Manuscript Details

Manuscript number	JEVS_2019_9_R1
Title	Determination of salivary cortisol in donkey stallions
Article type	Short communication

Abstract

Salivary cortisol provides information about free plasma cortisol concentration and salivary sampling is a non-invasive well-tolerated procedure. The aim of this study was to validate a commercial enzyme immunoassay for the determination of salivary cortisol in donkeys. Saliva samples were collected in 4 donkey stallions on thirteen non-consecutive days at 8:30 AM to avoid circadian variation. Animals were already accustomed to be handled. Saliva was collected by using a swab inserted at the angle of the lips, placed onto the tongue for 1 min and returned into a polypropylene tube. Tubes were centrifuged and at least 1 ml of saliva was aspirated from each sample and frozen at -20° C until analysis. A commercial enzyme immunoassay kit without extraction was used for determination of cortisol in saliva. Median cortisol concentrations with minimum and maximum value were calculated. Recovery of cortisol standard in donkey saliva was between 97.3% and 99.7% and serial dilution of donkey saliva samples with assay buffer resulted in changes in optical density parallel to the standard curve. Cross-reactivity of the antiserum was 10.4% with 11-deoxycortisol, 5.2% with corticosterone, 0.4% with 11-deoxycorticosterone, 0.2% with cortisone and <0.1% with testosterone, progesterone and estradiol. The intra-assay coefficient of variation was 10.7%, the inter-assay variation was 8.0% and the minimal detectable concentration was 0.01 ng/ml. The results of the present study demonstrate the validity of a commercial kit to determine the concentration of cortisol in donkey saliva, as already reported in other species.

Keywords	donkey; salivary cortisol; validation; stress; enzyme immunoassay.
Corresponding Author	Micaela Sgorbini
Corresponding Author's Institution	Department of Veterinary Sciences, Veterinary teaching Hospital
Order of Authors	FRANCESCA BONELLI, Alessandra Rota, Christine Aurich, Ille Natascha, Francesco Camillo, Duccio Panzani, Micaela Sgorbini
Suggested reviewers	Fabrizio Rueca, Fulvio Laus

Submission Files Included in this PDF

File Name [File Type]

Cover letter Bonelli et al. cortisol.docx [Cover Letter]

Cortisol in donkeys - Answer to reviewers.docx [Response to Reviewers]

Highlights SALIVARY CORTISOL pos revision.docx [Highlights]

DETERMINATION OF SALIVARY CORTISOL IN DONKEY_post revision.docx [Manuscript File]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given: Data will be made available on request

Dear Editor,

here is our revised paper titled "Determination of salivary cortisol in donkey stallions", authored by Bonelli et al. The Ethical Committee, University of Pisa, approved this study. This study was supported totally by funds from the University of Pisa (100%) (Progetti di Ricerca di Ateneo: PRA_2016_53). No conflict of interest exits.

Yours sincerely,

Prof.ssa Micaela Sgorbini

Reviewer 1 (answers and comments in yellow).

The paper describe the validation of use for a commercial enzyme immunoassay for the determination of salivary cortisol in donkeys. The paper is well written and in my opinion provide useful information to the scientific community. The authors validate a method for evaluation of salivary cortisol in donkey, paving the way for further studies that will investigate the diagnostic use in clinic or in the assessment of well-being.

Minor revision:

Line 6: highlights should convey the main findings and not aims of the paper. Answer: the highlights have been corrected and the main findings have been better reported.

Line 13: Change "The Kit" with "A kit" or revise the sentence.

Answer: The sentence has been revised.

Line 83: Citation number 30 should be changed and "Mat and Met" section consequently revised. (For example see: Pearson and Ouassat, 2000 also cited in Quaresma M. et al, The veterinary Journal, 2013).

Answer: the citation has been changed.

Line 93: it is 2017? Answer: sorry for this mistake, the years were 2015 and 2016, as written in line 92.

Line 95: delete "were". Answer: done.

Line 97: what the authors mean with "*special* restraint"? Answer: the sentence has been better formulated.

Line 181: change: "...despite in the majority of the samples, the quantity of saliva was good enough for..." with "despite in the majority of the samples the quantity of saliva was good enough for..." Answer: correctio done.

Reviewer 2 (answers and comments in green) Determination of salivary cortisol in donkey stallions

Immunoassays have to be evaluated before being used in a given species. The manuscript describes a validation of a commercial enzyme immunoassay for measuring the cortisol concentration in donkey. Data of cortisol concentrations in saliva of 4 donkey stallions measured with this method are included. A denser sampling regime (more frequently than once a day) would have given more information (circadian rhythm and episodic spikes).

Answer: thank you for this comment. The salivary samplings schedule used in this paper was mandatory because the samples have been performed at the same time for two different protocols (please see Rota et al., 2018. Effect of housing system on reproductive behaviour and on some endocrinological and seminal parameters of donkey stallions. Reprod Dom Anim, 53(1): 40-47.

The manuscript may benefit if the scopes of applications of the different matrices (blood, saliva, urine and faeces) are discussed, as not in all cases measuring cortisol in saliva is the best way to monitor cortisol production. In the discussion it would be desirable to compare cortisol concentrations in the saliva of donkyes and horses.

Answer: the comparison between saliva cortisol concentrations of donkeys and horses has been added to the discussion section (please see lines 178-184, in grey).

Material and methods: how much saliva did you use per well?

Answer: the amount of saliva collected was at least 1 ml (please see line 100), because this the minimum amount needed for all the laboratory procedures.

Reviewer 3 (answer and comments in blue)

This is a nice manuscript that needs a few improvements in the english language. See comments below.

In general, the biggest question is why no comparison to blood cortisol levels was done?

Answer: Thank you for this comment. The salivary cortisol evaluation has been performed to verify the effect of housing or semen collection in donkey stallion (please see Rota et al., 2018. Effect of housing system on reproductive behaviour and on some endocrinological and seminal parameters of donkey stallions. Reprod Dom Anim, 53(1): 40-47). Our study was performed as the validation of the kit used in the previous study and the sampling scheduling (saliva and blood) was mandatory in the way it has been performed.

How do you explain the high values of cortisol in your study compared to horses? Any ideas why basal levels in donkeys could be that much higher? How do you explain the big individual differences for the samples?

Answer: An explanation about the reason why in donkeys we found higher values of saliva cortisol has been added to the discussion section (please see 178-184, grey).

Highlights: Line 15 – donkeys.

Answer: correction done.

Abstract: Line 18 - well-tolerated

Answer: correction done.

Introduction:

Line 39/40 – belated physiological responses to a stressor

Answer: correction done.

Line 56-58 – repitition of lines 50/51, rephrase or emphasize why putting more than once

181 182	
183	A new on the new stition has been delated
184	Answer: the repetition has been delated.
185	
186	
187	Line (1 , ether a secil-2002) Wilsonda, Line adda, mantian than 2
188	Line 61 – other equids??? Why do I need to mention them?
189	
190	Line 61 the donkey achieved a
191 192	
193	Answer: correction done.
194	
195	Line 63 – donkeys have become
196	
197	Answer: correction done.
198	
199	
200	
201	Line 78 – cleaned daily
202	
203	Answer: correction done.
204	Answer: correction done.
205 206	
200	
208	Line 80 - according to NRC
209	Line 80 - according to TVRC
210	
211	Answer: correction done.
212	
213	
214	
215	Line 81 to 83 - move to results section. How was body weight determined? Neccessary fort he
216 217	paper?
218	
219	Lines 82-85 have been delated.
220	
221	
222	
223	Line 87 – all 4 jacks were subjected to semen collection
224	
225	
226	Answer: correction done.
227	
228 229	
229	
231	Line 97 – special restraint? Please xplain in more detail what type of action was taken.
232	
233	Answer: the sentence has been rewerded.
234	
235	
236	
237	Line 100 – 700g? 1800g? not clear how centrifuged.
238	A
239	4
240	

Table 1 – explain individual differences in discussion. Values are pretty high in genereal compared to basal lines in horses for example. Line 149 – always stress? Answer: "always" has been changed with "often" (Peeters et al. 2011, Equine Vet J, 43(4): 487-93. Line 152 – delete "well" Answer: correction done. Line 160 - change none to no effect Answer: correction done. Line 161-163 – reference 39 is about mice, not horses. Please check and use correct reference. Answer: a new reference has been added. Conclusions Line 180-182 – please rephrase Answer: the sentence has been rephrased. References: Line 285 - correct references, spelling mistakes Answer: correction done.

Answer: sorry for this mistake. The saliva samples have been centrifuged at 1000g for 10 min, as in

the paper by Rota et al 2018, Reprod Dom Anim, 53(1): 40-47.

Highlights

- The sampling procedure was easy to perform and stress-free for the animals.
- The commercial kit used to determine the concentration of cortisol in donkey saliva was valid.
- Cortisol evaluation in saliva could be considered highly suitable in donkeys

1 2		
2 3 4	1	Determination of salivary cortisol in donkey stallions
5 6	2	Short title: Salivary cortisol in donkeys
7 8	3	Francesca Bonelli ^a , Alessandra Rota ^a , Christine Aurich ^b , Natascha Ille ^b , Francesco Camillo ^a , Duccio
9 10	4	Panzani ^a , Micaela Sgorbini ^a
11 12	5	^a Department of Veterinary Sciences, via Livornese snc, 56122 San Piero a Grado (PI), Italy
13 14 15	6	^b Centre for Artificial Insemination and Embryo Transfer, University of Veterinary Sciences, Vienna,
16 17	7	Austria.
18 19	8	
20 21	9	Corresponding Author:
22 23	10	Micaela Sgorbini
24 25 26 27 28 29 30	11	Department of Veterinary Sciences
	12	via Livornese snc
	13	56122 San Piero a Grado (PI), Italy
30 31 32	14	micaela.sgorbini@unipi.it
32 33 34	15	
35		
36 37		
38		
39 40		
41		
42		
43		
44		
45		
46		
47		
48 49		
- 50		
51		
52		
53		
54		1
55		
56		

16 Abstract

17 Salivary cortisol provides information about free plasma cortisol concentration and 18 salivary sampling is a non-invasive well-tolerated procedure. The aim of this study was to 19 validate a commercial enzyme immunoassay for the determination of salivary cortisol in 20 donkeys.

Saliva samples were collected in 4 donkey stallions on thirteen non-consecutive days at 8:30 AM to avoid circadian variation. Animals were already accustomed to be handled. Saliva was collected by using a swab inserted at the angle of the lips, placed onto the tongue for 1 min and returned into a polypropylene tube. Tubes were centrifuged and at least 1 ml of saliva was aspirated from each sample and frozen at -20° C until analysis. A commercial enzyme immunoassay kit without extraction was used for determination of cortisol in saliva. Median cortisol concentrations with minimum and maximum value were calculated.

Recovery of cortisol standard in donkey saliva was between 97.3% and 99.7% and serial dilution of donkey saliva samples with assay buffer resulted in changes in optical density parallel to the standard curve. Cross-reactivity of the antiserum was 10.4% with 11-deoxycortisol, 5.2% with corticosterone, 0.4% with 11-deoxycorticosterone, 0.2% with cortisone and <0.1% with testosterone, progesterone and estradiol. The intra-assay coefficient of variation was 10.7%, the inter-assay variation was 8.0% and the minimal detectable concentration was 0.01 ng/ml.

34 The results of the present study demonstrate the validity of a commercial kit to determine35 the concentration of cortisol in donkey saliva, as already reported in other species.

36 Key words: donkey; salivary cortisol; validation; stress; enzyme immunoassay.

37 Introduction

Domestic animals react to stress through physiological responses, which are the results of individual emotional reactivity [1]. The hypothalamic-pituitary-adrenocortical (HPA) system is activated in response to a stressor. While early response is under catecholaminergic control, late physiological response to stressor is commonly assessed by determination of glucocorticoid concentrations, such as cortisol.

An increase in hypothalamic-pituitary-adrenocortical activity indicates a physiological response
 44 to different stressors, and measurement of plasma corticosteroids is frequently used to study
 45 middle and longtime stress response [2].

Cortisol was primarily obtained from blood, plasma or urine. Blood sampling itself (by syringe or by catheterization) can produce stress in the animal causing a rise in cortisol levels [3,4]. Urine and fecal samples can be easily and non-invasively collected without submitting animals to stress [5,6], but the volume/unit weight varies between animals and species [5] and time periods between application of the stressor and collection of the urine or feces cannot be easily controlled. On the other hand the animals are hardly affected by saliva sample collection [7,8]. thus saliva can be considered a non-invasive monitoring of HPA functioning in animals.

Cortisol is passively diffused into the salivary glands, not bound to proteins and its concentration is not affected by salivary flow rate. Therefore, the salivary cortisol provides direct information about free plasma cortisol concentration, which is the only biologically active fraction in the organism, owing to it being able to bind to cell receptors [9,10].

Furthermore, the collection of saliva is a non-invasive procedure, which animals usually tolerate
 better than blood sampling. For all of these reasons, the interest in measurement of salivary
 cortisol concentration in animals has increased during the past few years.

60 Salivary cortisol concentration has been evaluated in human [8,11,12], dogs [13-16], cattle [3,17-

- - 19], pigs [20,21] and horses [9,10,22-24].

In the last decades other equids, the donkey, achieved a relevant position in the human society thanks to their employment in animal-assisted therapy [25] and milk production [26-28]. Therefore, the welfare and stress responses of donkeys have become an interesting field of research related to its behavior. To the authors' knowledge there are no validated commercial kits for the determination of salivary cortisol levels in donkeys. We followed the hypothesis that determination of cortisol concentration in donkey saliva is possible. It was the aim of this study to validate a commercial enzyme immunoassay for the determination of salivary cortisol concentrations in donkeys.

Materials and methods

This study was conducted between September 2015 and February 2016 and was approved by the Ethical Committee (OPBA) of the University of Pisa, according to D.lvo 26/2014. Four Amiata donkey stallions (jacks), aged 3 years (born between May and July 2012) were included in this study.

The jacks were kept together in a paddock (10 x 20 mt) for three months (September-November 2015). Then donkeys were housed for three months (December 2015-January 2016) in single boxes $(3.5 \times 3.5 \text{ mt})$ with a small outside paddock $(3.5 \times 6 \text{ mt})$, where they could see each other, but had no physical contact. Boxes were cleaned daily and bedded with straw. All the donkeys had free access to water from a water bowl and were fed meadow hay ad libitum and commercial concentrate (Equifioc[®], Molitoria Val di Serchio, Lucca, Italy), according to NRC recommendations for adult donkeys [29]. Weight was 280.3±30.4 kg when donkeys were moved to boxes and 283.5 ± 27.0 kg at the end of the study, with a difference of -3, +1, +10 and +5 kg in the single animals, while Body Condition Score (BCS) was always evaluated between 5 and 6/9

227 85 228 85

F<u>301.</u>

Saliva samples were collected on thirteen non-consecutive days at 8:30 AM to avoid circadian variation [10] using a cotton-based swab (Salivette[®], Sarstedt, Numbrecht-Rommelsdorf, Germany) as described in horses [22.23]. Sampling time for cortisol evaluation was scheduled in line with another project running simultaneously [31]. Briefly, all the 4 jacks were subjected to semen collections thrice weekly (Tuesday, Thursday and Saturday) during 3 weeks in the month of November 2015 and February 2016. One saliva sampling took place the week before the beginning of semen collection (November 2015), while the other 12 samplings were carried out every Tuesday and Saturday when semen collection was scheduled (6 samplings in November 2015 and 6 samplings in February 2016). Thus, 7 saliva sampling were done in November 2015 and 6 in February 2016.

Samplings were always made before feeding and cleaning procedures of the boxes and before semen collection, when scheduled, with animals were at rest. Special care was used to minimize stress during the sampling procedure, in particular, the same operator handled the animals throughout the study and only manual restrain during saliva samplings was applied. The swab was grasped with a surgical clamp, inserted at the angle of the lips into the mouth of the donkey and placed gently onto the tongue for 1 min and afterwards returned into a polypropylene tube. Tubes were then centrifuged for 10 min at 1000 g, at least 1 ml of saliva was aspirated from each sample and the obtained saliva was frozen at -20° C until analysis.

A commercial enzyme immunoassay kit without extraction (Demeditec Diagnostics, Kiel-Wellsee, Germany) was used for determination of cortisol in saliva. The assay was validated for asinine saliva in the laboratory of the unit for Obstetrics, Gynecology and Andrology, Department for Small Animals and Horses, Vetmeduni (Vienna, Austria). Cross-reactivity of the antiserum was determined at 50% binding with 11-deoxycortisol, corticosterone, 11-

deoxycorticosterone, cortisone, testosterone, progesterone and estradiol-17^β. Recovery of cortisol standards added to donkey saliva was tested. Parallelism between serial dilutions of saliva samples with assay buffer and respective changes in optical density with respect to the standard curve were determined. The intra-assav and inter-assav coefficients of variation were determined from duplicates of control saliva with low and high cortisol concentrations run in each assay (n=5). The minimal detectable concentration was defined as 2 standard deviations from zero binding.

The Graph Pad Prism 6 (USA) software was used for statistical analysis. Data were analyzed for
normal distribution by Kolmogorov-Smirnov test. Because not all data were normally distributed,
results were expressed as median values of cortisol concentration and range calculated for each
day of sampling. Values are given as ng/ml.

307 120

309 121 Results

Saliva samples could be easily collected in all the donkeys enrolled in this study. The sampling
 procedure was well accepted by all the animals. In one donkey (n. 4 table 1), the amount of saliva
 collected was occasionally too small for analysis (samples 2nd, 6th and 9th).

Recovery of cortisol standard in donkey saliva was between 97.3% and 99.7% and serial dilution of donkey saliva samples with assay buffer resulted in changes in optical density parallel to the standard curve. Cross-reactivity of the antiserum at 50% binding was 10.4% with 11-deoxycortisol, 5.2% with corticosterone, 0.4% with 11-deoxycorticosterone, 0.2% with cortisone and <0.1% with testosterone, progesterone and estradiol. The intra-assay coefficient of variation was 10.7%, the inter-assay variation was 8.0% and the minimal detectable concentration was 0.01ng/ml.

Results of cortisol concentrations determined in saliva collected from donkeys on different days
 Results of cortisol concentrations determined in saliva collected from donkeys on different days

are presented in Table 1.

342
343
344
345
346
347
348
349
350
351
352
353
354

		Salivary cortisol concentration (ng/ml)											
Donkeys	Ι	II	III	IV	V	VI	VII	VIII	IX	Х	XI	XII	XIII
1	3.9	3.6	10.8	3.6	6.2	1.5	4.6	3.4	5.8	5.4	4.6	5.6	4.8
2	0.5	7.25	8.7	8.11	7.5	1.73	1.7	4.7	5.9	2.9	8.1	1.9	1.9
3	9.4	5.36	20.6	7.72	1.0	6.6	2.8	3.7	9.2	3.0	5.0	6.9	2.1
4	3.1	*	4.7	10.38	9.5	*	9.7	5.6	*	3.7	11.8	4.2	2.7
Median	3	5	9	7.5	6.6	1	3	3.5	5	3	6.5	4.5	2
Range	0-9	3-7	4-20	3-10	1-9	1-6	1-9	3-5	5-9	2-5	4-11	1-6	1-4

53 135

Tab 1. Results of salivary cortisol concentration obtained in 4 individual donkey stallions on

13 non-consecutive days. Legend: *Amount of saliva not sufficient for cortisol analysis.

³⁶¹ 139 **Discussion**

The production of cortisol is regulated by the corticotrophic axis and can be altered in different circumstances. Cortisol concentrations can rise in stressful situations, thus it is considered to be an indicator of animal welfare [4]. Although traditionally cortisol concentrations have been determined in plasma or serum, their determination in samples easily collectable under field conditions (saliva, milk, urine, feces and hair) can be of interest for animal welfare studies in different species [8,32-35]. Thus, in our study, a commercial kit assay system, originally used in humans for measuring concentration of cortisol, was adapted and validated for donkey saliva samples.

The evaluation of salivary cortisol has some advantages in large animals. Cortisol concentration in saliva corresponds to the free fraction of cortisol in plasma, thus salivary cortisol represents a better indicator of the possible effects of the corticotrophic axis on the animal organism than plasma cortisol [17]. Moreover, blood collection often produces stress in the animal that can

ause cortisol levels to rise [3,8]. On the other hand, saliva sampling, especially in already
 handled animals, can be an easy and stress-free procedure as confirmed by our results.

All donkeys included in the study well tolerated the procedures and the amount of saliva collected was good enough in the majority of the samples. The results of the present study demonstrate the validity of a commercial kit to determine the concentration of cortisol in donkey saliva, as already reported in dogs [13-15] and horses [9,10,22,23,37].

In the specificity tests, all the cross reactions observed were in line with the manufactory performance characteristic declared. A very low cross-reaction has been found with 11-deoxycortisol (10.4%) and corticosterone (5.2%). The 11-deoxycortisol is a direct precursor of cortisol and is found in plasma at lower concentrations than cortisol. Literature showed that the 11-deoxycortisol have no glucocorticoid effect and almost no mineral corticoid effect [38]. Corticosterone is the predominant glucocorticoid produced in some species (i.e. mice, rats and birds) [39]. Even if corticosterone is also synthesized in cortisol-dominant species, like equids, its glucocorticoid activity in these species is still under assessment [40]. Cross-reactivity with 11-deoxycorticosterone, cortisone and with testosterone, progesterone and estradiol were negligible.

Intra- and inter-assay coefficients of variation are used to control the potential analytic error in biological assay systems [41]. Our results showed a slightly increased intra- and inter-assay CV % compared with the manufactory performance characteristic declaration (intra-assay CV of 3.8-5.8% and inter-assay CV of 6.4-6.2%). However, the validation results indicated that the method was adequate for salivary cortisol measurements given that it is generally accepted that the CV must be lower than 20% for analytical determinations [41]. The minimal detectable concentration found in our study was slightly below those indicated by the manufactory guidelines (0.01 ng/ml vs 0.024 ng/ml, respectively) and published in cows [17,42], but similar to results in pigs [20] and horses [10].

458 459	179	In a recent study [10], saliva cortisol concentration has been assessed in equine stallion during the
460 461	180	winter-time (November-February). Saliva cortisol concentration obtained in jacks was higher
462 463	181	than in stallion [10]. Donkeys enrolled in this study were similar to horses included in the
464 465	182	previous study concerning sex and age. Moreover the saliva cortisol concentration was assessed
466 467	183	during the same season and using the same method. Thus, the higher saliva cortisol concentration
468 469	184	obtained in donkeys might be related to species.
470 471	185	
472 473	186	Conclusions
474 475	187	In conclusion, given the advantages of the stress-free collection and processing of saliva and the
476 477 472	188	good performance of the assay, the use of cortisol detection in saliva could be considered highly
478 479 480	189	suitable in donkey stress research. This study has some limitation. Salivary and blood cortisol
481 482	190	concentrations have not been compared. However, when this was done in horses, the relationship
483 484	191	was very good [9,10]. Also, despite in the majority of the samples, the quantity of saliva was
485 486	192	good enough for running the assay, an improvement in saliva collection procedure need to be
487 488	193	addressed.
489 490	194	
491 492	195	Acknowledgements
493 494	196	The study was funded by University of Pisa (Progetti di Ricerca di Ateneo: PRA_2016_53). We
495 496	197	are grateful to Ente Terre Regionali Toscane for allowing us to employ the animals for this study.
497 498	198	
499 500	199	Fundings
501 502		9
503 504		

505			
506 507	000		• 1
508	200	This research did not receive any specific grant from funding agencies in the public, commerci	ial,
509 510	201	or not-for-profit sectors.	
510			
512	202		
513			
514 515			
516			
517			
518 519			
520			
521			
522			
523 524			
525			
526			
527			
528 529			
530			
531			
532 533			
534			
535			
536			
537 538			
539			
540			
541			
542 543			
544			
545			
546 547			
548			
549			
550			
551 552			
553			
554			
555 556			
557			
558			10
559			
560			

561 562			
562 563 564	203	Refer	ences
565 566	204	1.	Koolhaas JM, De Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping
567 568	205		styles: towards understanding the biology of individual variation. Front. Neuroendocrinol
569 570	206		2010;31:307-21.
571 572 573	207	2.	Pacak K, Palkovits M. Stressor specificity of central neuroendocrine responses:
574 575	208		Implications for stress-related disorders. Endocr Rev 2001;22:502-48.
576 577	209	3.	Fell LR, Shutt DA. Adrenocortical response of calves to transport stress as measured by
578 579	210		salivary cortisol. Can J Anim Sci 1986;66: 637-41.
580 581	211	4.	Cook NJ, Schaefer AL, Lepage P, Morgan Jones S. Salivary vs. serum cortisol for the
582 583	212		assessment of adrenal activity in swine. Can J Anim Sci 1996;76:329-35.
584 585	213	5.	Palme R, Fischer P, Schildorfer H, Ismail MN. Excretion of infused C-steroid hormones
586 587	214		via faeces and urine in domestic livestock. Anim Reprod Sci 1996;43:43-63.
588 589	215	6.	Mostl E, Palme R. Hormones as indicators of stress. Dom Anim Endocrinol 2002;23:67-
590 591 592	216		74.
593 594	217	7.	Fell LR, Shutt DA, Bentley CJ. Development of a salivary cortisol method for detecting
595 596	218		changes in plasma "free" cortisol arising from acute stress in sheep. Aust Vet J
597 598	219		1985;12:403-6.
599 600	220	8.	Cooper TR, Trunkfield HR, Zanella AJ, Booth WD. An enzyme-linked immunosorbent
601 602	221		assay for cortisol in the saliva of man and domestic farm animals. J Endocrinol
603 604	222		1989;123:R13–6.
605 606	223	9.	Peeters M, Sulon J, Beckers JF, Ledoux D, Vandenheede M. Comparison between blood
607 608 609	224		serum and salivary cortisol concentrations in horses using an adrenocoticotropic hormone
610 611	225		challenge. Equine Vet J 2011;43:487-93.
612 613			
614 615			11
616			

618		
619 620	226	10. Aurich J, Wulf M, Ille N, Erber R, von Lewinski M, Palme R, et al. Effects of season,
621 622	227	age, sex, and housing on salivary cortisol concentrations in horses. Domest Anim
623 624	228	Endocrinol 2015;52: 11-6.
625 626 627	229	11. Aardal E, Holm AC. Cortisol in Saliva. Reference ranges and relation to cortisol in serum.
628 629	230	Eur J Clin Chem Clin Biochem 2005;33:927-32.
630 631	231	12. Turpeinen U, Hamalainen, E. Determination of cortisol in serum, saliva and urine. Best
632 633	232	Pract Res Clin Endocrinol Metab 2013;27(6):795-801.
634 635	233	13. Koyama T, Omata Y, Saito A. Changes in salivary cortisol concentrations during a 24-
636 637	234	hour period in dogs. Horm Metab Res 2003;35:355-7.
638 639	235	14. Wenger-Riggenbach, B, Boretti, FS, Quante, S, Schellenberg S, Reusch CE, Sieber-
640 641	236	Ruckstuhl NS. Salivary cortisol concentrations in healthy dogs and dogs with
642 643 644	237	hypercortisolism. J Vet Intern Med 2010;24:551–6.
645 646	238	15. Bennet A, Hayssen V. Measuring cortisol in hair and saliva from dogs: coat color and
647 648	239	pigment differences. Domest Anim Endocrinol 2010;39(3):171-80.
649 650	240	16. Di Nardo F, Anfossi L, Ozella L, Saccani A, Giovannoli C, Spano G., et al. Validation of
651 652	241	a qualitative immunochromatographic test for the noninvasive assessment of stress in
653 654	242	dogs. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1028:192-8.
655 656	243	17. Chacón Pérez G, García-Belenguer Laita S, Illera del Portal SJC, Palacio Liesa J.
657 658	244	Validation of an EIA technique for the determination of salivary cortisol in cattle. Span J
659 660	245	Agric Res 2004;2(1):45-51.
661 662 663	246	18. Negrao JA, Porcionato MA, de Passillè AM, Rushen J. Cortisol in Saliva and Plasma of
664 665 666 667 668	247	Cattle After ACTH Administration and Milking. J Dairy Sci 2004;87:1713-8.
669 670 671 672		12

⁶⁷⁵ 248
⁶⁷⁷ 249
⁶⁷⁷ 249
⁶⁷⁸ 249
⁶⁷⁹ 250
⁶⁷⁹ 250
⁶⁷⁹ 19. Hernandez CE, Thierfelder T, Svennersten-Sjaunja K, Berg C, Orihuela A, Lidfors L.
⁶⁷⁹ 250
⁶⁷⁹ 250
⁶⁷⁹ 250
⁶⁷⁹ 250
⁶⁷⁹ 250

251 20. Escribano D, Fuentes-Rubio M, Cerón JJ. Validation of an automated chemiluminescent 252 immunoassay for salivary cortisol measurements in pigs. J Vet Diagn Invest 253 2012;24(5):918-23.

- 254 21. Escribano D, Gutiérrez AM, Tecles F, Cerón JJ. Changes in saliva biomarkers of stress
 255 and immunity in domestic pigs exposed to a psychosocial stressor. Res Vet Sci
 256 2015;102:38-44.
- 257
 258
 258
 258
 258
 259
 259
 259
 259
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
 250
- 260 23. Schmidt A, Möstl E, Wehnert C, Aurich J, Müller J Aurich C. Cortisol release and heart
 702
 703 261 rate variability in horses during road transport. Horm Behav 2010b;57:209-15.
- 262 24. Bohak ZS, Szabo F, Beckers JF, Melo de Sousa N, Kutasi O, Nagy K, et al. Monitoring
 263 the circadian rhythm of the serum and salivary cortisol concentrations in the horse.
 264 Domest Anim Endocrinol 2013;45:38-42.
- 25. Borioni M, Marinaro P, Celestini S, Del Sole F, Magro R, Zoppi D, et al. Effect of equestrian therapy and onotherapy in physical and psycho-social performances of adults with intellectual disability: a preliminary study of evaluation tools based on the ICF classification. Disabil Rehabil 2012;34(4):279-97.
- 269 26. Carroccio A, Cavataio F, Montalto G. Intolerance to hydrolysed cow's milk proteins in infants: clinical characteristic and dietary treatment. Clin Exp Allergy 2000;30:1597271 1603.

- ⁷³⁰
 ⁷³¹
 ⁷³²
 ⁷³³
 ⁷³³
 ⁷³³
 ⁷³⁴
 ⁷³⁵
 ⁷³⁷
 ⁷³⁷
 ⁷³⁸
 ⁷³⁸
 ⁷³⁹
 ⁷³⁹
 ⁷³⁹
 ⁷³⁰
 ⁷³¹
 ⁷³¹
 ⁷³²
 ⁷³²
 ⁷³³
 ⁷³⁴
 ⁷³⁵
 ⁷³⁵
 ⁷³⁶
 ⁷³⁷
 ⁷³⁷
 ⁷³⁸
 ⁷³⁸
 ⁷³⁸
 ⁷³⁹
 ⁷³⁹
 ⁷³⁹
 ⁷³⁹
 ⁷³⁰
 ⁷³¹
 ⁷³¹
 ⁷³²
 ⁷³²
 ⁷³³
 ⁷³⁴
 ⁷³⁵
 ⁷³⁵
 ⁷³⁶
 ⁷³⁶
 ⁷³⁷
 ⁷³⁷
 ⁷³⁸
 ⁷³⁸
 ⁷³⁸
 ⁷³⁹
 ⁷³⁹
 ⁷³⁹
 ⁷³⁹
 ⁷³⁰
 ⁷³⁰
 ⁷³¹
 ⁷³¹
 ⁷³²
 ⁷³¹
 ⁷³²
 ⁷³⁵
 ⁷³⁵
 ⁷³⁶
 ⁷³⁶
 ⁷³⁷
 ⁷³⁷
 ⁷³⁸
 ⁷³⁸
 ⁷³⁸
 ⁷³⁹
 <
- 274 28. Camillo F, Rota A, Biagini L, Tesi M, Fanelli D, Panzani D. The Current Situation and
 737
 738 275 Trend of Donkey Industry in Europe. J Equine Vet Sci 2018;65:44-9.
- 276 276 29. National Research Council. Nutrient requirements of horses: sixth revised edition.
 277 742 277 Washington, DC: The National Academies Press; 2007.
- 744 278 30. Pearson RA, Ouassat M. A Guide to Body Condition Scoring and Live Weight
 745 746 747 279 Estimation of Donkeys. Centre for Tropical Veterinary Medicine, University of Edinburgh; 2000.
- 751 281 31. Rota A, Sgorbini M, Panzani D, Bonelli F, Baragli P, Ille, N et al. Effect of housing
 753 282 system on reproductive behavior and on some endocrinological and seminal parameters of
 754 donkey stallions. Reprod Dom Anim 2018;53(1):40-7.

⁷⁵⁷ 284 ⁷⁵⁸ 32. Verkerk GA, Phipps AM, Carragher JF, Matthews LR, Stelwagen K. Characterization of ⁷⁵⁹ milk cortisol concentration as a measure of short term stress response in lactating dairy ⁷⁶¹ cows. Anim Welfare 1998;7:77-86.

- 764 287
 765 766 288
 766 288
 767 768 289
 768 289
 33. Cirimele V, Kintz P, Dumestre V, Goullé JP, Ludes B. Identification of ten corticosteroids in human hair by liquid chromatography-ionspray mass spectrometry.
 767 Forensic Sci Internat 1999;107(1-3):381-8.
- 34. Fritsche S, Schmidt G, Steinhart H. Gas chromatographic-mass spectrometric
 determination of natural profiles of androgens, progestogens and glucocorticoids in
 muscle tissue of males cattle. Eur Food Res Technol 1999;209:393-9.
 - 35. Morrow CJ, Kolver ES, Verkerk GA, Matthews LR. Urinary corticosteroids: an indicator
 of stress in dairy cattle. Anim Prod Sci. 2000;60:218-21.

14

779 780 781

776

777 778

729

739

750

763

769

782

785		
786 787 788	295	36. Palme R, Robia C, Baumgartner W, Möstl E. Transport stress in cattle as reflected by an
789 790	296	increase in faecal cortisol metabolite concentration. Vet Rec 2000;146:108-9.
791 792	297	37. Nagel CC, Erber R, Ille N, Wulf M, Aurich J, Möstl E, Aurich C. Heart rate and salivary
793 794	298	cortisol concentrations in foals at birth. Vet J 2015;203:250-2.
795 796 707	299	38. Lòpez-Calderòn A. Glandulas suprarrenales. In: Fisiologia humana, 2 nd edition. Madrid,
797 798 799	300	Spain: Mc Graw-Hill Interamericana; 1999.
800 801	301	39. Gong S, Miao Y-L, Jiao G-Z, Sun M-J, Li H, Lin J, et al. Dynamics and Correlation of
802 803	302	Serum Cortisol and Corticosterone under Different Physiological or Stressful Conditions
804 805	303	in Mice. PLoS ONE 2015;10(2):e0117503.
806 807	304	40. Koren L, Whiteside D, Fahlman A, Ruckstuhl K, Kutz S, Checkley S et al. Cortisol and
808 809	305	corticosterone independence in cortisol-dominant wildlife. General and Comparative
810 811	306	Endocrinol 2012;177:113-119.
812 813	307	41. Food and Drug Administration (FDA), Center for Drug Evaluation and Research
814 815 816	308	(CDER), and Center for Veterinary Medicine (CVM). Guidance for industry:
817 818	309	Bioanalytical method validation. Washington, DC: U.S. Department of Health and
819 820	310	Human Services. 2001; Retrieved from http://www.fda.gov/downloads/Drugs/Guidance
821 822	311	ComplianceRegulatoryInformation/Guidances/ucm070107.pdf
823 824	312	42. Schrama JW, Heetkamp MJW, Verstegen MWA, Schouten WGP, Van Der Veen F,
825 826	313	Helmond FA. Responses of young calves on two levels of feeding to transportation. J
827 828 829 830 831 832 833	314	Anim Sci 1996;63:79-89.