�ks1 b� 1ð Þde�ks2 � k

0
BB@

1
CCA ¼ 0;

that is

k2 þ b1ke�ks1 þ c1ke�ks2 þ d0e�kðs1þs2Þ ¼ 0; (4)

where

b1 ¼ ð1� aÞd > 0; c1 ¼ ð1� bÞd > 0;

d0 ¼ ð1� a� bÞd2 > 0: (5)

In Section III, we shall analyze the distribution of the

roots of Eq. (4) and the following Lemma is helpful in our

investigation.

Lemma 1. For the transcendental equation

Pðk; e�ks1 ; :::; e�ksmÞ

¼ kn þ p
ð0Þ
1 kn�1 þ � � � þ p

ð0Þ
n�1kþ pð0Þn

þ½pð1Þ1 kn�1 þ � � � þ p
ð1Þ
n�1kþ pð1Þn �e�ks1 þ � � �

þ½pðmÞ1 kn�1 þ � � � þ p
ðmÞ
n�1kþ pðmÞn �e�ksm ¼ 0;

as ðs1; s2; :::; smÞ vary, the sum of orders of the zeros of

Pðk; e�ks1 ; :::; e�ksmÞ in the open right half plane can change

only if a zero appears on or crosses the imaginary axis (see

Ruan and Wei, 2003).

Preliminarily, we observe that if s1 ¼ s2 ¼ 0 then Eq.

(4) becomes

k2 þ ðb1 þ c1Þkþ d0 ¼ 0: (6)

It is easy to see that Eq. (6) is solved by k ¼ �ð1� a� bÞd
and k ¼ �d: All roots of (6) are negative. Hence, the equilib-

rium point ðk�; h�Þ is locally asymptotically stable.

III. STABILITY ANALYSIS

In this section, we perform a stability analysis of

dynamic system (2). In particular, Section III A considers the

case in which both time delays are positive and equal.

Section III B analyses the case in which one of the delay is

zero and the other one varies. Section III C takes into account

the case of a positive time delay fixed in its stable interval by

letting the other delay vary. Section III D exemplifies the

results obtained in Section III C by using the geometrical

approach of the stability crossing curves. In addition, in

order to clarify the behaviour of the dynamics after the equi-

librium point is destabilised, this last section provides some

numerical simulations.

A. Case s15s25s

The characteristic equation (4) takes the following form:

P1ðk; sÞ :¼ k2 þ ðb1 þ c1Þke�ks þ d0e�2ks ¼ 0: (7)

In order to examine the existence of simple purely imaginary

roots of (7) and the transversality at all corresponding bifur-

cation values, we use the following equation:

Pðk; sÞ :¼ eksP1ðk; sÞ ¼ eksk2 þ ðb1 þ c1Þkþ d0e�ks ¼ 0:

(8)

Substituting k ¼ ix, with x > 0, into (8), we derive the real

and imaginary parts:

ðx2 � d0Þ cos xs ¼ 0;

ðx2 þ d0Þ sin xs ¼ ðb1 þ c1Þx:

�
(9)

Lemma 2. Eq. ð8Þ has a pair of purely imaginary roots

6ix1 ð6ix2; respectively Þ at s ¼ sj
1 ðs ¼ sj

2; respectively Þ,
where

x1;2 ¼
b1 þ c16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ c1ð Þ2 � 4d0

q
2

;

sj
1;2 ¼

1

x1;2

p
2
þ 2pj

� �
;

(10)

with j ¼ 0; 1; 2; :::
Proof. The statement follows from (9) considering the

cases x2�d0¼0 ðcosxs 6¼0Þ and x2�d0 6¼0 ðcosxs¼0Þ:
Notice the former cannot occur since it gives

sinxs¼ðb1þc1Þx=ðx2þd0Þ¼ðb1þc1Þ=ð2
ffiffiffiffiffi
d0

p
Þ>1: The
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latter implies x2�ðb1þc1Þxþd0¼0; whose discriminant

is ðb1þc1Þ2�4d0 ¼ðaþbÞ2d2>0. Furthermore, it is

x1<x2: �

Let x� 2 fx1;x2g be a root of system (9) and s� the corre-

sponding value of s: We need to guarantee simple root and trans-

versality at k ¼ ix� and s ¼ s�, respectively. Differentiating (8)

with respect to s yields the following expression:

k2seks þ 2keks � d0se�ks þ b1 þ c1

� � dk
ds

� �

¼ k d0e�ks � k2eks
� 	

: (11)

Now, we use (11) to prove k ¼ ix� to be a simple root of

(8). In fact, if it is not a simple root, then

kðd0e�ks � k2eksÞ ¼ 0. From (8), we obtain 2keks þ b1 þ
c1 ¼ 0: Hence,

cos x�s� ¼ 0 and� 2x� sin x�s� þ b1 þ c1 ¼ 0: (12)

We will show that these identities yield a contradiction.

If x� ¼ x1; then cos x1s1 ¼ 0: From (9) and (12), we

deduce x2
1 � d0 ¼ 0: The conclusion follows. A similar rea-

soning applies to the case x� ¼ x2:
Next, from (11) we get

dk
ds

� ��1

¼ 2keks þ b1 þ c1

k d0e�ks � k2eks
� 	� s

k
;

which leads to

sign
dRe kð Þ

ds


 �
s¼s�
¼ sign Re

dk
ds

� ��1
" #

s¼s�

¼ sign
2x4
� þ 2x2

�d0 cos2x�s� � sin2x�s�
� 	

� x3
� b1 þ c1ð Þsin x�s� þ x�d0 b1 þ c1ð Þsin x�s�

x2
� �x2

� þ d0

� 	
sin x�s�

� �2 þ x2
� x2

� þ d0

� 	
cos x�s�

� �2
( )

¼ sign Af g;

where

A ¼ 2x3
� þ 2x�d0ð cos2x�s� � sin2x�s�Þ

� x2
�ðb1 þ c1Þ sin x�s� þ d0ðb1 þ c1Þ sin x�s�:

Recalling that cos x�s� ¼ 0 and sin x�s� ¼ 1; one has

signfAg ¼ signfðb1 þ c1Þx2
� � 4d0x� þ d0ðb1 þ c1Þg > 0:

Notice that ðb1 þ c1Þx2
� � 4d0x� þ d0ðb1 þ c1Þ ¼ 0 has dis-

criminant equal to �4d0½ðb1 þ c1Þ2 � 4d0� < 0: Hence,

signfAg is positive. In conclusion

sign
dRe kð Þ

ds


 �
s¼s�

> 0:

From the previous discussions and the Hopf bifurcation

theorem, we can obtain the following result.

Theorem 3. Let s0
2 be defined as in (10). The

equilibrium ðk�; h�Þ of system (2) is locally asymptotically sta-
ble for s 2 ½0; s0

2Þ and unstable for s > s0
2. System (2) under-

goes a Hopf bifurcation at the equilibrium ðk�; h�Þ for s ¼ s0
2.

B. Case s150; s2>0

Eq. (4) becomes

k2 þ b1kþ ðc1kþ d0Þe�ks2 ¼ 0: (13)

For x > 0, we assume that k ¼ ix is a root of (13) to detect

the critical value of stability transition. Then, we get

x2 ¼ c1x sin xs2 þ d0 cos xs2;

b1x ¼ d0 sin xs2 � c1x cos xs2;
(14)

which leads to

x4 þ ðb2
1 � c2

1Þx2 � d2
0 ¼ 0; (15)

where

b2
1 � c2

1 ¼ ðb� aÞð2� a� bÞd2; d2
0 ¼ ð1� a� bÞ2d4 > 0:

Let z ¼ x2, then (15) becomes

z2 þ ðb2
1 � c2

1Þz� d2
0 ¼ 0: (16)

We have the following conclusions.

Lemma 4. Eq. ð15Þ has a unique positive root xþ, where

xþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b2

1 � c2
1

� 	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � c2
1

� 	2 þ 4d2
0

q
2

vuut
;

and we can get the sequence of critical values of s2

s2;j ¼
1

xþ
cos�1 d0 � b1c1ð Þx2

þ
c2

1x
2
þ þ d2

0

" #
þ 2jp

( )
; j ¼ 0; 1; 2; :::

(17)

Proof. The first part of the statement comes from solving

Eq. (16). From (14), we derive

sin xþs2ð Þ ¼
b1d0 þ c2

1xþ
� 	

xþ
c2

1x
2
þ þ d2

0

> 0;

cos xþs2ð Þ ¼
d0 � b1c1ð Þx2

þ
c2

1x
2
þ þ d2

0

:

(18)

093118-4 Gori, Guerrini, and Sodini Chaos 26, 093118 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  151.37.113.117 On: Wed, 28 Sep

2016 15:47:35



The critical values of s for which the characteristic equation (13)

has pure imaginary roots can now be determined from (18). �

Let kðs2Þ be the root of (13) satisfying Reðkðs2ÞÞ ¼ 0

and Imðkðs2ÞÞ ¼ xþ. Substituting kðs2Þ into the left hand

side of (13) and taking derivative with respect to s2, we have

2kþ b1 þ c1e�ks2 � c1kþ d0ð Þs2e�ks2

� � dk
ds2

� �

¼ c1kþ d0ð Þke�ks2 ; (19)

which yields

dk
ds2

� ��1

¼ 2kþ b1ð Þeks2 þ c1

c1kþ d0ð Þk � s2

k
:

Using (13), we have

sign
d Rekð Þ

ds2

���� s2 ¼ s2;j

x ¼ xþ

8<
:

9=
;

¼ sign Re
dk
ds2

� ��1

s2 ¼ s2;j

x ¼ xþ

8<
:

9=
;

¼ sign
c2

1x
4
þ þ 2d2

0x
2
þ þ b2

1d2
0

c2
1x

2
þ þ d2

0

� 	
x2
þ þ b2

1

� 	
x2
þ

( )
> 0:

The root kðs2Þ of (13) crosses the imaginary axis from left to

right at s2 ¼ s2;j as s2 increases. Furthermore, we observe

that k ¼ ixþ is a simple root of Eq. (13). If it is not simple,

then from (19), we must have ðc1ixþ þ d0Þixþe�ixþs2;j ¼ 0;
which is a contradiction. In view of the above analysis, we

arrive at the following conclusions.

Theorem 5. Let s2;j ðj ¼ 0; 1; 2; :::Þ be defined as in
(17). The equilibrium ðk�; h�Þ of system (2) is locally asymp-
totically stable when s2 2 ½0; s2;0Þ and unstable when
s > s2;0. Moreover, system ð2Þ undergoes Hopf bifurcations
at the equilibrium for s2 ¼ s2;j ðj ¼ 0; 1; 2; :::Þ.

C. Case s1>0; s2‰½0; s2;0Þ

In order to study this case, we consider Eq. (4) with s2

lying in its stable interval, i.e., s2 ¼ s�2 2 ½0; s2;0Þ, and

regarding s1 as a parameter. Let k ¼ ix ðx > 0Þ be a root of

(4), then we have

�x2 þ b1ixðcos xs1 � i sin xs1Þ
þ c1ixðcos xs�2 � i sin xs�2Þ þ d0½cos xðs1 þ s�2Þ
� i sin xðs1 þ s�2Þ� ¼ 0:

Rewriting this equation according to its real and imaginary

parts, we have

�x2 þ b1x sin xs1 þ c1x sin xs�2 ¼ �d0 cos xðs1 þ s�2Þ;
(20)

b1x cos xs1 þ c1x cos xs�2 ¼ d0 sin xðs1 þ s�2Þ: (21)

Using the square condition and adding the equations, we

obtain

ð�x2 þ b1x sin xs1 þ c1x sin xs�2Þ
2

þ ðb1x cos xs1 þ c1x cos xs�2Þ
2 ¼ d2

0;

namely

gðxÞ ¼ x4 þ ð�2b1 sin xs1 � 2c1 sin xs�2Þx3

þ ½b2
1 þ c2

1 þ 2b1c1 cos xðs1 � s�2Þ�x2 � d2
0 ¼ 0:

(22)

Notice that gð0Þ ¼ �d2
0 < 0 and gðxÞ ¼ þ1 as x! þ1:

Therefore, Eq. (22) has at least a positive solution.

Henceforth, assume Eq. (22) has finitely many positive roots,

such as x1;x2; :::;xN: For every fixed xl; l ¼ 1; 2; :::;N;
there exists a sequence sj

1;l > 0 ðj ¼ 0; 1; 2; :::Þ: Let

~s1 ¼ minfsj
1;l; l ¼ 1; 2; :::;N; j ¼ 0; 1; 2; :::g: (23)

For s1 ¼ ~s1; Eq. (4) has a pair of purely imaginary roots

6i~x. Let kðs1Þ be the root of Eq. (4) near s1 ¼ ~s1 satisfying

Reðkð~s1ÞÞ ¼ 0; Imðkð~s1ÞÞ ¼ ~x: Then, by differentiating the

two sides of Eq. (4) with respect to s1, we obtain

2kþ b1e�ks1 þ c1e�ks�
2 � c1ks�2e�ks�

2

h
� d0 s1 þ s�2

� 	
e�k s1þs�

2ð Þ � b1s1ke�ks1

i dk
ds1

� �

¼ k b1ke�ks1 þ d0e�k s1þs�
2ð Þ

h i
: (24)

Thus,

dk
ds1

� ��1

¼ 2kþ b1e�ks1 þ c1e�ks�
2 � c1ks�2e�ks�

2 � d0s�2e�k s1þs�
2ð Þ

k b1ke�ks1 þ d0e�k s1þs�
2ð Þ

h i � s1

k
: (25)

According to (4), one has that (25) to rewrite as

dk
ds1

� ��1

¼ � 2kþ b1e�ks1 þ c1e�ks�
2 þ s�2 k2 þ b1ke�ks1

� 	
k k2 þ c1ke�ks�

2

� 	 � s1

k
:

Then,

093118-5 Gori, Guerrini, and Sodini Chaos 26, 093118 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  151.37.113.117 On: Wed, 28 Sep

2016 15:47:35



dk
ds1

� ��1

s1¼~s1

¼ A1 þ iA2

~x B1 � iB2ð Þ �
~s1

i~x
;

with

A1 ¼ b1 cos ~x~s1 þ c1 cos ~xs�2 þ s�2ðb1 ~x sin ~x~s1 � ~x2Þ;
B1 ¼ c1 ~x cos ~xs�2; (26)

A2 ¼ 2~x � b1 sin ~x~s1 � c1 sin ~xs�2 þ b1 ~xs�2 cos ~x~s1;

B2 ¼ c1 ~x sin ~xs�2 � ~x2:

(27)

Therefore, we have

sign
dRe kð Þ

ds1


 �
s1¼~s1

¼ sign Re
dk
ds1

� ��1
" #

s1¼~s1

¼ sign G ~x;~s1ð Þð Þ;
where

Gð~x;~s1Þ ¼ A1B1 � A2B2 ¼ ð2~x2 þ c2
1Þ~x � b2

1 ~x sin ~x~s1

� 3c1 ~x2 sin ~xs�2 þ b1c1 ~x cos ~xð~s1 � s�2Þ
þs�2fb1 ~x3 cos ~x~s1 � c1 ~x3 cos ~xs�2
þ b1c1 sin ~xð~s1 � s�2Þg: (28)

If A1B1 � A2B2 > 0 (resp. A1B1 � A2B2 < 0), then the pair

of purely imaginary roots crosses the imaginary axis from

left (resp. right) to right (resp. left) at ~s1. It remains to prove

k ¼ i~x to be a simple root of (4). Suppose this root is a

repeated root. Then, (24) implies b1i~xe�i~xs1 þ d0e�i~xðs1þs�
2
Þ

¼ 0: Using (4), this means i~xði~x þ c1e�i~xs�
2Þ ¼ 0; and

so ið~x � c1 sin ~xs�2Þ þ c1 cos ~xs�2 ¼ 0: Consequently, we

must have ~x ¼ c1 sin ~xs�2 and cos ~xs�2 ¼ 0; i.e.,

~x ¼ c1; sin ~xs�2 ¼ 1 and cos ~xs�2 ¼ 0: Recalling that

cos xðs1þs�2Þ ¼ cos xs1 cos xs�2 � sin xs1 sin xs�2 and

sinxðs1þ s�2Þ ¼ sinxs1 cosxs�2þ cosxs1 sinxs�2; we derive

from (20), (21) that sinxs1 ¼ 0 and cosxs1 ¼ 0; which is

clearly a contradiction.

According to the general Hopf bifurcation theorem for

Functional Differential Equations (FDEs) in Hale (1977), we

derive the following results on the stability and Hopf bifurca-

tion of system (2).

Theorem 6. Let ~s1;A1;B1;A2;B2 and Gð~x;~s1Þ be
defined as in (23), (26), (27) and (28) s2 2 ½0; s2;0Þ.

(1) If Eq. (22) has no positive root, then the equilibrium ðk�; h�Þ
of system (2) is locally asymptotically stable for s1 � 0:

(2) If Eq. (22) has one positive root ~x; then
(a) if Gð~x;~s1Þ > 0, the equilibrium ðk�; h�Þ of system

ð2Þ is locally asymptotically stable for s1 2 ½0;~s1Þ
and the equilibrium point loses its stability via a
Hopf bifurcation at s1 ¼ ~s1;

(b) if Gð~x;~s1Þ < 0, the equilibrium ðk�; h�Þ of system
(2) is locally asymptotically stable for s1 � 0:

(3) If Eq. (22) has at least two positive roots, then there may
exist a lot of stability switches and the stability of
ðk�; h�Þ can change a finite number of times, at most, and
eventually it becomes unstable.

(a) If Gð~x;~s1Þ > 0, the equilibrium ðk�; h�Þ of system
(2) is locally asymptotically stable for s1 2 ½0;~s1Þ
and system (2) undergoes a Hopf bifurcation at the
equilibrium ðk�; h�Þ for s1 ¼ ~s1. The equilibrium
ðk�; h�Þ remains unstable for s1 > ~s1 until s1

crosses a value s1 ¼ sj
1;l such that Gðxl; s

j
1;lÞ < 0:

If ŝ1 is this stability switch, then a Hopf bifurcation
occurs at s1 ¼ ŝ1: As s1 increases, the dynamic
system may undergo a finite number of stability
switches.

(b) If Gð~x;~s1Þ < 0, the equilibrium ðk�; h�Þ of system
(2) remains locally asymptotically stable when
s1crosses ~s1 and it becomes unstable when s1

crosses a value s1 ¼ sj
1;l such that Gðxl; s

j
1;lÞ > 0:

A Hopf bifurcation occurs at this value. As s1

increases, the dynamic system may undergo a finite
number of stability switches.

D. Stability crossing curves

The conditions expressed in Theorem 6 are difficult to

be read, as signðA1B1 � A2B2Þ depends not only on the

parameters of the model but also on the value of the time

delay s�2 fixed in the interval ½0; s2;0Þ as well as on ~s1 defined

in (23) and the corresponding ~x obtained by (4). In order to

give a clearer understanding of the dynamic properties of the

model, a useful tool is represented by the stability crossing

curves, introduced by Gu et al. (2005) and extended by Lin

and Wang (2012), to study models with discrete delays in

which the characteristic equation also appears in the term

e�kðs1þs2Þ, as in (4). The first step in this procedure is to

define the intervals for x such that complex conjugate roots

exist. Specifically, this coincides with the set of x such that

the following function, defined by starting from the charac-

teristic equation (4),

GðxÞ :¼ ðd2 � x2Þ½d2ð1� a� bÞ2 � x2�
� f½d2ðaþ b� 1Þ þ x2�2 � ða� bÞ2d2x2g;

(29)

is negative. We note that due to the simplicity of Eq. (4),

GðxÞ has an elementary expression allowing us to get such

intervals in explicit form.

Proposition 7. GðxÞ < 0 if and only if x 2 T, where

T :¼ ðad; bdÞ [ ðdð1� a� bÞ; dÞ;

where

a ¼
b� að Þsign b� að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� bð Þ2 þ 4 1� a� bð Þ

q
2

;

and

b ¼
a� bð Þsign b� að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� bð Þ2 þ 4 1� a� bð Þ

q
2

:

Therefore, it is possible to identify a parametric repre-

sentation (with respect to x) in ðs1; s2Þ-plane of curves that
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mark the start of the birth or death of conjugate complex

roots. Figures 1(a) and 1(b) illustrate the case when

sh¼ 0.24, sk¼ 0.2, a ¼ 0:4; b ¼ 0:35 and d ¼ 0:35. The sta-

bility crossing curves define a bounded set in ðs1; s2Þ-plane,

in which the system is stable (the yellow region). A typical

trajectory convergent towards the stationary equilibrium is

depicted in Figure 2(a) for s2 ¼ 9:28. Too high values of any

of the two delays cause the destabilisation of the equilibrium

point (see Figure 2(b) that illustrates a limit cycle for

s2 ¼ 12). These results characterise the local properties of

the model around ðk�; h�Þ. It is now interesting to note that,

according to the parameter setting, it is possible to have dif-

ferent dynamic phenomena by moving away from the bifur-

cation values of the delays. In particular, there are cases in

which the invariant curve increases its length until a thresh-

old value s2, beyond which the invariant curve is destroyed

FIG. 1. (a) Graph of GðxÞ. GðxÞ<0 for

x2ð0:0875;0:166468Þ[ð0:183968;0:35Þ.
(b) Stability crossing curves in ðs1;s2Þ
plane.

FIG. 2. Evolution of the pseudo phase plane ðkðtÞ; hðtÞÞ when s2 (the time delay in the production of human capital) varies. (a) s2 ¼ 9:28, (b) s2 ¼ 12, (c)

s2 ¼ 12:7, and (d) s2 ¼ 12:89.
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or it loses its stability. After this event, feasible trajectories

do not exist for the system. Also, there may exist other

parameter settings such that the projection of the invariant

curve on the pseudo phase plane ðkðtÞ; hðtÞÞ becomes self-

intersecting when s2 increases, as is shown in Figure 2(c). In

this case, after a sufficiently long transient, trajectories of

both k(t) and h(t) are characterised by the existence of two

(relative) maximum values and minimum values. Increasing

the value of s2 further implies that these intersections

increase (as well as the number of relative maximum values

and minimum values, as is shown in the bifurcation diagram

of Figure 3) until reaching a (possible) chaotic attractor, as is

shown in Figure 2(d). Figures 4(a)–4(d) show the time series

of k(t) and h(t) (the blue line and red line, respectively) for

the values of s2 corresponding to Figures 2(a)–2(d).

Theorem 8. For small s1 and s2, with s2 2 ½0; s2;0Þ
satisfying d0 � ðb1 þ c1Þb1 � ðb1 � c1Þd0s2 > 0 and
b1þ c1 � d0s2 > 0; there exists sc

1 > 0 such that the equilib-
rium ðk�; h�Þ of system ð2Þ is locally asymptotically stable for
s1 2 ½0; sc

1Þ and unstable for s1 > sc
1. System ð2Þ undergoes a

Hopf bifurcation at the equilibrium ðk�; h�Þ for s1 ¼ sc
1.

Proof. For small delays, e�ks1 ffi 1� ks1; e�ks2 ffi 1� ks2

and e�kðs1þs2Þ ffi 1� kðs1 þ s2Þ. Then, the characteristic

equation (4) reduces to

k2 þ b1kð1� ks1Þ þ c1kð1� ks2Þ þ d0½1� kðs1 þ s2Þ� ¼ 0:

(30)

Let k ¼ ix ðx > 0Þ be a root of (30). Then

x2ð1� b1s1 � c1s2Þ ¼ d0; b1 þ c1 ¼ d0ðs1 þ s2Þ: (31)

Thus, we find

FIG. 3. Bifurcation diagram for s2.

FIG. 4. Time series corresponding to the values of s2 in Figure 2. The blue (resp. red) line is the time series of physical (resp. human) capital. (a) s2 ¼ 9:28,

(b) s2 ¼ 12, (c) s2 ¼ 12:7, and (d) s2 ¼ 12:89.
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x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

0

d0 � b1 þ c1ð Þb1 � b1 � c1ð Þd0s2

s
:¼ xc; s1 ¼

b1 þ c1

d0

� s2 :¼ sc
1:

The root k ¼ ixc is a simple root of (30). Otherwise, one has

2ixc þ b1ð1� ixcs
c
1Þ � b1ixcs

c
1 þ c1ð1� ixcs2Þ � c1ixcs2 � d0ðsc

1 þ s2Þ ¼ 0;

and so in particular the contradiction 1� b1sc
1 � c1s2 ¼ 0. Next, we need to verify the transversality condition. From Eq. (30),

differentiating with respect to s1, we get

dk
ds1

� ��1

¼ 2kþ b1 1� ks1ð Þ þ c1 1� ks2ð Þ � b1ks1 � c1ks2 � d0 s1 þ s2ð Þ
d0 þ b1kð Þk :

We conclude that

sign
dRe kð Þ

ds1


 �
s¼sc

1

¼ sign Re
dk
ds1

� ��1
" #

s¼sc
1

¼ sign
2d0 1� b1sc

1 � c1s2ð Þ
b2

1x
2 þ d2

0

� �
> 0;

which completes the proof. �

Remark 9. Using (5), we have

d0 � ðb1 þ c1Þb1 ¼ �½ð1� aÞ2 þ ab�d2 < 0. Hence, the con-

dition d0 � ðb1 þ c1Þb1 � ðb1 � c1Þd0s2 > 0 cannot hold if

b1 � c1 � 0: Therefore, let us assume that b1 � c1 < 0;
i.e., a > b: In this case, the conditions

d0�ðb1þ c1Þb1�ðb1� c1Þd0s2 > 0 and b1þ c1�d0s2 > 0

are equivalent to

1� að Þ2 þ ab
a� bð Þd < s2 <

2� a� b
1� a� bð Þd :

In addition, notice that

1� að Þ2 þ ab
a� bð Þd <

2� a� b
1� a� bð Þd ;

if and only if

ð1þ aÞb2 þ ð2a2 � 3a� 1Þbþ a3 � 4a2 þ 5a� 1 > 0:

For example, this inequality is satisfied for

5� 2
ffiffiffi
5
p

< a < 1, since the discriminant of the correspond-

ing equation is D ¼ a2 � 10aþ 5 < 0:

IV. CONCLUDING REMARKS

This article has performed a detailed study of the model

of Mankiw et al. (1992) by considering the time-to-build

technologies. In particular, the dynamic properties of the

resulting system have been studied, and the application of

both the theorems on Hopf bifurcations for delayed dynami-

cal system and recent mathematical techniques, such as the

stability crossing curves, has allowed us to obtain several

results (which are of interest also from an economic point of

view). In fact, the coexistence of time delays in the accumu-

lation of human capital and physical capital (that is, there is

a time lag from the initial investment to the time, in which

they can be used as productive inputs) can destabilise the sta-

tionary equilibrium of the system and then make it a Solow-

like model able to explain persistent fluctuations in economic

variables without introducing stochastic components in the

analysis (Mirman, 1973).

Further developments of the issues covered in this work

can be those of endogenising individual saving behaviours

by using models with optimising agents (Ramsey models) or

some other approaches (e.g., kinetic models).
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