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Abstract

We study a continuous time cobweb model with discrete time delays where heterogeneous
producers behave as adapters in the market. Specifically, they partially adjust production
(which is subject to some gestation lags) towards the profit-maximising quantity under static
expectations. The dynamics of the economy is described by a two-dimensional system of
delay differential equations. We characterise stability properties of the stationary state of the
system and show the emergence of Hopf bifurcations. We also apply some recent mathematical
techniques (stability crossing curves) to show how heterogeneous time delays affect the stability
of the economy.
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1 Introduction

This paper analyses the behaviour of economic agents in a continuous time model with discrete
delays. The economy is characterised by a single market of perishable or nonstorable goods (agri-
cultural market), where demand is decreasing (isoelastic) in prices, supply is increasing and pro-
duction of goods requires time so that suppliers must form expectations on prices that will prevail
in the market. Generally speaking, alongside the problems of existence and uniqueness of gen-
eral equilibrium1 models (Arrow and Debreu, 1954), the study of stability properties of market
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1Roughly speaking, it is important to recall that in economic theory the term "equilibrium" is referred to a
situation in which markets clear. Then, we need to distinguish the concept of equilibrium as explained above from
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equilibria is one of the much debated issues in economic theory.2 It is well known that in partial
or general equilibrium models with a finite positive number of markets, where trading is allowed
only at equilibrium prices, the existence of a unique stable equilibrium is guaranteed only by the
introduction of some strong assumptions on the behaviour of economic agents, such as the axiom of
revealed preferences in pure exchange economies and additional hypotheses related to the convexity
of the production set in production economies (Mas-Colell et al., 1995). This kind of models has the
negative counterpart that is not able to explain price fluctuations without introducing exogenous
shocks or structural changes (in the utility function or in the production function). Such a drawback
holds even in some out-of-equilibrium or disequilibrium models,3 such as Hahn and Negishi (1962),
that studies a pure exchange economy where trading is allowed at non-equilibrium prices and the
equilibrium is globally asymptotically stable.

More interesting dynamic outcomes in continuous time sets up (that try to mimic the actual
adjustment pattern in competitive markets) are found by considering a single market model where
adjustment is driven by changes in both prices and quantities, that simultaneously react in response
to disequilibrium. In this context, tâtonnement dynamics may be characterised by fluctuations in
prices and quantities (limit cycles), such as in the works of Beckmann and Ryder (1969) and Mas-
Colell (1986). However, it is important to stress that in their models production and trading
are allowed only when demand and supply exactly balance, so that a limit cycle cannot have an
adequate interpretation in "real world" economies (real time dynamics). In fact, in this kind of
models it is assumed an external (Walrasian) auctioneer that progressively raises or drops the
price (depending on excess demand), and fluctuations are just related to the auctioneer behaviour.
Therefore, when an attracting limit cycle exists trading does not hold, while in the case the market
equilibrium is stable trading holds only at infinite time. Therefore, existence and stability are surely
relevant philosophical findings, but it is hard to give a meaningful interpretation of trading. An
attempt of obtaining continuous time models able to generate fluctuations is the study of markets
with inventories, as in Eckalbar (1985). However, strong fluctuations can actually be observed in
markets with high-frequency trading where inventories are negligible (e.g., agricultural markets).

Very different findings actually exist in the related literature dealing with discrete time models.
Although a modelling approach in discrete time seems able to better capture fluctuations observed in
real markets, these models are subject to some criticism with regard to both the theoretical approach
and empirical effectiveness. With this regard, Gandolfo (1981) pointed out that the choice between
continuous time and discrete time dynamic models is not neutral because of the different analytical
tools required for their analysis (differential equations versus difference equations) and the nature
of stability conditions. By considering more specifically discrete time models, one of their main
features is to assume that production takes time and markets work only at discrete intervals (see
Evans and Honkapohja, 2001 for a review of the literature on expectations, and the literature cited
therein). In this context, a key role is played by expectations formation mechanisms on prices of
producers. By introducing the hypothesis of static or naïve expectations (that is, producers take
the current price as an estimate of the expected one), the problem of price fluctuations has been
tackled since the early seminal contributions of Kaldor (1934) and Ezekiel (1938), in which both
the demand and supply were linear. Subsequently, thanks to some new mathematical results as well

the concept of equilibrium in a dynamic sense. In fact, there exist equilibrium models that generate trajectories that
do not converge to the (stationary) equilibrium of the system, and disequilibrium models that, in contrast, admit
stationary equilibria.

2A discussion on this topic started several decades ago in partial equilibrium models (Kaldor, 1934; Ezekiel, 1938).
3Market-clearing versus non-market-clearing dynamics does actually represent an important debate also in dy-

namic macroeconomic analysis, as well stressed by Flaschel et al., (1997).
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as the dramatic increase in computing capacity, nonlinear versions of the cobweb model have been
studied and carried out through simulation experiments, showing persistent oscillations in prices
(Artstein, 1983; Jensen and Urban, 1984). A further step in this line of research was to include
more realistic mechanisms with regard to expectations formations in the cobweb framework. To
this purpose, Chiarella (1988) and Hommes (1994, 1998) have studied the dynamics of prices with
nonlinear supply and demand curves by using the adaptive expectations hypothesis (Nerlove, 1958),
with respect to which prices are revised according to prediction errors of agents. Along the same
line of research, Onozaki et al. (2000) has revisited the cobweb model by considering adaptive
adjustments on the quantity produced instead of price expectations.

As pointed out above, therefore, the choice between continuous time models or discrete time
models does not actually represent an easy task to describe economic phenomena, especially if one
wants to perform econometric studies or give policy insights, and currently there may be arguments
in favour of the use of either sets up. By taking into account key factors of realism in the modelling
approaches of both discrete-time models (gestation lags) and continuous-time models (trading not
related to the timing of production), Gori et al. (2015) describe the behaviour of a single market
(partial equilibrium) where production is subject to some gestation lags and decisions on how
much to produce are taken before these goods are placed in the market, while trading takes place
continuously or repeatedly, and then studies price dynamics in a continuous time model with discrete
delays (one-dimensional delay differential equation). Indeed, the current paper is the dual of Gori
et al. (2015), because it takes a dynamic view of quantities rather than prices in a cobweb model
by also assuming heterogeneous interacting agents, thus allowing the economy to be described by
a system of two delay differential equations instead of a one-dimensional system.

The present paper aims at characterising the local stability properties of the stationary equilib-
rium of the system with both one delay and two delays. In this last case, by applying the recent
techniques developed by Ruan and Wei (2003) and Gu et al. (2005), we show the role of hetero-
geneity in the emergence of Hopf bifurcations. In particular, while several works including Brock
and Hommes (1998), Bischi et al. (1999) and Onozaki et al. (2003) find that heterogeneity tends
to have destabilising effects, in line with Bosi and Seegmuller (2008) we find that the relationship
between heterogeneity and stability/instability of is more difficult to be clarified.

The rest of the paper is organised as follows. Sections 2 sets up the cobweb model with het-
erogeneous producers that operate as adapters of two different kinds, i.e. they move towards the
profit-maximising quantity with different speeds of adjustment, but with homogeneous time delays.
Section 3 characterises local stability properties and local bifurcations of equilibria of the resulting
two-dimensional delay differential equation system. Section 4 extends the model to the case of
heterogeneous time delays. Section 5 outlines the conclusions.

2 The model

Different from the existing literature on the topic (e.g., Hommes, 1994; Gallas and Nusse, 1996;
Onozaki et al., 2000, 2003; Chiarella et al., 2006; Dieci and Westerhoff, 2009), that has focused
on the study of market dynamics in a discrete time cobweb model, we set up a continuous time
framework with discrete time delays. In fact, although there exists a time lag from production
decisions to the time commodities are ready for sale (gestation lags), prices of perishable goods
are observed frequently and are subject to (sometimes markedly significant) fluctuations. Then, a
continuous time model with discrete delays (that takes into account production adjustments) may
well capture the behaviour of agents in this kind of markets. Indeed, only a few papers have dealt
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with the study of a continuous time version of the cobweb model. For instance, Mackey (1989)
has shown that the discrete time cobweb model can be viewed as a limiting case of a continuous
time model with delays. Specifically, we develop a continuous time version with time delays of the
cobweb model studied by Onozaki et al. (2003), where there exist heterogeneous producers that
operate in a market of a perishable commodity. In addition, a Walrasian auctioneer sets the price
of the commodity in order to clear the market at every moment in time. We assume the existence
of two different groups of identical and competitive farmers (whose size is 0 < m < 1 and 1 −m,
respectively) that behave as adapters. Specifically, firms that belong to group i (i = 1, 2) partially
adjust their own production in the direction of the quantity that maximises expected profits. This
because we are assuming that optimisation requires high costs related to a complete knowledge
of the market, so that applying a behavioural rule (adjustment mechanism) may allow agents to
overcome their informational lacunae with less effort than when firms are optimisers.

Technology requires a period of time τ to bring the production process to completion and get
products to the market. The quantity that maximises the expected profit at time t is solution of
the following problem referred at time t− τ :

max
{x(t)≥0}

Πe(t) = max
{x(t)≥0}

{pe(t)x(t)− 1

2
[x(t)]2}, (1)

where pe(t), x(t) and 1
2 [x(t)]2 are the price expected at time t, the quantity of the nonstorable

good and the quadratic cost function referred at time t, respectively. It is important to note that
expectations on prices do appear in (1). This because the price that will prevail at time t is not
known at the time the maximisation problem of expected profits is referred, that is t−τ . Then, with
static expectations (pe(t) = p(t− τ)), maximisation programme (1) gives the following solution:

x̃(t) = p(t− τ). (2)

Adapters of group i . By following the approach used by Onozaki et al. (2000), let firms be
(expected) profit maximisers but use the quantity that corresponds to maximum expected profits,
x̃(t), as a target to adjust their production choices. In particular, if the quantity produced at time
t by each single adapter, ui(t), is smaller (resp. greater) than x̃(t), it will increase (resp. reduce)
production. Then, we assume the following behavioural rule for production decisions of each single
adapter of group i (i = 1, 2):

u̇i(t) = αi [x̃(t)− ui(t)] , (3)

where u̇i(t) is the instantaneous time variation of production of an adapter that belongs to group
i and αi > 0 is the speed of adjustment (αi �= αj). This rule can be interpreted as a precautionary
behaviour with respect to the evolution of the market price.

Since there are m (resp. 1 −m) homogeneous adapters of group 1 (resp. group 2), aggregate
supply can easily be determined as follows:

X(t) = mu1(t) + (1−m)u2(t). (4)

With regard to consumers’ side, we follow Fanti et al. (2015) and assume the existence of
a continuum of identical consumers whose preferences towards both the agricultural commodity y
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(whose price is p) and numeraire good w (whose price is normalised to one without loss of generality),
produced by competitive firms, are represented by the following quasi-linear utility function:

V (y,w) = U(y) + w, (5)

where

U(y) =

�
y1−β

1−β , if β > 0

ln(y), if β = 1
, (6)

where 1/β is the constant elasticity of demand. The representative consumer maximises utility
function (6) subject to budget constraint py + w = M , where M > 0 is the exogenous nominal
income of the consumer (M is assumed to be sufficiently high to avoid the existence of corner
solutions). This maximisation programme implies that the isoelastic inverse demand of good y is
determined as follows:

p =

�
y−β, if β > 0
y−1, if β = 1

. (7)

Therefore, the market demand at time t is simply given by the following equation:

p(t) =
1

[y(t)]
β
. (8)

Market-clearing implies that aggregate demand equals aggregate supply, that is X(t) = y(t) for
any t. Then, by using (2), (3), (4) and (8) we find the following system of two delay differential
equations that characterises the dynamics of the economy:

u̇1(t) = −α1u1(t) +
α1

[mu1(t− τ) + (1−m)u2(t− τ)]β
, (9)

u̇2(t) = −α2u2(t) +
α2

[mu1(t− τ) + (1−m)u2(t− τ)]β
. (10)

In what follows, we will set α1 = α > 0 and α2 = 1 to be in line with the formulation of Onozaki
et al. (2003).4

3 Existence of equilibria and local bifurcations with homo-

geneous time delays

By setting α1 = α and α2 = 1, the system of two delay differential equations described by (9) and
(10) becomes: 




u̇1(t) = −αu1(t) +
α

[mu1(t− τ) + (1−m)u2(t− τ)]
β
,

u̇2(t) = −u2(t) +
1

[mu1(t− τ) + (1−m)u2(t− τ)]
β
.

(11)

4We note that in a discrete time model, Onozaki et al. (2003) distinguish between producers that belong to
"cautious" adapters, that adjusts output towards the target represented by the profit-maximizing quantity with
α ∈ (0, 1) as the speed of adjustment, and producers that belong to optimisers, that exactly produce the quantity
that maximises profits given the expectation formation mechanism (α = 1). However, in a continuous time framework
firms within each group remain adapters for any finite positive value of the speed of adjustment.
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Equilibrium points of system (11) correspond to solutions of the algebraic system u̇1(t) = u̇2(t) = 0,
with u1(t − τ) = u1(t) = u∗1 and u2(t − τ) = u2(t) = u∗2. A direct computation shows that model
(11) admits the unique positive equilibrium (u∗1, u

∗
2) = (1, 1). The linearised system of (11) at this

steady-state equilibrium is the following:

�
u̇1(t) = −α (u1(t)− u∗1)− αβm (u1(t− τ)− u∗1)− αβ(1−m) (u2(t− τ)− u∗2) ,

u̇2(t) = − (u2(t)− u∗2)− βm (u1(t− τ)− u∗1)− β(1−m) (u2(t− τ)− u∗2) .
(12)

The characteristic equation associated with (12) is given by

�����
−α− λ− αβme−λτ −αβ(1−m)e−λτ

−βme−λτ −1− λ− β(1−m)e−λτ

����� = 0. (13)

From (13), we obtain the following second degree exponential polynomial equation

λ2 + aλ + b + (cλ + d) e−λτ = 0, (14)

where
a = 1 + α > 0, b = α > 0, c = (1−m + αm)β > 0, d = αβ > 0.

It is known that the steady-state equilibrium is asymptotically stable if all roots of the characteristic
equation (14) have negative real parts.

Lemma 1 The stationary equilibrium (1, 1) is locally asymptotically stable without delays.

Proof. For τ = 0, (14) becomes λ2 + (a + c)λ+ b+ d = 0. By looking at this equation, we can see
that it has only two negative roots since a + c > 0 and b + d > 0. Hence, the statement holds.

We now want to determine whether the real part of some root of (14) increases to zero and
eventually becomes positive as τ varies. Clearly, λ = 0 is not a root of (14). For τ > 0, if λ = iω is
a root of (14) with ω > 0 then

−ω2 + iaω + b + (icω + d) [cos (ωτ)− i sin (ωτ)] = 0.

Separating the real and imaginary parts in the previous equation, we get the following

�
ω2 − b = d cos (ωτ) + cω sin (ωτ) ,

aω = d sin (ωτ)− cω cos (ωτ) .
(15)

Squaring both sides, adding both equations and regrouping by powers of ω, we obtain that ω
satisfies the following fourth degree polynomial

ω4 −
�
c2 + 2b− a2

	
ω2 + b2 − d2 = 0. (16)

We remark that

c2 + 2b− a2 = (1−m + αm)2β2 −
�
1 + α2

	
,

b2 − d2 = (1− β2)α2.
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Lemma 2 If β ≤ 1, then all roots of (14) have negative real parts for τ ≥ 0, i.e. (1, 1) is locally
asymptotically stable for all τ ≥ 0.

Proof. By assumption β ≤ 1, so that b2 − d2 ≥ 0. The statement will follow from ω4 −�
c2 + 2b− a2

	
ω2 = −(b2 − d2) showing that c2 + 2b − a2 < 0. In fact, this implies that (16)

has no positive solutions. Hence, the characteristic equation (14) does not have purely imaginary
roots. Now, we note that

c2 + 2b− a2 < 0 ⇐⇒ β <

√
1 + α2

1−m + αm
. (17)

By recalling that m ∈ (0, 1) and noting that

√
1 + α2

1−m + αm
> 1 ⇐⇒ (1−α)2m2−2(1−α)m−α2 ≤ 0 ⇐⇒ 1−

√
1 + α2

1− α
< m <

1 +
√

1 + α2

1− α
,

we have
√

1 + α2/ (1−m + αm) > 1, i.e. (17) is always verified having assumed β ≤ 1.

Lemma 3 Let β > 1. Then (16) has only one root ω+ which is positive, where

ω+ =



c2 + 2b− a2 +

√
∆

2
, (18)

with
∆ =

�
c2 + 2b− a2

	2 − 4
�
b2 − d2

	
> 0. (19)

Proof. From (17) we derive that c2 + 2b − a2 < 0 if 1 < β <
√

1 + α2/(1 − m + αm), and
c2 + 2b− a2 ≥ 0 if β ≥

√
1 + α2/(1−m + αm). In both cases, being b2 − d2 < 0 hence ∆ > 0, so

that a direct calculation yields the conclusions.
Solving equations in (15) for sin (ωτ) and cos (ωτ), we get

sin (ωτ) =
cω3 + (ad− bc)ω

c2ω2 + d2
, (20)

and

cos (ωτ) =
(d− ac)ω2 − bd

c2ω2 + d2
. (21)

From d− ac = −(1−m + α2m)β < 0 and bd > 0, we get cos (ωτ) < 0. Furthermore, ad− bc > 0
yields sin (ωτ) > 0. The critical values τ+j of τ for which the characteristic equation (14) has purely
imaginary roots can be determined from (21). They are given by

τ+j =
1

ω+

�
cos−1

�
(d− ac)ω2+ − bd

c2ω2+ + d2

�
+ 2jπ


, j = 0, 1, 2, ... (22)

Proposition 4 Let β > 1.

1. Eq. (14) has a pair of simple purely imaginary roots ±iω+ at τ = τ+j .
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2. Let λ(τ) = ν(τ) + iω(τ) denote the root of Eq. (14) near τ = τ+j satisfying ν(τ+j ) = 0 and

ω(τ+j ) = ω+, with ω+ and τ+j defined in (18) and (22), respectively. Then the transversality
condition reads as follows

d
�
Reλ(τ+j )

�

dτ
> 0.

Proof. A direct calculation shows that λ = iω+ is a simple root of (14). In fact, if we assume that
λ = iω+ is not simple, then differentiating (14) with respect to λ, using (14), and evaluating the
resulting equation for λ = iω+ leads to (2d + aτ+j )ω+ = 0, which is an absurd. Next, substituting
λ(τ) into (14) and taking the derivative with respect to τ , we have

�
dλ

dτ

�−1
=

(2λ + a) e−λτ + c

λ(cλ + d)
− τ

λ
.

By using (14) and (16), a direct calculation gives

sign

�
d (Reλ)

dτ

����
τ=τ+j

�
= sign



Re

�
dλ

dτ

�−1�����
τ=τ+j



 = sign

�
−c2 − 2b + a2) + 2ω2+

�
= sign

�√
∆
�
> 0.

with ∆ defined in (19).
Bearing the above analysis in mind, we have that the root λ(τ) of (14) crosses the imaginary

axis from left to right at τ = τ+j as τ increases. Thus, we have the following result.

Theorem 5 Let β > 1. The positive equilibrium of (11) is locally asymptotically stable when
τ ∈ [0, τ+0 ) and unstable when τ > τ+0 . Moreover, (11) undergoes Hopf bifurcations at the positive
equilibrium when τ = τ+j (j = 0, 1, 2, ...).

It is interesting to note that in the related work of Onozaki et al. (2003), where there are two
groups of firms, one of the most important findings is the role played by the relative number of
these two kinds of firms on the stability of the stationary equilibrium. In particular, in that model
the coexistence of players of different kinds (heterogeneity) is a source of instability. This result,
obtained in a discrete time model, is in line with the results on the long-term nonlinear dynamics
obtained in discrete time oligopoly models with bounded rationality (Bischi et al., 1999). In the
present work, by starting from equation (22) that describes the relationship between the bifurcation
value of τ and the other parameters of the model, it is possible to show that heterogeneity may
play a stabilising role (see Figure 1(a) and 1(b)). The following proposition summarises the result.

Proposition 6 Let τ+0 (m) be the function defined in (22). If β > 1 and α > 1+ β2√
β2−1

�
2π − arccos 1

β

�

for any τ ∈
�
τ+0 |m=0 , τ+0,max

	
there exist m1 and m2 such that (1, 1) is unstable for m < m1 and

m > m2, while it is locally asymptotically stable for m ∈ (m1,m2), where τ+0,max is the global

maximum point for τ+0 (m) on (0, 1).
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Proof. Equation (22) defines a continuous and differentiable function τ+0 with respect to m in the
interval [0, 1]. By direct calculation we have that

∂τ+0
∂m

����
m=0

=
(1− α)

�
(1− α)

�
β2 − 1 + β2

�
2π − arccos 1

β

��

�
α2 + β2 − 1

	�
β2 − 1

. (23)

Under the assumption β > 1, if α > 1 + β2√
β2−1

�
2π − arccos 1

β

�
then (23) is positive and τ+0 (1) =

π−arccos 1
β

α
√
β2−1

<
π−arccos 1

β√
β2−1

= τ+0 (0). This implies that the global maximum belongs to (0, 1) and the

proposition follows.

Figure 1(a) has been obtained by using the following procedure. Let m vary in the interval
[0, 0.4] with a sufficiently small step-size (1000 equidistant points has been taken into account).
By considering an initial condition u(t) = �u for any t ∈ [−τ, 0] with �u sufficiently close to u∗,
for any m the figure depicts the local maximum and minimum values of the trajectory after a
sufficiently long transient. Then, the stationary equilibrium point is locally asymptotically stable
for any m ∈ (m1,m2), as proved in Proposition 6. For m = m1 and m = m2, the system undergoes
a Hopf bifurcation. In the intervals of m such that the stationary equilibrium point is unstable
(m < m1 or m > m2), trajectories are characterised by the existence of only one local maximum
and minimum values umax and umin, with umax �= umin (which are also global). This implies that
long-term dynamics tend to be captured by a limit cycle, as shown in Figure 1(b).
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Figure 1. (a) Bifurcation diagram for m. Parameter set: α = 500, β = 2.2 and τ = 1.1. A
limit cycle captures the long-term dynamics of the system for m ∈ (m1,m2). We note that the
parameter values used simply have an illustrative purpose. (b) Phase diagram for m = 0.39 > m2.

4 Extension: heterogeneous time delays

The aim of this section is to extend the analysis developed in the previous section when firms
that belong to adapters of different groups are characterised by different technologies. From a
mathematical point of view, equilibrium dynamics are described by the following system of two
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delay differential equations:




u̇1(t) = −αu1(t) +
α

[mu1(t− τ1) + (1−m)u2(t− τ1)]
β
,

u̇2(t) = −u2(t) +
1

[mu1(t− τ2) + (1−m)u2(t− τ2)]
β
.

(24)

where τ1 ≥ 0, τ2 ≥ 0 (with τ1 �= τ2) represent the delays corresponding to adapters that belong to
group 1 and group 2, respectively. In previous sections, we have assumed that firms that belong to
both groups (types) have the same technology, that is they react with the same delay τ . Differently,
we now assume that farmers of group 1 and group 2 use a technology for which there exist two
different periods of time, τ1 and τ2 respectively, to bring the production process to completion and
get products to the market. This to capture in a more realistic way the functioning of agricultural
markets subject to different kinds of sowing and harvest times.

Obviously, (u∗1, u
∗
2) = (1, 1) is the unique positive equilibrium of system (24). The associated

characteristic equation of the linearised system of (24) at this equilibrium point is given by
�����
−α− λ− αβme−λτ1 −αβ(1−m)e−λτ1

−βme−λτ2 −1− λ− β(1−m)e−λτ2

����� = 0,

namely
λ2 + (1 + α)λ + α + αβm(λ + 1)e−λτ1 + β(1−m)(λ + α)e−λτ2 = 0. (25)

In order to study the emergence of a super-critical Hopf bifurcation, below we follow the approach
introduced by Ruan and Wei (2003). Specifically, in Section 4.1 we will study the case in which
one firm is not subject to time delays from bringing production to completion and getting products
to the market while the other does. In Section 4.2 we extend this analysis to the case where both
firms are characterised by (different) time delays in production.

4.1 The case τ1 = 0, τ 2 > 0

In this case, the characteristic equation (25) reduces to

λ2 + aλ + b + (cλ + d) e−λτ2 = 0, (26)

where

a = 1 + α(1 + βm) > 0, b = α(1 + βm) > 0, c = β(1−m) > 0 and d = αβ(1−m) > 0.

The stability of the trivial equilibrium point will change when the system under consideration
has zero or a pair of imaginary eigenvalues. It is immediate that the former cannot occur. Let
λ = iω (ω > 0) be a purely imaginary root of (26). Substituting λ = iω in (26), and separating the
real and imaginary parts, we arrive at

ω4 −
�
c2 + 2b− a2

	
ω2 + b2 − d2 = 0, (27)

where
c2 + 2b− a2 =

�
(1− α2)m2 − 2m + 1

�
β2 − 2α2βm− (1 + α2), (28)

and
b2 − d2 = α2

�
(2m− 1)β2 + 2βm + 1

�
. (29)
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Lemma 7 Let

β2 =
α2m +

�
(α4 − α2 + 1)m2 − 2m + 1

(1− α2)m2 − 2m + 1
. (30)

Then

1. c2 + 2b− a2 > 0 if 0 < m < 1/(1 + α) and β > β2 or 1/(1 + α) < m < 1 and β < β2;

2. c2 + 2b− a2 = 0 if m = 1/(1 + α) or β = β2;

3. c2 + 2b− a2 < 0 if 0 < m < 1/(1 + α) and β < β2 or 1/(1 + α) < m < 1 and β > β2.

Proof. The statement follows from rewriting (28) as

c2 + 2b− a2 =
�
(1− α2)m2 − 2m + 1

�
(β − β1)(β − β2),

where β1 =
�
α2m−

�
α4m2 + (1− α2)m2 − 2m + 1

�
/
�
(1− α2)m2 − 2m + 1

�
< 0, and the fact

that (1− α2)m2 − 2m + 1 = [(1− α)m− 1] [(1 + α)m− 1] , with (1− α)m− 1 < 0.

Lemma 8

1. b2 − d2 > 0 if 1/2 ≤ m < 1 or if 0 < m < 1/2 and β < 1/(1− 2m).

2. b2 − d2 = 0 if 0 < m < 1/2 and β = 1/(1− 2m).

3. b2 − d2 < 0 if 0 < m < 1/2 and β > 1/(1− 2m).

Proof. The conclusion is immediate once (29) is written as

b2 − d2 = α2 [(2m− 1)β + 1] (β + 1) .

Proposition 9 Let β2 be defined as in (30).

1) If

0 < m <
1

2
: β ≤ 1

1− 2m
and β ≤ β2, or m =

1

1 + α
and β =

1

1− 2m
(31)

or
1

2
≤m < 1 : m ≤ 1

1 + α
and β ≤ β2, or

1

1 + α
≤ m < 1 and β ≥ β2 (32)

hold, then all roots of Eq. (26) have negative real parts for all τ2 ≥ 0.

2) If

0 < m <
1

2
: β =

1

1− 2m
> β2, or β >

1

1− 2m
(33)

hold, then (26) has a pair of purely imaginary roots ±iω+ at τ2 = τ+2j (j = 0, 1, 2, ...), where




ω+ =
√
c2 + 2b− a2, if β =

1

1− 2m
> β2,

ω+ =

 !!"c2 + 2b− a2 +
#

(c2 + 2b− a2)2 − 4 (b2 − d2)

2
, if β >

1

1− 2m
and β �= β2,

ω+ = 4
�
− (b2 − d2), if β >

1

1− 2m
and β = β2.
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3) If

0 < m <
1

2
: β <

1

1− 2m
and β > β2 (34)

or
1

2
≤ m < 1 : β > β2, or

1

1 + α
< m < 1 and β < β2 (35)

hold, then (26) has a pair of purely imaginary roots ±iω+ (±iω−, respectively) at τ2 = τ+2j
(j = 0, 1, 2, ...) (τ2 = τ−2j , respectively), where

ω± =

 !!"c2 + 2b− a2 ±
#

(c2 + 2b− a2)2 − 4 (b2 − d2)

2

and

τ±2j =





1

ω±

�
2jπ + arccos

�
(d− ac)ω2± − bd

c2ω2± + d2

�
, if cω2± + ad− bc > 0,

1

ω±

�
(2j + 1)π − arccos

�
(d− ac)ω2± − bd

c2ω2± + d2

�
, if cω2± + ad− bc ≤ 0.

(36)

Proof. If 0 < m < 1/2, then one has that b2 − d2 > 0 if β < 1/(1 − 2m), b2 − d2 = 0 if
β = 1/(1 − 2m), and b2 − d2 < 0 if β > 1/(1 − 2m). On the other hand, if m ≥ 1/2, then it is
b2 − d2 > 0. The statement follows from the previous two Lemmas and (27). In addition, notice
from (21) that cos (ωτ2) < 0 since d− ac = −(1−m + α2m)β < 0 and bd > 0, and from (20) that
sin (ωτ2) > 0 if cω2± + ad− bc > 0.

Proposition 10 Assume that (33), (34) or (35) holds. Then iω± are simple roots of (26) satisfying

�
dRe(λ)

dτ2

�

τ2=τ
+

2j

> 0 and

�
dRe(λ)

dτ2

�

τ2=τ
−

2j

< 0.

Proof. From the proof of Proposition 4 we obtain

sign





d (Reλ)

dτ2

����
τ2=τ

±

2j



 = sign





Re

�
dλ

dτ2

�−1�����
τ2=τ

±

2j





= sign
�
−c2 − 2b + a2) + 2ω2±

�
= sign

�
±
√

∆
�
.

According to the previous analysis we have the following results on the stability of the positive
equilibrium (u∗1, u

∗
2) = (1, 1).

Theorem 11 Let τ±2j (j = 0, 1, 2, ...) be defined as in (36).
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1) If (31) or (32) holds, then the equilibrium (u∗1, u
∗
2) is locally asymptotically stable for all τ2 ≥ 0.

2) If (33) holds, then the equilibrium (u∗1, u
∗
2) is locally asymptotically stable for τ2 ∈ [0, τ+20) and

unstable for τ2 > τ20 .

3) If (34) or (35) holds, then there is a positive integer m such that the equilibrium (u∗1, u
∗
2) is

locally asymptotically stable when τ2 ∈ [0, τ+20) ∪ (τ−20 , τ
+
21

) ∪ · · · ∪ (τ−2m−1
, τ+2m) and unstable

when τ2 ∈ (τ+20 , τ
−
20

) ∪ (τ+21 , τ
−
21

) ∪ · · · ∪ (τ+2m−1
, τ−2m−1

) ∪ (τ+2m ,∞). Furthermore, system (24)

undergoes a Hopf bifurcation at (u∗1, u
∗
2) when τ2 = τ±2m , m = 0, 1, 2, ...

4.2 The case τ1 > 0 and τ 2 > 0

If τ1 > 0 and τ2 > 0 we consider the characteristic equation (25) with τ2 in its stable intervals,
i.e. τ2 ∈ [0, τ+20) or τ2 ∈ [0,+∞). We first prove a result regarding the sign of the real parts of
characteristic roots of (25).

Lemma 12 If all roots of Eq. (26) have negative real parts for τ2 > 0, then there exists a τ∗1(τ2) >
0, such that all roots of Eq. (25) have negative real parts when 0 ≤ τ1 < τ∗1(τ2).

Proof. Eq. (26) having no root with nonnegative real part for τ2 > 0 implies that Eq. (25) with
τ1 = 0 and τ2 > 0 has no root with nonnegative real part. Since the left hand side of Eq. (25) is
analytic in λ and τ1, following Ruan and Wei (2003), when τ1 varies, the sum of the multiplicities
of zeros of the left hand side of Eq. (25) in the open right half-plane can change only if a zero
appears on or crosses the imaginary axis. Since Eq. (25) with τ1 = 0 has no root with nonnegative
real part, the conclusion is immediate.

An application of Theorem 11 and Lemma 12 provides some conditions to ensure that all roots of
the characteristic equation (26) with two delays have negative real parts, which imply the asymptotic
stability of the positive equilibrium of system (24).

Theorem 13

1) If (31) or (32) holds, then for any τ2 ≥ 0 there exists a τ∗1(τ2) > 0 such that the equilibrium
of system (24) is locally asymptotically stable when τ1 ∈ [0, τ∗1(τ2)).

2) If (33) holds, then for any τ2 ∈ [0, τ+20) there exists a τ∗1(τ2) > 0 such that the equilibrium of
system (24) is locally asymptotically stable when τ1 ∈ [0, τ∗1(τ2)).

3) If (34) or (35) holds, then for any τ2 ∈ [0, τ+20) ∪ (τ−20 , τ
+
21

) ∪ · · · ∪ (τ−2m−1
, τ+2m) there exists

a τ∗1(τ2) > 0 such that the equilibrium of system (24) is locally asymptotically stable when
τ1 ∈ [0, τ∗1(τ2)).

Remark 14 It is clear that a Hopf bifurcation occurs at τ∗1(τ2) and also that there may exist
several stability switches. If we let τ2 be in the unstable region, then there may exist no τ∗1(τ2)
such that when the system (24) is unstable in 0 ≤ τ1 < τ∗1(τ2), it is stable in τ∗1(τ2) < τ1. Both
results will be discussed later in this section by the use of the so called stability crossing curves (Gu
et al., 2005).

14



Remark 15 If Eq. (25) for some τ1 and τ2 has two pairs of purely imaginary roots, say ±iω1
and ±iω2, and all the other roots of (25) have non-zero real part, and ω1 : ω2 = l1 : l2, then
system (24) undergoes a double Hopf bifurcation with the ratio l1 : l2. When l1, l2 ∈ Z+, then it
is called an l1 : l2 resonant double Hopf bifurcation; otherwise, it is called a non-resonant double
Hopf bifurcation. More generally, since in the model there are several parameters in addition to τ1
and τ2, it is possible to observe bifurcations of co-dimension greater than 1. An interesting study
on these topic can be found in the recent paper by Bi and Ruan (2013), who analyse a model with
two variables, two delays (as in the present work), but in which only one variable is subject to time
delays.

The results stated in Theorem 13 clearly show the different scenarios that can emerge depending
on the parameters of the model. However, this approach is not completely satisfactory as it does
not allow to obtain analytical results on couples (τ1, τ2) that generate the bifurcation. In other
words, no information is given on couples (τ1, τ2) that generate a stable or an unstable stationary
state. In order to overcome this concern, an effective approach is the one proposed by Gu et al.
(2005) through the use of the stability crossing curves, which are defined as the curves that separate
the stable and unstable regions in the (τ1, τ2) plane. Starting from the characteristic equation (25),
it is possible to define the following polynomials:

p0(λ) = λ2 + (1 + α)λ + α, (37)

p1(λ) = αβm(1 + λ), (38)

p2(λ) = β(1−m)(α + λ). (39)

The zeros of (25) coincide with the zeros of

A(λ, τ1, τ2) = 1 + A1(λ)e−τ1λ + A2(λ)e−τ2λ, (40)

where Aℓ = pℓ(λ)/p0(λ), ℓ = 1, 2. Now, the procedure proposed by Gu et al. (2005) is based on
the interpretation of the three addenda in the left-hand-side of A(λ, τ1, τ2) = 0 as three vectors in
the complex plane. The procedure is comprised of the following steps.

The first step needs to identify the set Ω of ω that satisfies feasibility conditions such that
complex conjugate roots do exist and, from a geometrical point of view, it consists of imposing
conditions such that the vectors above mentioned form a triangle (Figure 2). In our model, the
procedure described above allows us to characterise Ωi (with ∪Ωi = Ω) as the sets such that graph
of the function

L1(ω) := |A1(iω)|+ |A2(iω)| =
mβα√
α2 + ω2

+
β(1−m)√

1 + ω2
, (41)

belongs to region G := {(ω, z) : z ∈ [−1, 1]}, while the graph of the function

L2(ω) := |A1(iω)| − |A2(iω)| =
mβα√
α2 + ω2

− β(1−m)√
1 + ω2

, (42)

do not.
The second step consists in identifying the internal angles θ1, θ2 ∈ [0, π] of the triangle in Figure

2 by using the law of the cosine, that is

θ1 = cos−1
$

1 + |A1(iω)|2 − |A2(iω)|2
2 |A1(iω)|

%
, (43)
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and

θ2 = cos−1
$

1 + |A2(iω)|2 − |A1(iω)|2
2 |A2(iω)|

%
. (44)

Now, for any ω ∈ Ω it is possible to identify solutions (τ1, τ2) of A(λ, τ1, τ2) = 0 as follows:

τ1 = τ
v
±

1

1 (ω) =
arg(A1(iω)) + (2v1 − 1)π ± θ1

ω
≥ 0, v1 = v±1,0, v

±
1,0 + 1, v±1,0 + 2, ..., (45)

and

τ2 = τ
v±
2

2 (ω) =
arg(A2(iω)) + (2v2 − 1)π ∓ θ2

ω
≥ 0, v2 = v±2,0, v

±
2,0 + 1, v±2,0 + 2, ..., (46)

where v+1,0, v
−
1,0, v

+
2,0 and v−2,0 are the smallest possible integers (that may be negative and may

depend on ω) such that the corresponding calculated values of τ
v
+

1,0+

1 , τ
v
−

1,0−
1 , τ

v
+

2,0+

2 and τ
v
−

2,0−
2 are

non-negative.
Let

Γ±ω,v1,v2 =
��

τ
v
±

1

1 (ω), τ
v
±

2

2 (ω)
��

, (47)

then

Γ =
&

ω∈Ω







&

v1≥v+1,0
v2≥v+2,0

Γ+ω,v1,v2




&




&

v1≥v−1,0
v2≥v−2,0

Γ−ω,v1,v2







, (48)

identifies the stability crossing curves in (τ1, τ2) plane.
In general, as stated by Gu et al. (2005), Proposition 4.5, p. 243, we can observe three possible

shapes (and generally twelve possible types) of stability crossing curves. In order to understand the
possible configurations of stability crossing curves in our model, we analyse the behaviour of L1(ω)

and L2(ω). We have that L′1(ω) < 0 for any ω ≥ 0 and L′2(ω) = −mβαω
3
√
α2+ω2

+ β(1−m)ω
3
√
1+ω2

. According

to monotonicity properties of L1(ω) and L2(ω), we introduce the following notation. Let ω1 (resp.
ω2) be the unique point, if it exists, such that L1(ω1) = 1 (resp. L2(ω2) = 1), and let ω3 and ω4
be the points, if they exist, such that L2(ωi) = −1, i = 3, 4. If both ω2 and ω3 exist, we assume
that ω2 < ω3, while if both ω3 and ω4 exist, we assume that ω3 < ω4. Furthermore, let ωcrit
be the unique point, if it exists, such that L′2(ωcrit) = 0. Then, we are able to state the following
proposition.

Proposition 16 The following cases are possible.
If a) β < 1 then (u∗1, u

∗
2) is locally asymptotically stable for any non-negative τ1 and τ2.

If β > 1 we have that
1) if (a) m < 1

2 and β < 1
1−2m and ωcrit does not exist (or there exists ωcrit : L2(ωcrit) > −1) or

(b) m > 1
2 and β < 1

2m−1 and ωcrit does not exist (or there exists ωcrit : L2(ωcrit) > −1), then
there exists an interval Ω1 = (0, ω1) of type 0, 3 and the stability crossing curves are open-ended
curves;
2) if m > 1

2 and β > 1
2m−1 and ωcrit does not exist or there exists ωcrit : L2(ωcrit) > −1 then there
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exists an interval Ω1 = (ω2, ω1) of type 1, 3 and the stability crossing curves are spiral-like curves
with vertical axes;
3) if m < 1

2 and β < 1
1−2m (or m > 1

2 and β < 1
2m−1) and there exists ω4 : (ω4 < ω1 and

L2(ωcrit) < −1), then there exists a crossing set Ω = Ω1 ∪ Ω2, where Ω1 = (0, ω3) of type 0, 2 and
the stability crossing curves are open-ended curves, and Ω2 = (ω4, ω1) of type 2, 3 and the stability
crossing curves are spiral-like curves with horizontal axes;
4) if m < 1

2 and β > 1
1−2m then there exists an interval Ω1 = (ω3, ω1) of type 2, 3 and the stability

crossing curves are spiral-like curves with horizontal axes;
5) if m > 1

2 and β > 1
2m−1 and there exists ωcrit : L2(ωcrit) < −1, then there exists a crossing set

Ω = Ω1∪Ω2, where Ω1 = (ω2, ω3) of type 1, 2 and the stability crossing curves are spiral-like curves
with axes oriented diagonally, and Ω2 = (ω4, ω1) of type 2, 3 and the stability crossing curves are
spiral-like curves with horizontal axes.

Proof. First of all, we note that if ω1 does exist we have that L2(ω1) > −1. Then, ω1 > ωi when
ωi exists, with i = 2, 3, 4. By considering L1(0) and L2(0) and the geometric properties of the
graphs of L1(ω) and L2(ω) we have the results.

The various cases listed in Proposition 16 are illustrated in Figures 3-8. In particular, Figure
3 shows that stability crossing curves do not exist when β < 1, and from Lemma 1 it follows
that fixed point (u∗1, u

∗
2) is stable for any τ1 and τ2. In this case, high or low delays to bring

the production process to completion and get products to the market do not matter for stability.
Panels a from Figure 4 to Figure 8 depict L1(ω) and L2(ω) from Case 1 to Case 5 of Proposition 16,
respectively, while the related panels b show the corresponding stability crossing curves together
with the stability/instability regions in (τ1, τ2) plane.

The analysis of Figures 4(b)-8(b) allows us to get some interesting economic interpretations.
In fact, by considering (for instance) Figure 7(b), it is relevant to point out that if the number of
firms that belong to adapters of group 1 is relatively small, and the time delay associated with the
technology of firms of group 2 is small too, the size of the delay related to the technology of firms
of group 1 does not matter for stability. In other word, the length of time goods are produced
and are effectively ready for sale in the market does not cause persistent fluctuations in that case.
Similar considerations can actually be done for the cases reported in Figures 4(b), 5(b) and 6(b).
In contrast, with regard to Figure 8(b), in which β is sufficiently high (that is, the elasticity of
market demand is sufficiently low), m is sufficiently high (that is, the number of firms that belong
to group 1 is large), and a technical condition is verified (L2(ωcrit) < −1), we note that by taking
a small value of any of the two delays, there exists a threshold value of the other delay beyond
which the steady-state equilibrium is definitely unstable. The solid line in panels b of Figures 4-8
shows that by adequately fixing one of the two delays (we recall that a delay represents the size
of gestation lags in the technology of firms that belong to one of the two groups) to a given value,
it is possible to observe several changes in the stability of (u∗1, u

∗
2) (stability switches) when the

other delay varies. This phenomenon can be ascertained, for instance, by looking at Figure 7(b) at
τ2 = 0.55.5

5There are a few applications of this technique in economics. An exmaple of the use of stability crossing curves
can be found in Matsumoto and Szidarovszky (2012).
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Figure 2. Triangle formed by 1, |A1(iω)| and |A2(iω)|.

Figure 3. Case β < 1 of Proposition 16. Parameter set: α = 0.84, β = 0.70 and m = 0.368.
|A1(iω)| ± |A2(iω)| versus ω.
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Figure 4. Case 1 of Proposition 16. Parameter set: α = 0.4, β = 1.3 and m = 0.168. (a)
|A1(iω)|±|A2(iω)| versus ω. (b) Stability crossing curves in (τ1, τ2) plane. Stability crossing curves
are open-ended curves. The grey area shows a portion of the stability region in (τ1, τ2) plane. Set
Ω consists of a unique interval Ω1 = (0, ω1) = (0, 0.6896).
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Figure 5. Case 2 of Proposition 16. Parameter set: α = 0.4, β = 33 and m = 0.9168. (a)
|A1(iω)|±|A2(iω)| versus ω. (b) Stability crossing curves in (τ1, τ2) plane. Stability crossing curves
are spiral-like curves with vertical axes. The grey area shows a portion of the stability region in
(τ1, τ2) plane. Set Ω consists of a unique interval Ω1 = (ω2, ω1) = (9.3607, 14.8367).
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Figure 6. Case 3 of Proposition 16. Parameter set: α = 0.4, β = 29 and m = 0.51. (a)
|A1(iω)| ± |A2(iω)| versus ω. (b) Stability crossing curves in the (τ1, τ2) plane. Stability crossing
curves are open-ended curves and spiral-like curves with horizontal axes. The grey area shows a
portion of the stability region in (τ1, τ2) plane. We do not show the open-ended curves as only
spiral-like curves matter for stability. Ω = Ω1∪Ω2 is a crossing set, where Ω1 = (0, ω3) = (0, 0.2275)
and Ω2 = (8.1964, 20.1073).
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Figure 7. Case 4 of Proposition 16. Parameter set: α = 0.1, β = 7 and m = 0.39. (a)
|A1(iω)| ± |A2(iω)| versus ω. (b) Stability crossing curves in the (τ1, τ2) plane. Stability crossing
curves are spiral-like curves with horizontal axes. The grey area shows a portion of the stability
region in (τ1, τ2) plane. Set Ω consists of a unique interval Ω1 = (ω3, ω1) = (3.8607, 4.4385).
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Figure 8. Case 5 of Proposition 16. Parameter set: α = 0.1, β = 7 and m = 0.59. (a)
|A1(iω)| ± |A2(iω)| versus ω. (b) Stability crossing curves in the (τ1, τ2) plane. Stability crossing
curves are spiral-like curves with axes oriented diagonally and spiral-like curves with horizontal axes.
The grey area shows the stability region in (τ1, τ2) plane whose borders are defined by a spiral-like
curve with axes oriented diagonally and a spiral-like curves with horizontal axes. Ω = Ω1 ∪Ω2 is a
crossing set, where Ω1 = (ω2, ω3) = (0.0374, 0.2049) and Ω2 = (ω4, ω1) = (2.2002, 3.1481).

5 Conclusions

This paper analysed a continuous time version with discrete time delays of a cobweb model with
heterogeneous producers and gestation lags, with quantity adjustments rather than price adjust-
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ments. It has studied conditions for which the equilibrium of the system is stable and pointed out
the possibility of the emergence of Hopf bifurcations (and then cyclical dynamics) when there exist
delays in production (time-to-build technology). To this purpose, the paper has used the techniques
introduced by Ruan and Wei (2003) and also the geometric approach of stability crossing curves
developed by Gu et al. (2005). The paper has also shown the ambiguous role of heterogeneity on
the stability of the stationary equilibrium of the system. The model could be extended in several
directions, for instance by considering heterogeneous expectations formation mechanisms (Brock
and Hommes, 1997) or by introducing stochastic elements into the analysis (Brianzoni et al., 2008).
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