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OPTIMAL POTENTIALS FOR

SCHRÖDINGER OPERATORS

by Giuseppe Buttazzo, Augusto Gerolin, Berardo Ruffini
& Bozhidar Velichkov

Abstract. — We consider the Schrödinger operator −∆ + V (x) on H1
0 (Ω), where Ω is a given

domain of Rd. Our goal is to study some optimization problems where an optimal potential
V > 0 has to be determined in some suitable admissible classes and for some suitable optimiza-
tion criteria, like the energy or the Dirichlet eigenvalues.

Résumé (Potentiels optimaux pour les opérateurs de Schrödinger). — Nous considérons l’opé-
rateur de Schrödinger −∆ + V (x) sur H1

0 (Ω), où Ω est un domaine fixé de Rd. Nous étudions
certains problèmes d’optimisation pour lesquels un potentiel optimal V > 0 doit être déterminé
dans une certaine classe admissible et pour certains critères d’optimisation tels que l’énergie ou
les valeurs propres de Dirichlet.
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1. Introduction

In this paper we consider optimization problems of the form

(1.1) min
{
F (V ) : V ∈ V

}
,

for functionals F , depending on the Schrödinger operator −∆+V (x) with potential V
belonging to a prescribed admissible class V of Lebesgue measurable functions on a
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72 G. Buttazzo, A. Gerolin, B. Ruffini & B. Velichkov

set Ω ⊂ Rd, which is typically chosen to be a bounded open set or the entire space
Ω = Rd. Problems of this type have been studied, for example, by Ashbaugh-Harrell
[2], Egnell [15], Essen [16], Harrell [20], Talenti [24] and, more recently, by Carlen-
Frank-Lieb [12]. We refer to the monograph [22], and to the references therein, for a
complete list of references and as a comprehensive guide to the known results about
the problem.

In our framework we include very general cost functionals, as for example the
following.

Integral functionals. — Given a function f ∈ L2(Ω) we consider the solution uV to
the elliptic PDE

−∆u+ V u = f in Ω, u ∈ H1
0 (Ω).

The integral cost functionals we may consider are of the form

F (V ) =

∫
Ω

j
(
x, uV (x),∇uV (x)

)
dx,

where j is a suitable integrand that we assume convex in the gradient variable and
bounded from below. One may take, for example,

j(x, s, z) > −a(x)− c|s|2,

with a ∈ L1(Ω) and c smaller than the first Dirichlet eigenvalue of the Laplace oper-
ator −∆ in Ω. In particular, the energy Ef (V ) defined by

(1.2) Ef (V ) = inf

{∫
Ω

(1

2
|∇u|2 +

1

2
V (x)u2 − f(x)u

)
dx : u ∈ H1

0 (Ω)

}
,

belongs to this class since, integrating by parts its Euler-Lagrange equation, we have

Ef (V ) = −1

2

∫
Ω

f(x)uV dx,

which corresponds to the integral functional above with

j(x, s, z) = −1

2
f(x)s.

Spectral functionals. — For every admissible potential V > 0 we consider the spec-
trum Λ(V ) of the Schrödinger operator −∆ +V (x) on H1

0 (Ω). If Ω is bounded or has
finite measure, or if the potential V satisfies some suitable integrability properties,
then the operator −∆ + V (x) has compact resolvent and so its spectrum Λ(V ) is
discrete:

Λ(V ) =
(
λ1(V ), λ2(V ), . . .

)
,

where λk(V ) are the eigenvalues counted with their multiplicity. The spectral cost
functionals we may consider are of the form

F (V ) = Φ
(
Λ(V )

)
,

for suitable functions Φ : RN → (−∞,+∞]. For instance, taking Φ(Λ) = λk we obtain

F (V ) = λk(V ).
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Optimal potentials for Schrödinger operators 73

The class of admissible potentials V we consider satisfies an integrability condition,
namely

(1.3) V =
{
V : Ω→ [0,+∞] : V Lebesgue measurable,

∫
Ω

Ψ(V ) dx 6 1
}
,

for a suitable function Ψ : [0,+∞]→ [0,+∞]. It is worth remarking that the require-
ment V > 0 is not, in general, necessary for the well-posedness of problem (1.1),
but allowing V to change sign radically changes the conduct of the problem. An in-
stance of optimization problem for sign-changing potentials can be found in the recent
work [12], where the authors study a quantitative stability for the first eigenvalue of
the Schrödinger operator. The integrability constraint in (1.3) naturally appears in
the following cases.

Approximation of optimal sets. — In the case of spectral and energy functionals F as
above, the optimization problems related to the Schrödinger operators may be linked
to the classical shape optimization theory(1) for problems of the form

min
{
F (E) : E ⊂ Ω, |E| 6 constant

}
.

Indeed, if we set VE = 0 in E and VE = +∞ outside of E, then the Schrödinger oper-
ator −∆ + VE corresponds to the Dirichlet-Laplacian on the set E. This observation
suggests, by one side, that we can approach problem (1.1) by means of techniques
developed in the study of more classical shape optimization problems and, on the
other hand, that we can approximate the potential VE , corresponding to an optimal
set E, by means of potentials that solve (1.1) under suitable constraints. We will show
in Section 5 that a good approximation is given by the family of constraints

Ψ(V ) = e−αV .

Ground states of semilinear equations. — If the cost functional F is of energy type, as
F (V ) = λ1(V ), then the study of the optimization problem

min
{
F (V ) : V : Ω −→ [0,+∞],

∫
Ω

V p dx = 1
}

naturally reduces to the one of ground states of the equation

(1.4) −∆ψ + |ψ|sψ = λψ, ψ ∈ H1(Ω) ∩ L2+s(Ω).

The case p > 0 corresponds to the superlinear case s > 0, while the case of nega-
tive exponent p < 0 corresponds to the sublinear case s < 0. Indeed, the potential
V (x) = |ψ(x)|s satisfies an integrability condition inherited from the ground state ψ.
In the superlinear case s > 0, we have V ∈ Lp(Ω) with p = (s + 2)/s, while in the
sublinear case s ∈ (−1, 0) we get

∫
Ω
V −p dx < +∞ with p = −(s+ 2)/s.

The paper is organized as follows. In Section 2 we recall the concepts of capacitary
measures and γ-convergence together with their main properties. Then we prove some
preliminary results which will be exploited in the subsequent sections.

(1)For an introduction to the theory of shape optimization problems we refer to the papers [8],
[9], [10] and to the books [4], [22] and [23].
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In Section 3 we prove two general results concerning the existence of optimal poten-
tials in a bounded domain Ω ⊂ Rd. In Theorem 3.1 we deal with constraints V which
are bounded subsets of Lp(Ω), while Theorem 3.4 deals with the case of admissible
classes consisting of suitable subsets of capacitary measures.

In Section 3 our assumptions allow to take F (V ) = −Ef (V ) and thus the optimiza-
tion problem becomes the maximization of Ef under the constraint

∫
Ω
V p dx 6 1. We

prove that for p > 1, there exists an optimal potential for the problem

max
{
Ef (V ) :

∫
Ω

V p dx 6 1
}
.

The existence result is sharp in the sense that for p < 1 the maximum cannot be
achieved (see Remark 3.11). For the existence issue in the case of a bounded domain,
we follow the ideas of Egnell [15], summarized in [22, Chapter 8]. The case p = 1 is
particularly interesting and we show that in this case the optimal potentials are of
the form

V =
f

M

(
χω+ − χω−

)
,

where χU indicates the characteristic function of the set U , f ∈L2(Ω),M=‖uV ‖L∞(Ω),
and ω± = {u = ±M}.

In Section 4 we deal with minimization problems of the form

(1.5) min
{
F (V ) :

∫
Ω

Ψ(V ) dx 6 1
}
,

and we prove existence for the problem (1.1) for a large class of functionals F and of
constraints Ψ, including the particular cases

Ψ(s) = s−p and Ψ(s) = e−αs.

These type of constraints are, as far as we know, new in the literature. In the case
Ψ(s) = s−p the equation reduces, as already pointed out, to the sublinear case of (1.4).

In some cases the Schrödinger operator −∆ + V (x) is compact even if Ω is not
bounded (see for instance [5]). This allows to consider spectral optimization problems
in unbounded domains as Ω = Rd. We deal with this case in Section 5, where we
prove that for F = Ef or F = λ1, there exist solutions to problem (1.5) in Rd,
with Ψ(s) = s−p. Moreover, we characterize the optimal potential V as an explicit
function of the solution u to a quasi-linear PDE of the form (1.4). Thus the qualitative
properties of u immediately translate into qualitative properties for V . Thanks to
this, we prove that, in the case F = Ef , 1/V is compactly supported, provided f is
compactly supported. In the case F = λ1 the same holds and the optimal potential V
is an (explicit) function of the optimizers of a family of Gagliardo-Nirenberg-Sobolev
inequalities (see Remark 5.7).

In the final Section 6 we make some further remarks about the state of the art
of spectral optimization for Schrödinger operators on unbounded domains, and we
apply the results of Section 5 to get, in Theorem 6.1, the qualitative behavior of the
optimal potential for F = λ2 for problem (1.5) with Ψ(s) = s−p.

J.É.P. — M., 2014, tome 1



Optimal potentials for Schrödinger operators 75

2. Capacitary measures and γ-convergence

For a subset E ⊂ Rd its capacity is defined by

cap(E) = inf
{∫

Rd
|∇u|2 dx+

∫
Rd
u2 dx : u∈H1(Rd), u > 1 in a neighborhood of E

}
.

If a property P (x) holds for all x ∈ Ω, except for the elements of a set E ⊂ Ω of
capacity zero, we say that P (x) holds quasi-everywhere (shortly q.e.) in Ω, whereas the
expression almost everywhere (shortly a.e.) refers, as usual, to the Lebesgue measure,
which we often denote by | · |.

A subset A of Rd is said to be quasi-open if for every ε > 0 there exists an open
subset Aε of Rd, with A ⊂ Aε, such that cap(Aε r A) < ε. Similarly, a function
u : Rd → R is said to be quasi-continuous (respectively quasi-lower semicontinuous)
if there exists a decreasing sequence of open sets (An)n such that cap(An) → 0

and the restriction un of u to the complement Acn of An is continuous (respectively
lower semicontinuous). It is well known (see for instance [18]) that every function
u ∈ H1(Rd) has a quasi-continuous representative ũ, which is uniquely defined up to
a set of capacity zero, and given by

ũ(x) = lim
ε→0

1

|Bε(x)|

∫
Bε(x)

u(y) dy ,

where Bε(x) denotes the ball of radius ε centered at x. We identify the (a.e.) equiva-
lence class u ∈ H1(Rd) with the (q.e.) equivalence class of quasi-continuous represen-
tatives ũ.

We denote by M+(Rd) the set of positive Borel measures on Rd (not necessarily
finite or Radon) and byM+

cap(Rd) ⊂M+(Rd) the set of capacitary measures, i.e. the
measures µ ∈ M+(Rd) such that µ(E) = 0 for any set E ⊂ Rd of capacity zero. We
note that when µ is a capacitary measure, the integral

∫
Rd |u|

2 dµ is well-defined for
each u ∈ H1(Rd), i.e. if ũ1 and ũ2 are two quasi-continuous representatives of u, then∫
Rd |ũ1|2 dµ =

∫
Rd |ũ2|2 dµ.

For a subset Ω ⊂ Rd, we define the Sobolev space H1
0 (Ω) as

H1
0 (Ω) =

{
u ∈ H1(Rd) : u = 0 q.e. on Ωc

}
.

Alternatively, by using the capacitary measure IΩ defined as

(2.1) IΩ(E) =

{
0 if cap(E r Ω) = 0

+∞ if cap(E r Ω) > 0
for every Borel set E ⊂ Rd,

the Sobolev space H1
0 (Ω) can be defined as

H1
0 (Ω) =

{
u ∈ H1(Rd) :

∫
Rd
|u|2 dIΩ < +∞

}
.

More generally, for any capacitary measure µ ∈M+
cap(Rd), we define the space

H1
µ =

{
u ∈ H1(Rd) :

∫
Rd
|u|2 dµ < +∞

}
,

J.É.P. — M., 2014, tome 1



76 G. Buttazzo, A. Gerolin, B. Ruffini & B. Velichkov

which is a Hilbert space when endowed with the norm ‖u‖1,µ, where

‖u‖21,µ =

∫
Rd
|∇u|2 dx+

∫
Rd
u2 dx+

∫
Rd
u2 dµ.

If u /∈ H1
µ, then we set ‖u‖1,µ = +∞.

For Ω ⊂ Rd, we defineM+
cap(Ω) as the space of capacitary measures µ ∈M+

cap(Rd)
such that µ(E) = +∞ for any set E ⊂ Rd such that cap(E r Ω) > 0. For
µ ∈M+

cap(Rd), we denote with H1
µ(Ω) the space H1

µ∨IΩ = H1
µ ∩H1

0 (Ω).

Definition 2.1. — Given a metric space (X, d) and sequence of functionals Jn : X →
R ∪ {+∞}, we say that Jn Γ-converges to the functional J : X → R ∪ {+∞}, if the
following two conditions are satisfied:

(a) for every sequence xn converging to x ∈ X, we have

J(x) 6 lim inf
n→∞

Jn(xn);

(b) for every x ∈ X, there exists a sequence xn converging to x, such that

J(x) = lim
n→∞

Jn(xn).

For all details and properties of Γ-convergence we refer to [13]; here we simply
recall that, whenever Jn Γ-converges to J ,

min
x∈X

J(x) 6 lim inf
n→∞

min
x∈X

Jn(x).

Definition 2.2. — We say that the sequence of capacitary measures µn ∈M+
cap(Ω),

γ-converges to the capacitary measure µ ∈ M+
cap(Ω) if the sequence of functionals

‖·‖1,µn Γ-converges to the functional ‖·‖1,µ in L2(Ω), i.e. if the following two conditions
are satisfied:
• for every sequence un → u in L2(Ω) we have∫

Rd
|∇u|2 dx+

∫
Rd
u2 dµ 6 lim inf

n→∞

{∫
Rd
|∇un|2 dx+

∫
Rd
u2
n dµn

}
;

• for every u ∈ L2(Ω), there exists un → u in L2(Ω) such that∫
Rd
|∇u|2 dx+

∫
Rd
u2 dµ = lim

n→∞

{∫
Rd
|∇un|2 dx+

∫
Rd
u2
n dµn

}
.

If µ ∈M+
cap(Ω) and f ∈L2(Ω) we define the functional Jµ(f, ·) : L2(Ω)→ R∪{+∞}

by

(2.2) Jµ(f, u) =
1

2

∫
Ω

|∇u|2 dx+
1

2

∫
Ω

u2 dµ−
∫

Ω

fu dx.

If Ω ⊂ Rd is a bounded open set, µ ∈M+
cap(Ω) and f ∈ L2(Ω), then the functional

Jµ(f, ·) has a unique minimizer u ∈ H1
µ that verifies the PDE formally written as

−∆u+ µu = f, u ∈ H1
µ(Ω),
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Optimal potentials for Schrödinger operators 77

and whose precise meaning is given in the weak form
∫

Ω

∇u · ∇ϕdx+

∫
Ω

uϕdµ =

∫
Ω

fϕ dx, ∀ϕ ∈ H1
µ(Ω),

u ∈ H1
µ(Ω).

The resolvent operator of −∆ + µ, that is the map Rµ that associates to every
f ∈ L2(Ω) the solution u ∈ H1

µ(Ω) ⊂ L2(Ω), is a compact linear operator in L2(Ω)

and so, it has a discrete spectrum

0 < · · · 6 Λk 6 · · · 6 Λ2 6 Λ1.

Their inverses 1/Λk are denoted by λk(µ) and are the eigenvalues of the operator
−∆ + µ.

In the case f = 1 the solution will be denoted by wµ and when µ = IΩ we will use
the notation wΩ instead of wIΩ . We also recall (see [4]) that if Ω is bounded, then the
strong L2-convergence of the minimizers wµn to wµ is equivalent to the γ-convergence
of Definition 2.2.

Remark 2.3. — An important well-known characterization of the γ-convergence is
the following: a sequence µn γ-converges to µ, if and only if, the sequence of resolvent
operators Rµn associated to −∆ + µn, converges (in the strong convergence of linear
operators on L2) to the resolvent Rµ of the operator −∆ + µ. A consequence of this
fact is that the spectrum of the operator −∆ + µn converges (pointwise) to the one
of −∆ + µ.

Remark 2.4. — The space M+
cap(Ω) endowed with the γ-convergence is metrizable.

If Ω is bounded, one may take dγ(µ, ν) = ‖wµ−wν‖L2 . Moreover, in this case, in [14]
it is proved that the spaceM+

cap(Ω) endowed with the metric dγ is compact.

Proposition 2.5. — Let Ω ⊂ Rd and let Vn ∈ L1(Ω) be a sequence weakly converging
in L1(Ω) to a function V . Then the capacitary measures Vn dx γ-converge to V dx.

Proof. — We have to prove that the solutions un = RVn(1) to{
−∆un + Vn(x)un = 1

u ∈ H1
0 (Ω)

weakly converge in H1
0 (Ω) to the solution u = RV (1) to{

−∆u+ V (x)u = 1

u ∈ H1
0 (Ω),

or equivalently that the functionals

Jn(u) =

∫
Ω

|∇u|2 dx+

∫
Ω

Vn(x)u2 dx

Γ-converge in L2(Ω) to the functional

J(u) =

∫
Ω

|∇u|2 dx+

∫
Ω

V (x)u2 dx.

J.É.P. — M., 2014, tome 1
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The Γ-liminf inequality (Definition 2.1 (a)) is immediate since, if un → u in L2(Ω),
we have ∫

Ω

|∇u|2 dx 6 lim inf
n→∞

∫
Ω

|∇un|2 dx

by the lower semicontinuity of theH1(Ω) norm with respect to the L2(Ω)-convergence,
and ∫

Ω

V (x)u2 dx 6 lim inf
n→∞

∫
Ω

Vn(x)u2
n dx

by the strong-weak lower semicontinuity theorem for integral functionals (see for
instance [7]).

Let us now prove the Γ-limsup inequality (Definition 2.1 (b)) which consists, given
u ∈ H1

0 (Ω), in constructing a sequence un → u in L2(Ω) such that

(2.3) lim sup
n→∞

∫
Ω

|∇un|2 dx+

∫
Ω

Vn(x)u2
n dx 6

∫
Ω

|∇u|2 dx+

∫
Ω

V (x)u2 dx.

For every t > 0 let ut = (u ∧ t) ∨ (−t); then, by the weak convergence of Vn, for t
fixed we have

lim
n→∞

∫
Ω

Vn(x)|ut|2 dx =

∫
Ω

V (x)|ut|2 dx,

and
lim

t→+∞

∫
Ω

V (x)|ut|2 dx =

∫
Ω

V (x)|u|2 dx.

Then, by a diagonal argument, we can find a sequence tn → +∞ such that

lim
n→∞

∫
Ω

Vn(x)|utn |2 dx =

∫
Ω

V (x)|u|2 dx.

Taking now un = utn , and noticing that for every t > 0∫
Ω

|∇ut|2 dx 6
∫

Ω

|∇u|2 dx,

we obtain (2.3) and so the proof is complete. �

In the case of weak* convergence of measures the statement of Proposition 2.5 is
no longer true, as the following proposition shows.

Proposition 2.6. — Let Ω ⊂ Rd (d > 2) be a bounded open set and let V,W be
two functions in the class L1

+(Ω) of nonnegative integrable functions on Ω such that
V >W . Then, there exists a sequence Vn ∈ L1

+(Ω), uniformly bounded in L1(Ω), such
that the sequence of measures Vn(x) dx converges weakly* to V (x) dx and γ-converges
to W (x) dx.

Proof (2). — Without loss of generality we can suppose
∫

Ω
(V −W ) dx = 1. Let µn

be a sequence of probability measures on Ω weakly* converging to (V −W ) dx and
such that each µn is a finite sum of Dirac masses. For each n ∈ N consider a sequence
of positive functions Vn,m ∈ L1(Ω) such that

∫
Ω
Vn,m dx = 1 and Vn,mdx converges

(2)The idea of this proof was suggested by Dorin Bucur.
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Optimal potentials for Schrödinger operators 79

weakly* to µn as m → ∞. Moreover, we choose Vn,m as a convex combination of
functions of the form |B1/m|−1χB1/m(xj).

We now prove that for fixed n ∈ N, (Vn,m + W ) dx γ-converges, as m → ∞,
to W dx or, equivalently, that the sequence wW+Vn,m converges in L2 to wW , as
m→∞. Indeed, by the weak maximum principle, we have

wW+IΩm,n 6 wW+Vn,m 6 wW ,

where Ωm,n = Ω r ∪jB1/m(xj) and IΩm,n is as in (2.1).
Since a point has zero capacity in Rd (d > 2) there exists a sequence φm → 0

strongly in H1(Rd) with φm = 1 on B1/m(0) and φm = 0 outside B1/
√
m(0). We have∫

Ω

|wW − wW+IΩm,n
|2 dx 6 2‖wW ‖L∞

∫
Ω

(wW − wW+IΩm,n
) dx

= 4‖wW ‖L∞
(
E(W + IΩm,n)− E(W )

)
6 4‖wW ‖L∞

(∫
Ω

1

2
|∇wm|2 +

1

2
Ww2

m − wm dx

−
∫

Ω

1

2
|∇wW |2 +

1

2
Ww2

W − wW dx
)
,

(2.4)

where wm is any function in ∈ H1
0 (Ωm,n). Taking

wm(x) = wW (x)
∏
j

(
1− φm(x− xj)

)
,

since φm → 0 strongly in H1(Rd), it is easy to see that wm → wW strongly in H1(Ω)

and so, by (2.4), wW+IΩm,n
→ wW in L2(Ω) asm→∞. Since the weak convergence of

probability measures and the γ-convergence are both induced by metrics, a diagonal
sequence argument brings to the conclusion. �

Remark 2.7. — When d=1, a result analogous to Proposition 2.5 is that any sequence
(µn) weakly* converging to µ is also γ-converging to µ. This is an easy consequence
of the compact embedding of H1

0 (Ω) into the space of continuous functions on Ω.

We note that the hypothesis V > W in Proposition 2.6 is necessary. Indeed, we
have the following proposition, whose proof is contained in [11, Theorem 3.1] and we
report it here for the sake of completeness.

Proposition 2.8. — Let µn ∈ M+
cap(Ω) be a sequence of capacitary and Radon mea-

sures weakly* converging to the measure ν and γ-converging to the capacitary measure
µ ∈M+

cap(Ω). Then µ 6 ν in Ω.

Proof. — We note that it is enough to show that µ(K) 6 ν(K) whenever K ⊂⊂ Ω is
a compact set. Let u be a nonnegative smooth function with compact support in Ω

such that u 6 1 in Ω and u = 1 on K; we have

µ(K) 6
∫

Ω

u2 dµ 6 lim inf
n→∞

∫
Ω

u2 dµn =

∫
Ω

u2 dν 6 ν ({u > 0}) .

Since u is arbitrary, we have the conclusion by the Borel regularity of ν. �
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3. Existence of optimal potentials in Lp(Ω)

In this section we consider the optimization problem

(3.1) min
{
F (V ) : V : Ω→ [0,+∞],

∫
Ω

V p dx 6 1
}
,

where p > 0 and F (V ) is a cost functional acting on Schrödinger potentials, or more
generally on capacitary measures. Typically, F (V ) is the minimum of some functional
JV : H1

0 (Ω) → R depending on V . A natural assumption in this case is the lower
semicontinuity of the functional F with respect to the γ-convergence, that is

F (µ) 6 lim inf
n→∞

F (µn), whenever µn −→ γµ.

Theorem 3.1. — Let F : L1
+(Ω) → R be a functional, lower semicontinuous with

respect to the γ-convergence, and let V be a weakly L1(Ω) compact set. Then the
problem

min {F (V ) : V ∈ V} ,
admits a solution.

Proof. — Let (Vn) be a minimizing sequence in V. By the compactness assumption
on V, we may assume that Vn tends weakly L1(Ω) to some V ∈ V. By Proposition 2.5,
we have that Vn γ-converges to V and so, by the semicontinuity of F ,

F (V ) 6 lim inf
n→∞

F (Vn),

which gives the conclusion. �

Remark 3.2. — Theorem 3.1 applies for instance to the integral functionals and to
the spectral functionals considered in the introduction; it is not difficult to show that
they are lower semicontinuous with respect to the γ-convergence.

Remark 3.3. — In some special cases the solution to (3.1) can be written explicitly
in terms of the solution to some partial differential equation on Ω. This is the case of
the Dirichlet Energy (see Propositions 3.6 and 3.9), and of the first eigenvalue of the
Dirichlet Laplacian λ1 (see [21, Chapter 8]).

The compactness assumption on the admissible class V for the weak L1(Ω) con-
vergence in Theorem 3.1 is for instance satisfied if Ω has finite measure and V is a
convex closed and bounded subset of Lp(Ω), with p > 1. When V is only bounded in
L1(Ω) Theorem 3.1 does not apply, since minimizing sequences may weakly* converge
to a measure. It is then convenient to extend our analysis to the case of functionals
defined on capacitary measures, in which a result analogous to Theorem 3.1 holds.

Theorem 3.4. — Let Ω ⊂ Rd be a bounded open set and let F : M+
cap(Ω) → R be a

functional lower semicontinuous with respect to the γ-convergence. Then the problem

(3.2) min
{
F (µ) : µ ∈M+

cap(Ω), µ(Ω) 6 1
}
,

admits a solution.
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Proof. — Let (µn) be a minimizing sequence. Then, up to a subsequence µn converges
weakly* to some measure ν and γ-converges to some measure µ ∈ M+

cap(Ω). By
Proposition 2.8, we have that µ(Ω) 6 ν(Ω) 6 1 and so, µ is a solution to (3.2). �

We notice that, since the class of Schrödinger potentials is dense, with respect
to the γ-convergence, in the class M+

cap(Ω) of capacitary measures (see [14]), the
minimum in (3.2) coincides with

inf
{
F (V ) : V > 0,

∫
Ω

V dx 6 1
}

whenever F is a γ-continuous cost functional.
The following example shows that the optimal solution to problem (3.2) is not,

in general, a function V (x), even when the optimization criterion is the energy Ef
introduced in (1.2). On the other hand, an explicit form for the optimal potential V (x)

will be provided in Proposition 3.9 assuming that the right-hand side f is in L2(Ω).

Example 3.5. — Let Ω = (−1, 1) and consider the functional

F (µ) = −min

{
1

2

∫ 1

−1

|u′|2 dx+
1

2

∫ 1

−1

u2 dµ− u(0) : u ∈ H1
0 (−1, 1)

}
.

Then, for any µ such that µ(Ω) 6 1, we have

(3.3) F (µ) > −min

{
1

2

∫ 1

−1

|u′|2 dx+
1

2

(
sup

(−1,1)

u
)2 − u(0) : u∈H1

0 (−1, 1), u > 0

}
.

By a symmetrization argument, the minimizer u of the right-hand side of (3.3) is
radially decreasing; moreover, u is linear on the set u < M , where M = supu, and so
it is of the form

u(x) =


M

1− α
x+

M

1− α
, x ∈ [−1,−α],

M, x ∈ [−α, α],

− M

1− α
x+

M

1− α
, x ∈ [α, 1],

for some α ∈ [0, 1]. A straightforward computation gives α = 0 and M = 1/3.
Thus, u is also the minimizer of

F (δ0) = −min

{
1

2

∫ 1

−1

|u′|2 dx+
1

2
u(0)2 − u(0) : u ∈ H1

0 (−1, 1)

}
,

and so δ0 is the solution to

min {F (µ) : µ(Ω) 6 1} .

In the rest of this section we consider the particular case F (V ) = −Ef (V ), in which
we can identify the optimal potential through the solution to a nonlinear PDE. Let
Ω ⊂ Rd be a bounded open set and let f ∈ L2(Ω). By Theorem 3.1, the problem

(3.4) min {−Ef (V ) : V ∈ V} with V =
{
V > 0,

∫
Ω

V p dx 6 1
}
,
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admits a solution, where Ef (V ) is the energy functional defined in (1.2). We no-
tice that, replacing −Ef (V ) by Ef (V ), makes problem (3.4) trivial, with the only
solution V ≡ 0. Minimization problems for Ef will be considered in Section 4 for
admissible classes of the form

V =
{
V > 0,

∫
Ω

V −p dx 6 1
}
.

Analogous results for F (V ) = −λ1(V ) were proved in [21, Theorem 8.2.3].

Proposition 3.6. — Let Ω ⊂ Rd be a bounded open set, 1 < p < ∞ and f ∈ L2(Ω).
Then the problem (3.4) has a unique solution

Vp =

(∫
Ω

|up|2p/(p−1) dx

)−1/p

|up|2/(p−1),

where up ∈ H1
0 (Ω) ∩ L2p/(p−1)(Ω) is the minimizer of the functional

(3.5) Jp(u) :=
1

2

∫
Ω

|∇u|2 dx+
1

2

(∫
Ω

|u|2p/(p−1) dx

)(p−1)/p

−
∫

Ω

uf dx.

Moreover, we have Ef (Vp) = Jp(up).

Proof. — We first note that we have

(3.6) max
V ∈V

min
u∈H1

0 (Ω)

∫
Ω

(1

2
|∇u|2 +

1

2
u2V − uf

)
dx

6 min
u∈H1

0 (Ω)
max
V ∈V

∫
Ω

(1

2
|∇u|2 +

1

2
u2V − uf

)
dx,

where the maximums are taken over all positive functions V ∈Lp(Ω) with
∫

Ω
V p dx61.

For a fixed u ∈ H1
0 (Ω), the maximum on the right-hand side (if finite) is achieved

for a function V such that ΛpV p−1 = u2, where Λ is a Lagrange multiplier. By the
condition

∫
Ω
V p dx = 1 we obtain that the maximum is achieved for

V =

(∫
Ω

|u|2p/(p−1) dx

)−1/p

|u|2/(p−1).

Substituting in (3.6), we obtain

max {Ef (V ) : V ∈ V} 6 min
{
Jp(u) : u ∈ H1

0 (Ω)
}
.

Let un be a minimizing sequence for Jp. Since inf Jp 6 0, we can assume Jp(un) 6 0

for each n ∈ N. Thus, we have

(3.7) 1

2

∫
Ω

|∇un|2 dx+
1

2

(∫
Ω

|un|2p/(p−1) dx

)(p−1)/p

6
∫

Ω

unf dx 6 C‖f‖L2(Ω)‖∇un‖L2 ,

where C is a constant depending on Ω. Thus we obtain

(3.8)
∫

Ω

|∇un|2 dx+

(∫
Ω

|un|2p/(p−1) dx

)(p−1)/p

6 4C2‖f‖2L2(Ω),
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and so, up to subsequence un converges weakly in H1
0 (Ω) and L2p/(p−1)(Ω) to some

up ∈ H1
0 (Ω) ∩ L2p/(p−1)(Ω). By the semicontinuity of the L2-norm of the gradient

and the L2p/(p−1)-norm and the fact that
∫

Ω
fun dx →

∫
Ω
fup dx, as n → ∞, we

have that up is a minimizer of Jp. By the strict convexity of Jp, we have that up is
unique. Moreover, by (3.7) and (3.8), Jp(up) > −∞. Writing down the Euler-Lagrange
equation for up, we obtain

−∆up +

(∫
Ω

|up|2p/(p−1) dx

)−1/p

|up|2/(p−1)up = f.

Setting

Vp =

(∫
Ω

|up|2p/(p−1) dx

)−1/p

|up|2/(p−1),

we have that
∫

Ω
V pp dx = 1 and up is the solution to

−∆up + Vpup = f.

In particular, we have Jp(up) = Ef (Vp) and so Vp solves (3.4). The uniqueness of Vp
follows by the uniqueness of up and the equality case in the Hölder inequality∫

Ω

u2V dx 6

(∫
Ω

V p dx

)1/p(∫
Ω

|u|2p/(p−1) dx

)(p−1)/p

6

(∫
Ω

|u|2p/(p−1) dx

)(p−1)/p

. �

When the functional F is −Ef , then the existence result holds also in the case p = 1.
Before we give the proof of this fact in Proposition 3.9, we need some preliminary
results. We also note that the analogous results were obtained in the case F = −λ1

(see [21, Theorem 8.2.4]) and in the case F = −Ef , where f is a positive function
(see [11]).

Remark 3.7. — Let up be the minimizer of Jp, defined in (3.5). By (3.8), we have the
estimate

‖∇up‖L2(Ω) + ‖up‖L2p/(p−1)(Ω) 6 2
√

2C ‖f‖L2(Ω),

where C is the constant from (3.7). Moreover, we have up ∈ H2
loc(Ω) and for each

open set Ω′ ⊂⊂ Ω, there is a constant C not depending on p such that

‖up‖H2(Ω′) 6 C(f,Ω′).

Indeed, up satisfies the PDE

(3.9) −∆u+ c|u|αu = f,

with c > 0 and α = 2/(p − 1), and standard elliptic regularity arguments (see [17,
Section 6.3]) give that u ∈ H2

loc(Ω). To show that ‖up‖H2(Ω′) is bounded independently
of p we apply the Nirenberg operator ∂hku = u(x+hek)−u(x)

h on both sides of (3.9), and
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multiplying by φ2∂hku, where φ is an appropriate cut-off function which equals 1 on Ω′,
we have∫

Ω

φ2|∇∂hku|2 dx+

∫
Ω

∇(∂hku)∇(φ2)∂hku dx+ c(α+ 1)

∫
Ω

φ2|u|α|∂hku|2 dx

= −
∫
f∂hk (φ2∂hku) dx,

for all k = 1, . . . , d. Some straightforward manipulations now give

‖∇2u‖2L2(Ω′) 6
d∑
k=1

∫
Ω

φ2|∇∂ku|2 dx 6 C(Ω′)
(
‖f‖L2({φ2>0}) + ‖∇u‖L2(Ω)

)
.

Lemma 3.8. — Let Ω ⊂ Rd be a bounded open set and let f ∈ L2(Ω). Consider the
functional J1 : L2(Ω)→ R defined by

(3.10) J1(u) :=
1

2

∫
Ω

|∇u|2 dx+
1

2
‖u‖2∞ −

∫
Ω

uf dx.

Then, Jp Γ-converges in L2(Ω) to J1, as p→ 1, where Jp is defined in (3.5).

Proof. — Let vn ∈ L2(Ω) be a sequence of positive functions converging in L2 to
v ∈ L2(Ω) and let αn → +∞. Then, we have that

(3.11) ‖v‖L∞(Ω) 6 lim inf
n→∞

‖vn‖Lαn (Ω).

In fact, suppose first that ‖v‖L∞ = M < +∞ and let ωε = {v > M − ε}, for some
ε > 0. Then, we have

lim inf
n→∞

‖vn‖Lαn (Ω) > lim
n→∞

|ωε|(1−αn)/αn

∫
ωε

vn dx = |ωε|−1

∫
ωε

v dx >M − ε,

and so, letting ε → 0, we have lim infn→∞ ‖vn‖Lαn (Ω) > M . If ‖v‖L∞ = +∞, then
setting ωk = {v > k}, for any k > 1, and arguing as above, we obtain (3.11).

Let un → u in L2(Ω). Then, by the semicontinuity of the L2 norm of the gradient
and (3.11) and the continuity of the term

∫
Ω
uf dx, we have

J1(u) 6 lim inf
n→∞

Jpn(un),

for any decreasing sequence pn → 1. On the other hand, for any u ∈ L2, we have
Jpn(u)→ J1(u) as n→∞ and so, we have the conclusion. �

Proposition 3.9. — Let Ω ⊂ Rd be a bounded open set and f ∈ L2(Ω). Then there is
a unique solution to problem (3.4) with p = 1, given by

V1 =
1

M

(
χω+

f − χω−f
)
,

where M=‖u1‖L∞(Ω), ω+ ={u1 = M}, ω−={u1 =−M}, being u1∈H1
0 (Ω) ∩ L∞(Ω)

the unique minimizer of the functional J1, defined in (3.10). In particular,∫
ω+
f dx−

∫
ω−

f dx = M , f > 0 on ω+ and f 6 0 on ω−.
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Proof. — For any u ∈ H1
0 (Ω) and any V > 0 with

∫
Ω
V dx 6 1 we have∫

Ω

u2V dx 6 ‖u‖2∞
∫

Ω

V dx 6 ‖u‖2∞,

where for sake of simplicity, we write ‖ · ‖∞ instead of ‖ · ‖L∞(Ω). Arguing as in the
proof of Proposition 3.6, we obtain the inequalities

1

2

∫
Ω

|∇u|2 dx+
1

2

∫
Ω

u2V dx−
∫

Ω

uf dx 6 J1(u),

max
{
Ef (V ) :

∫
Ω

V 6 1
}
6 min

{
J1(u) : u ∈ H1

0 (Ω)
}
.

As in (3.7), we have that a minimizing sequence of J1 is bounded in H1
0 (Ω) ∩ L∞(Ω)

and thus by semicontinuity there is a minimizer u1 ∈ H1
0 (Ω) ∩ L∞(Ω) of J1, which

is also unique, by the strict convexity of J1. Let up denotes the minimizer of Jp as
in Proposition 3.6. Then, by Remark 3.7, we have that the family up is bounded in
H1

0 (Ω) and in H2(Ω′) for each Ω′ ⊂⊂ Ω. Then, we have that each sequence upn has a
subsequence converging weakly in L2(Ω) to some u ∈ H2

loc(Ω)∩H1
0 (Ω). By Lemma 3.8,

we have u = u1 and so, u1 ∈ H2
loc(Ω) ∩H1

0 (Ω). Thus upn → u1 in L2(Ω).
Let us define M = ‖u1‖∞ and ω = ω+ ∪ ω−. We claim that u1 satisfies, on Ω,

the PDE

(3.12) −∆u+ χωf = f.

Indeed, setting Ωt = Ω ∩ {|u| < t} for t > 0, we compute the variation of J1 with
respect to any function ϕ ∈ H1

0 (ΩM−ε). Namely we consider functions of the form
ϕ = ψwε where wε is the solution to −∆wε = 1 on ΩM−ε, and wε = 0 on ∂ΩM−ε.
Thus we obtain that −∆u1 = f on ΩM−ε and letting ε → 0 we conclude, thanks to
the Monotone Convergence Theorem, that

−∆u1 = f on ΩM = Ω r ω.

Moreover, since u1 ∈ H2
loc(Ω), we have that ∆u1 = 0 on ω and so, we obtain (3.12).

Since u1 is the minimizer of J1, we have that for each ε ∈ R, J1((1+ε)u1)−J1(u1) > 0.
Taking the derivative of this difference at ε = 0, we obtain∫

Ω

|∇u1|2 dx+M2 =

∫
Ω

fu1 dx.

By (3.12), we have
∫

Ω
|∇u1|2 dx =

∫
Ωrω fu1 dx and so

M =

∫
ω+

f dx−
∫
ω−

f dx.

Setting V1 := 1
M

(
χω+f − χω−f

)
, we have that

∫
Ω
V1 dx = 1, −∆u1 + V1u1 = f in

H−1(Ω) and

J1(u1) =
1

2

∫
Ω

|∇u1|2 dx+
1

2

∫
Ω

u2
1V1 dx−

∫
Ω

u1f dx.
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We are left to prove that V1 is admissible, i.e. V1 > 0. To do this, consider wε the energy
function of the quasi-open set {u < M − ε} and let ϕ = wεψ where ψ ∈ C∞c (Rd),
ψ > 0. Since ϕ > 0, we get that

0 6 lim
t→0+

J1(u1 + tϕ)− J1(u1)

t
=

∫
Ω

〈∇u1,∇ϕ〉 dx−
∫

Ω

fϕ dx.

This inequality holds for any ψ so that, integrating by parts, we obtain

−∆u1 − f > 0

almost everywhere on {u1 < M − ε}. In particular, since ∆u1 = 0 almost everywhere
on ω− = {u = −M}, we obtain that f 6 0 on ω−. Arguing in the same way, and
considering test functions supported on {u1 > −M + ε}, we can prove that f > 0

on ω+. This implies V1 > 0 as required. �

Remark 3.10. — Under some additional assumptions on Ω and f one can obtain some
more precise regularity results for u1. In fact, in [15, Theorem A1] it was proved that
if ∂Ω ∈ C2 and if f ∈ L∞(Ω) is positive, then u1 ∈ C1,1(Ω).

Remark 3.11. — In the case p < 1 problem (3.4) does not admit, in general, a solution,
even for regular f and Ω. We give a counterexample in dimension one, which can be
easily adapted to higher dimensions.

Let Ω = (0, 1), f = 1, and let xn,k = k/n for any n ∈ N and k = 1, . . . , n− 1. We
define the capacitary measures µn = IΩrKn where Kn = {k/n : k = k = 1, . . . , n−1}
and IΩrKn is defined in (2.1). Let wn be the minimizer of the functional Jµn(1, ·),
defined in (2.2). Then wn vanishes at xn,k, for k = 1, . . . , n− 1, and so we have

E(µn) = n min

{
1

2

∫ 1/n

0

|u′|2 dx−
∫ 1/n

0

u dx : u ∈ H1
0 (0, 1/n)

}
= − C

n2
,

where C > 0 is a constant.
For any fixed n and j, let V nj be the sequence of positive functions such that∫ 1

0
|V nj |p dx = 1, defined by

(3.13) V nj = Cn

n−1∑
k=1

j1/pχ[ kn−
1
j ,
k
n+ 1

j ]
<

n−1∑
k=1

IΩr[ kn−
1
j ,
k
n+ 1

j ]
,

where Cn is a constant depending on n, and I is as in (2.1). By the compact-
ness of the γ-convergence, we have that, up to a subsequence, V nj dx γ-converges
to some capacitary measure µ as j →∞. On the other hand it is easy to check that∑n−1
k=1 IΩr[ kn−

1
j ,
k
n+ 1

j ]
γ-converges to µn as j → ∞. By (3.13), we have that µ 6 µn.

In order to show that µ = µn it is enough to check that each nonnegative function
u ∈ H1

0 ((0, 1)), for which
∫
u2 dµ < +∞, vanishes at xn,k for k = 1, . . . , n − 1. Sup-

pose that u(k/n) > 0. By the definition of the γ-convergence, there is a sequence
uj ∈ H1

0 (Ω) = H1
V nj

(Ω) such that uj → u weakly in H1
0 (Ω) and

∫
u2
jV

n
j dx 6 C, for
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some constant C not depending on j ∈ N. Since uj are uniformly 1/2-Hölder contin-
uous, we can suppose that uj > ε > 0 on some interval A containing k/n. But then
for j large enough A contains [k/n− 1/j, k/n+ 1/j] so that

C >
∫ 1

0

u2
jV

n
j dx >

∫ k/n+1/j

k/n−1/j

u2
jV

n
j dx > 2Cnε

2j1/p−1,

which is a contradiction for p < 1. Thus, we have that µ = µn and so V nj γ-converges
to µn as j → ∞. In particular, E(µn) = limj→∞ E1(V nj ) and since the left-hand
side converges to zero as n → ∞, we can choose a diagonal sequence V njn such that
E(V njn)→ 0 as n→∞. Since there is no admissible functional V such that E1(V ) = 0,
we have the conclusion.

4. Existence of optimal potentials for unbounded constraints

In this section we consider the optimization problem

(4.1) min {F (V ) : V ∈ V} ,

where V is an admissible class of nonnegative Borel functions on the bounded open
set Ω ⊂ Rd and F is a cost functional on the family of capacitary measuresM+

cap(Ω).
The admissible classes we study depend on a function Ψ : [0,+∞]→ [0,+∞]

V =
{
V : Ω→ [0,+∞] : V Lebesgue measurable,

∫
Ω

Ψ(V ) dx 6 1
}
.

Theorem 4.1. — Let Ω ⊂ Rd be a bounded open set and let Ψ : [0,+∞]→ [0,+∞] be
an injective function satisfying the condition

(4.2) there exist p > 1 such that the function s 7→ Ψ−1(sp) is convex.

Then, for any functional F : M+
cap(Ω) → R which is increasing and lower semicon-

tinuous with respect to the γ-convergence, the problem (4.1) has a solution, provided
the admissible set V is nonempty.

Proof. — Let Vn ∈ V be a minimizing sequence for problem (4.1). Then, vn :=(
Ψ(Vn)

)1/p is a bounded sequence in Lp(Ω) and so, up to a subsequence, vn converges
weakly in Lp(Ω) to some function v. We will prove that V := Ψ−1(vp) is a solution
to (4.1). Clearly V ∈ V and so it remains to prove that F (V ) 6 lim infn F (Vn). In
view of the compactness of the γ-convergence on the class M+

cap(Ω) of capacitary
measures (see Section 2), we can suppose that, up to a subsequence, Vn γ-converges
to a capacitary measure µ ∈ M+

cap(Ω). We claim that the following inequalities hold
true:

(4.3) F (V ) 6 F (µ) 6 lim inf
n→∞

F (Vn).

In fact, the second inequality in (4.3) is the lower semicontinuity of F with respect to
the γ-convergence, while the first needs a more careful examination. By the definition
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of γ-convergence, we have that for any u ∈ H1
0 (Ω), there is a sequence un ∈ H1

0 (Ω)

which converges to u in L2(Ω) and is such that∫
Ω

|∇u|2 dx+

∫
Ω

u2 dµ = lim
n→∞

∫
Ω

|∇un|2 dx+

∫
Ω

u2
nVn dx

= lim
n→∞

∫
Ω

|∇un|2 dx+

∫
Ω

u2
nΨ−1(vpn) dx

>
∫

Ω

|∇u|2 dx+

∫
Ω

u2Ψ−1(vp) dx

=

∫
Ω

|∇u|2 dx+

∫
Ω

u2V dx,

(4.4)

where the inequality in (4.4) is due to strong-weak lower semicontinuity of integral
functionals (see for instance [7]), which follows by assumption (4.2). Thus, for any
u ∈ H1

0 (Ω), we have ∫
Ω

u2 dµ >
∫

Ω

u2V dx,

which gives V 6 µ. Since F is assumed to be monotone increasing, we obtain the first
inequality in (4.3) and so the conclusion. �

Remark 4.2. — The condition on the function Ψ in Theorem 4.1 is satisfied for in-
stance by the following functions:
(1) Ψ(s) = s−p, for any p > 0;
(2) Ψ(s) = e−αs, for any α > 0.

In some special cases, the solution to the optimization problem (4.1) can be com-
puted explicitly through the solution to some PDE, as in Proposition 3.6. This occurs
for instance when F = λ1 or when F = Ef , with f ∈ L2(Ω). We note that, by the
variational formulation

λ1(V ) = min
{∫

Ω

|∇u|2dx+

∫
Ω

u2V dx : u ∈ H1
0 (Ω),

∫
Ω

u2 dx = 1
}
,

we can rewrite problem (4.1) as

(4.5) min

{
min
‖u‖2=1

{∫
Ω

|∇u|2 dx+

∫
Ω

u2V dx
}

: V > 0,

∫
Ω

Ψ(V ) dx 6 1

}
= min
‖u‖2=1

{
min

{∫
Ω

|∇u|2 dx+

∫
Ω

u2V dx : V > 0,

∫
Ω

Ψ(V ) dx 6 1
}}

.

One can compute that, if Ψ is differentiable with Ψ′ invertible, then the second min-
imum in (4.5) is achieved for

(4.6) V = (Ψ′)−1(Λuu
2),

where Λu is a constant such that
∫

Ω
Ψ
(
(Ψ′)−1(Λuu

2)
)
dx = 1. Thus, the solution to

the problem on the right hand side of (4.5) is given through the solution to

(4.7) min

{∫
Ω

|∇u|2 dx+

∫
Ω

u2(Ψ′)−1(Λuu
2) dx : u ∈ H1

0 (Ω),

∫
Ω

u2 dx = 1

}
.
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Analogously, we obtain that the optimal potential for the Dirichlet Energy Ef is given
by (4.6), where this time u is a solution to

(4.8) min

{∫
Ω

1

2
|∇u|2 dx+

∫
Ω

1

2
u2(Ψ′)−1(Λuu

2) dx−
∫

Ω

fu dx : u ∈ H1
0 (Ω)

}
.

Thus we obtain the following result.

Corollary 4.3. — Under the assumptions of Theorem 4.1, for the functionals F =λ1

and F = Ef there exists a solution to (4.1) given by V = (Ψ′)−1(Λuu
2), where

u ∈ H1
0 (Ω) is a minimizer of (4.7), in the case F = λ1, and of (4.8), in the case

F = Ef .

Example 4.4. — If Ψ(x) = x−p with p > 0, the optimal potentials for λ1 and Ef are
given by

V =

(∫
Ω

|u|2p/(p+1) dx

)1/p

u−2/(p+1),

where u is the minimizer of (4.7) and (4.8), respectively. We also note that, in this
case ∫

Ω

u2(Ψ′)−1(Λuu
2) dx =

(∫
Ω

|u|2p/(p+1) dx

)(1+p)/p

.

Example 4.5. — If Ψ(x) = e−αx with α > 0, the optimal potentials for λ1 and Ef are
given by

V =
1

α

(
log

(∫
Ω

u2 dx

)
− log

(
u2
))

,

where u is the minimizer of (4.7) and (4.8), respectively. We also note that, in this
case ∫

Ω

u2(Ψ′)−1(Λuu
2) dx =

1

α

(∫
Ω

u2 dx

∫
Ω

log
(
u2
)
dx−

∫
Ω

u2 log
(
u2
)
dx

)
.

5. Optimization problems in unbounded domains

In this section we consider optimization problems for which the domain region is
the entire Euclidean space Rd. General existence results, in the case when the design
region Ω is unbounded, are hard to achieve since most of the cost functionals are
not semicontinuous with respect to the γ-convergence in these domains. For example,
it is not hard to check that if µ is a capacitary measure, infinite outside the unit
ball B1, then, for every xn →∞, the sequence of translated measures µn = µ(·+ xn)

γ-converges to the capacitary measure

I∅(E) =

{
0, if cap(E) = 0,

+∞, if cap(E) > 0.

Thus increasing and translation invariant functionals are never lower semicontinuous
with respect to the γ-convergence. In some special cases, as the Dirichlet Energy or
the first eigenvalue of the Dirichlet Laplacian, one can obtain existence results by a
more direct methods, as those in Proposition 3.6.
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For a potential V > 0 and a function f ∈ Lq(Rd), we define the Dirichlet energy
Ef (V ) as in (1.2). In some cases it is convenient to work with the space

.
H1(Rd),

obtained as the closure of C∞c (Rd) with respect to the L2 norm of the gradient,
instead of the classical Sobolev space H1(Rd). In fact, since the energy only contains
the term |∇u|2, its minimizers are not necessarily in L2(Rd). We recall that if d > 3,
the Gagliardo-Nirenberg-Sobolev inequality

(5.1) ‖u‖L2d/(d−2) 6 Cd‖∇u‖L2 , ∀u ∈
.
H1(Rd),

holds, while in the cases d 6 2, we have respectively

‖u‖L∞ 6
(r + 2

2

)2/(r+2)

‖u‖r/(r+2)
Lr ‖u′‖2/(r+2)

L2 , ∀r > 1, ∀u ∈
.
H1(R);(5.2)

‖u‖Lr+2 6
(r + 2

2

)2/(r+2)

‖u‖r/(r+2)
Lr ‖∇u‖2/(r+2)

L2 , ∀r > 1, ∀u ∈
.
H1(R2).(5.3)

5.1. Optimal potentials in Lp(Rd). — In this section we consider the maximization
problems for the Dirichlet energy Ef among potentials V > 0 satisfying a constraint
of the form ‖V ‖Lp 6 1. We note that the results in this section hold in a generic
unbounded domain Ω. Nevertheless, for sake of simplicity, we restrict our attention
to the case Ω = Rd.

Proposition 5.1. — Let p > 1 and let q be in the interval with end-points
a = 2p/(p+ 1) and b = max{1, 2d/(d + 2)} (with a included for every d > 1,
and b included for every d 6= 2). Then, for every f ∈ Lq(Rd), there is a unique
solution to the problem

(5.4) max
{
Ef (V ) : V > 0,

∫
Rd
V p dx 6 1

}
.

Proof. — Arguing as in Proposition 3.6, we have that for p > 1 the optimal poten-
tial Vp is given by

(5.5) Vp =

(∫
Rd
|up|2p/(p−1) dx

)−1/p

|up|2/(p−1),

where up is the solution to the problem

(5.6) min

{
1

2

∫
Rd
|∇u|2 dx+

1

2

(∫
Rd
|u|2p/(p−1) dx

)(p−1)/p

−
∫
Rd
uf dx :

u ∈
.
H1(Rd) ∩ L2p/(p−1)(Rd)

}
.

Thus, it is enough to prove that there exists a solution to (5.6). For a minimizing
sequence un we have

1

2

∫
Rd
|∇un|2 dx+

1

2

(∫
Rd
|un|2p/(p−1) dx

)(p−1)/p

6
∫
Rd
unf dx 6 C‖f‖Lq‖un‖Lq′ .
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Suppose that d > 3. Interpolating q′ between 2p/(p− 1) and 2d/(d− 2) and using the
Gagliardo-Nirenberg-Sobolev inequality (5.1), we obtain that there is a constant C,
depending only on p, d and f , such that

1

2

∫
Rd
|∇un|2 dx+

1

2

(∫
Rd
|un|2p/(p−1) dx

)(p−1)/p

6 C.

Thus we can suppose that un converges weakly in
.
H1(Rd) and in L2p/(p−1)(Rd) and so,

the problem (5.6) has a solution. In the case d 6 2, the claim follows since, by using
(5.2), (5.3) and interpolation, we can still estimate ‖un‖Lq′ by means of ‖∇un‖L2 and
‖un‖L2p/(p−1) . �

Repeating the arguments of Propositions 3.6 and 3.9, one obtains an existence
result for (5.4) in the case p = 1, too.

Proposition 5.2. — Let f ∈ Lq(Rd), where q ∈ [1, 2d
d+2 ], if d > 3, and q = 1, if

d = 1, 2. Then there is a unique solution V1 to problem (5.4) with p = 1, which is
given by

V1 =
f

M

(
χω+ − χω−

)
,

where M = ‖u1‖L∞(Rd), ω+ = {u1 = M}, ω− = {u1 = −M}, and u1 is the unique
minimizer of

min

{
1

2

∫
Rd
|∇u|2 dx+

1

2
‖u‖2L∞ −

∫
Rd
uf dx : u ∈

.
H1(Rd) ∩ L∞(Rd)

}
.

In particular,
∫
ω+
f dx−

∫
ω−

f dx = M , f > 0 on ω+ and f 6 0 on ω−.

We note that, when p = 1, the support of the optimal potential V1 is contained in
the support of the function f . This is not the case if p > 1, as the following example
shows.

Example 5.3. — Let f = χB(0,1) and p > 1. By our previous analysis we know that
there exist a solution up to problem (5.6) and a solution Vp to problem (5.4) given by
(5.5). We note that up is positive, radially decreasing and satisfies the equation

−u′′(r)− d− 1

r
u′(r) + Cuα = 0, r ∈ (1,+∞),

where α = 2p/(p− 1) > 2 and C is a positive constant. Thus, we have that

up(r) = kr2/(1−α),

where k is an explicit constant depending on C, d and α. In particular, we have that up
is not compactly supported on Rd (see Figure 5.1).

J.É.P. — M., 2014, tome 1



92 G. Buttazzo, A. Gerolin, B. Ruffini & B. Velichkov

y

-3 -1 1 3

up

Figure 5.1. The solution up to problem (5.6), with p > 1 and f =

χB(0,1) does not have a compact support.

5.2. Optimal potentials with unbounded constraint. — In this subsection we con-
sider the problems

min
{
Ef (V ) : V > 0,

∫
Rd
V −p dx 6 1

}
,(5.7)

min
{
λ1(V ) : V > 0,

∫
Rd
V −p dx 6 1

}
,(5.8)

for p > 0 and f ∈ Lq(Rd). We will see in Proposition 5.4 that in order to have existence
for (5.7) the parameter q must satisfy some constraint, depending on the value of p
and on the dimension d. Namely, we need q to satisfy the following conditions

q ∈ [
2d

d+ 2
,

2p

p− 1
], if d > 3 and p > 1,

q ∈ [
2d

d+ 2
,+∞], if d > 3 and p 6 1,

q ∈ (1,
2p

p− 1
], if d = 2 and p > 1,

q ∈ (1,+∞], if d = 2 and p 6 1,

q ∈ [1,
2p

p− 1
], if d = 1 and p > 1,

q ∈ [1,+∞], if d = 1 and p 6 1.

(5.9)

We say that q = q(p, d) ∈ [1,+∞] is admissible if it satisfies (5.9). Note that q = 2 is
admissible for any d > 1 and any p > 0.

Proposition 5.4. — Let p > 0 and f ∈ Lq(Rd), where q is admissible in the sense
of (5.9). Then the minimization problem (5.7) has a solution Vp given by

(5.10) Vp =

(∫
Rd
|up|2p/(p+1) dx

)1/p

|up|−2/(1+p),
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where up is a minimizer of

(5.11) min

{
1

2

∫
Rd
|∇u|2 dx+

1

2

(∫
Rd
|u|2p/(p+1) dx

)(p+1)/p

−
∫
Rd
uf dx :

u ∈
.
H1(Rd), |u|2p/(p+1) ∈ L1(Rd)

}
.

Moreover, if p > 1, then the functional in (5.11) is convex, its minimizer is unique
and so is the solution to (5.7).

Proof. — By means of (5.1), (5.2) and (5.3), and thanks to the admissibility of q, we
get the existence of a solution to (5.11) through an interpolation argument similar to
the one used in the proof of Proposition 5.1. The existence of an optimal potential
follows by the same argument as in Corollary 4.3. �

In Example 5.3, we showed that the optimal potentials for (5.4), may be supported
on the whole Rd. The analogous question for the problem (5.7) is whether the optimal
potentials given by (5.10) have a bounded set of finiteness {Vp < +∞}. In order to
answer this question, it is sufficient to study the support of the solutions up to (5.11),
which solve the equation

(5.12) −∆u+ Cp|u|−2/(p+1)u = f,

where Cp > 0 is a constant depending on p.

Proposition 5.5. — Let p > 0 and let f ∈ Lq(Rd), for q > d/2, be a nonnegative
function with a compact support. Then every solution up to problem (5.11) has a
compact support.

Proof. — With no loss of generality we may assume that f is supported in the unit
ball of Rd. We first prove the result when f is radially decreasing. In this case up is also
radially decreasing and nonnegative. Let v be the function defined by v(|x|) = up(x).
Thus v satisfies the equation

(5.13)

−v′′ −
d− 1

r
v′ + Cpv

s = 0 r ∈ (1,+∞),

v(1) = up(1),

where s = (p− 1)/(p+ 1) and Cp > 0 is a constant depending on p. Since v > 0 and
v′ 6 0, we have that v is convex. Moreover, since∫ +∞

1

v2rd−1 dr < +∞,
∫ +∞

1

|v′|2rd−1 dr < +∞,

we have that v, v′ and v′′ vanish at infinity. Multiplying (5.13) by v′ we obtain(v′(r)2

2
− Cp

v(r)s+1

s+ 1

)′
= −d− 1

r
v′(r)2 6 0.
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Thus the function v′(r)2/2−Cpv(r)s+1/(s+ 1) is decreasing and vanishing at infinity
and thus nonnegative. Thus we have

(5.14) − v′(r) > Cv(r)(s+1)/2, r ∈ (1,+∞),

where C =
(
2Cp/(s + 1)

)1/2. Arguing by contradiction, suppose that v is strictly
positive on (1,+∞). Dividing both sides of (5.14) and integrating, we have

−v(r)(1−s)/2 > Ar +B,

where A = 2C/(1 − s) and B is determined by the initial datum v(1). This cannot
occur, since the left hand side is negative, while the right hand side goes to +∞, as
r → +∞.

We now prove the result for a generic compactly supported and nonnegative
f ∈Lq(Rd). Since the solution up to (5.11) is nonnegative and is a weak solution
to (5.12), we have that on each ball BR ⊂ Rd, up 6 u, where u ∈ H1(BR) is the
solution to

−∆u = f in BR, u = up on ∂BR.
Since f ∈ Lq(Rd) with q > d/2, by [19, Theorem 9.11] and a standard bootstrap
argument on the integrability of u, we have that u is continuous on BR/2. As a
consequence, up is locally bounded in Rd. In particular, it is bounded since up ∧M ,
where M = ‖up‖L∞(B1), is a better competitor than up in (5.11). Let w be a radially
decreasing minimizer of (5.11) with f = χB1 . Thus w is a solution to the PDE

−∆w + Cpw
s = χB1 ,

in Rd, where Cp is as in (5.13). Then, the function wt(x) = t2/(1−s)w(x/t) is a solution
to the equation

−∆wt + Cpw
s
t = t2s/(1−s)χBt .

Since up is bounded, there exists some t > 1 large enough such that wt > up on the
ball Bt. Moreover, wt minimizes (5.11) with f = t2s/(1−s)χBt and so wt > up on Rd

(otherwise wt ∧ up would be a better competitor in (5.11) than wp). The conclusion
follows since, by the first step of the proof, wt has compact support. �

The problems (5.8) and (5.7) are similar both in the questions of existence and the
qualitative properties of the solutions.

Proposition 5.6. — For every p > 0 there is a solution to the problem (5.8) given by

(5.15) Vp =

(∫
Rd
|up|2p/(p+1) dx

)1/p

|up|−2/(1+p),

where up is a radially decreasing minimizer of

(5.16) min

{∫
Rd
|∇u|2 dx+

(∫
Rd
|u|2p/(p+1) dx

)(p+1)/p

: u ∈ H1(Rd),
∫
Rd
u2 dx=1

}
.

Moreover, up has a compact support, hence the set {Vp < +∞} is a ball of finite
radius in Rd.
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Proof. — Let us first show that the minimum in (5.16) is achieved. Let un ∈ H1(Rd)
be a minimizing sequence of positive functions normalized in L2. Note that by the
Pólya-Szegö inequality we may assume that each of these functions is radially decreas-
ing in Rd and so we will use the identification un = un(r). In order to prove that the
minimum is achieved it is enough to show that the sequence un converges in L2(Rd).
Indeed, since un is a radially decreasing minimizing sequence, there exists C > 0 such
that for each r > 0 we have

un(r)2p/(p+1) 6
1

|Br|

∫
Br

u2p/(p+1)
n dx 6

C

rd
.

Thus, for each R > 0, we obtain

(5.17)
∫
BcR

u2
n dx 6 C1

∫ +∞

R

r−d(p+1)/p rd−1 dr = C2R
−1/p,

where C1 and C2 do not depend on n and R. Since the sequence un is bounded in
H1(Rd), it converges locally in L2(Rd) and, by (5.17), this convergence is also strong
in L2(Rd). Thus, we obtain the existence of a radially symmetric and decreasing
solution up to (5.16) and so, of an optimal potential Vp given by (5.15).

We now prove that the support of up is a ball of finite radius. By the radial
symmetry of up we can write it in the form up(x) = up(|x|) = up(r), where r = |x|.
With this notation, up satisfies the equation:

−u′′p −
d− 1

r
u′p + Cpu

s
p = λup,

where s = (p − 1)/(p + 1) < 1 and Cp > 0 is a constant depending on p. Arguing as
in Proposition 5.5, we obtain that, for r large enough,

−u′p(r) >
( Cp
s+ 1

up(r)
s+1 − λ

2
up(r)

2
)1/2

>
( Cp

2(s+ 1)
up(r)

s+1
)1/2

,

where, in the last inequality, we used the fact that up(r) → 0, as r → ∞, and
s + 1 < 2. Integrating both sides of the above inequality, we conclude that up has a
compact support. In Figure 5.2 we show the case d = 1 and f = χ(−1,1). �

y

-3 -1 1 3
up

Figure 5.2. The solution up to problem (5.11), with p > 1 and f = χ(−1,1).

Remark 5.7. — We note that the solution up ∈ H1(Rd) to (5.16) is the function for
which the best constant C in the interpolated Gagliardo-Nirenberg-Sobolev inequality

(5.18) ‖u‖L2(Rd) 6 C ‖∇u‖
d/(d+2p)

L2(Rd)
‖u‖2p/(d+2p)

L2p/(p+1)(Rd)
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is achieved. Indeed, for any u ∈ H1(Rd) and any t > 0, we define ut(x) := td/2u(tx).
Thus, we have that ‖u‖L2 = ‖ut‖L2 , for any t > 0. Moreover, up to a rescaling, we
may assume that the function g : (0,+∞)→ R, defined by

g(t) =

∫
Rd
|∇ut|2 dx+

(∫
Rd
|ut|2p/(p+1) dx

)(p+1)/p

= t2
∫
Rd
|∇u|2 dx+ t−d/p

(∫
Rd
|u|2p/(p+1) dx

)(p+1)/p

,

achieves its minimum in the interval (0,+∞) and, moreover, we have

min
t∈(0,+∞)

g(t) = C

(∫
Rd
|∇u|2 dx

)d/(d+2p)(∫
Rd
|u|2p/p+1 dx

)2(p+1)/(d+2p)

,

where C is a constant depending on p and d. In the case u = up, the minimum of g
is achieved for t = 1 and so, we have that up is a solution also to

min

{(∫
Rd
|∇u|2 dx

)d/(d+2p)(∫
Rd
|u|2p/(p+1) dx

)2(p+1)/(d+2p)

:

u ∈ H1(Rd),
∫
Rd
u2 dx = 1

}
,

which is just another form of (5.18).

Remark 5.8. — We conclude this section with a remark about the constraint
Ψ(s) = e−αs. This type of constraint may be used to approximate shape optimization
problems, in which the main unknown is a domain Ω, i.e. the potential V = IΩ is the
capacitary measure of Ω. To get an example of this fact we recall the problem

(5.19) min
{
Ef (V ) + Λ

∫
Ω

e−αV dx : V ∈ B(Ω)
}
,

where Λ is a Lagrange multiplier and B(Ω) is the class of nonnegative Borel measurable
functions on Ω. As before, we note that the problem (5.19) is equivalent to

(5.20) min

{∫
Ω

(1

2
|∇u|2 +

1

2
V u2 − fu+ Λe−αV

)
dx : u ∈ H1

0 (Ω), V ∈ B(Ω)

}
.

Fixing u ∈ H1
0 (Ω) and minimizing in V ∈ B(Ω) leads to the problem

min

{∫
Ω

V u2 dx+ Λ

∫
Ω

e−αV dx : V ∈ B(Ω)

}
,

whose solution V satisfies

u2 − Λαe−αV = 0 on {V (x) > 0}.

We note that if u2 > Λα, then necessarily V = 0. On the other hand, if u2 < Λα,
then by the optimality of V , we have V > 0. Finally, we get

V (x) = 0 ∨
(
− 1

α
log

u2

Λα

)
.
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Substituting in (5.20), we obtain the problem

min
u∈H1

0 (Ω)

{
1

2

∫
Ω

|∇u|2 dx− 1

2α

∫
{u2<Λα}

u2 log
( u2

Λα

)
dx

−
∫

Ω

fu dx+ Λ|{u2 > Λα}|+ 1

α

∫
{u2<Λα}

u2 dx

}
,

or, equivalently,

(5.21) min
u∈H1

0 (Ω)

{
1

2

∫
Ω

|∇u|2 dx− 1

2α

∫
{u26Λα}

u2 log
( u2

Λα

)
dx

−
∫

Ω

fu dx+ Λ|{u2 > Λα}|+ 1

α

∫
{u26Λα}

u2 dx

}
.

Note that the second term is actually positive and so, by a standard variational
argument, we have that the problem (5.21) has a solution uα ∈ H1

0 (Ω). Moreover, on
the quasi-open set u2 > Λα, we have −∆u = f . Let Jα be the functional in (5.21), i.e.

Jα(u) =
1

2

∫
Ω

|∇u|2 dx+
1

α

∫
{u26Λα}

u2

[
1− 1

2
log
( u2

Λα

)]
dx+ Λ|{u2 > Λα}|.

Then Jα Γ-converges in L2(Ω), as α→ 0, to the functional

J(u) =
1

2

∫
Ω

|∇u|2 dx+ Λ|{u 6= 0}|.

Note that this implies the convergence of the optimal potentials Vα for (5.19) to a
limit potential of the form

V (x) =

{
+∞ if u(x) = 0

0 if u(x) 6= 0,

where u is a solution to the limit problem

min

{
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx+ Λ|{u 6= 0}| : u ∈ H1
0 (Ω)

}
.

This limit problem is indeed a shape optimization problem written in terms of the
state function u, and several results on the regularity of the optimal domains are
known (see for instance [1], [3]).

6. Further remarks on the optimal potentials for spectral functionals

We recall (see [5]) that the injection H1
V (Rd) ↪→ L2(Rd) is compact whenever

the potential V satisfies
∫
Rd V

−p dx < +∞ for some 0 < p 6 1. In this case the
spectrum of the Schrödinger operator−∆+V (x) is discrete and we denote by λk(V ) its
eigenvalues. The existence of an optimal potential for spectral optimization problems
of the form

(6.1) min
{
λk(V ) : V > 0,

∫
Rd
V −p dx 6 1

}
,
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was proved in [6], for any k ∈ N and for p ∈ (0, 1). This result cannot be deduced
by the direct methods used in Subsection 5.2 and is based on a combination of a
concentration-compactness argument and a fine estimate on the diameter of the set
of finiteness {Vk < +∞} of the optimal potential Vk. We note that the existence of
an optimal potential in the case k > 2 and p = 1 is still an open question.

In the case k = 2 the idea from Subsection 5.2 can still be applied to prove an
existence result for (6.1) and to explicitly characterize the optimal potential. We first
recall that, by Proposition 5.6, there exists optimal potential Vp, for λ1, such that
the set of finiteness {Vp < +∞} is a ball. Thus, we have a situation analogous to the
Faber-Krahn inequality, which states that the minimum

(6.2) min
{
λ1(Ω) : Ω ⊂ Rd, |Ω| = c

}
,

is achieved for the ball of measure c. We recall that, starting from (6.2), one may
deduce, by a simple argument (see for instance [21]), the Krahn-Szegö inequality,
which states that the minimum

min
{
λ2(Ω) : Ω ⊂ Rd, |Ω| = c

}
,

is achieved for a disjoint union of equal balls. In the case of potentials one can find two
optimal potentials for λ1 with disjoint sets of finiteness and then apply the argument
from the proof of the Krahn-Szegö inequality. In fact, we have the following result.

Theorem 6.1. — There exists an optimal potential, solution to (6.1) with k = 2

and p ∈ (0, 1]. Moreover, any optimal potential is of the form min{V1, V2},
where V1 and V2 are optimal potentials for λ1 which have disjoint sets of finiteness
{V1 < +∞} ∩ {V2 < +∞} = ∅ and are such that

∫
Rd V

−p
1 dx =

∫
Rd V

−p
2 dx = 1/2.

Proof. — Given V1 and V2 as above, we prove that for every V : Rd → [0,+∞] with∫
Rd V

−p dx = 1, we have
λ2(min{V1, V2}) 6 λ2(V ).

Indeed, let u2 be the second eigenfunction of −∆ + V (x). We first suppose that u2

changes sign on Rd and consider the functions V+ = sup{V,∞{u260}} and V− =

sup{V,∞{u2>0}} where, for any measurable A ⊂ Rd, we set

∞A(x) =

{
+∞, x ∈ A,

0 , x /∈ A.

We note that
1 >

∫
Rd
V −p dx >

∫
Rd
V −p+ dx+

∫
Rd
V −p− dx.

Moreover, on the sets {u2 > 0} and {u2 < 0}, the following equations are satisfied:

−∆u+
2 + V+u

+
2 = λ2(V )u+

2 , −∆u−2 + V−u
−
2 = λ2(V )u−2 ,

and so, multiplying respectively by u+
2 and u−2 , we obtain that

λ2(V ) > λ1(V+), λ2(V ) > λ1(V−),
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where we have equalities, if and only if, u+
2 and u−2 are the first eigenfunctions cor-

responding to λ1(V+) and λ1(V−). Let now Ṽ+ and Ṽ− be optimal potentials for λ1

corresponding to the constraints∫
Rd
Ṽ −p+ dx =

∫
Rd
V −p+ dx,

∫
Rd
Ṽ −p− dx =

∫
Rd
V −p− dx.

By Proposition 5.6, the sets of finiteness of Ṽ+ and Ṽ− are compact, hence we may
assume (up to translations) that they are also disjoint. By the monotonicity of λ1, we
have

max{λ1(V1), λ1(V2)} 6 max{λ1(Ṽ+), λ1(Ṽ−)},
and so, we obtain

λ2(min{V1, V2}) 6 max{λ1(Ṽ+), λ1(Ṽ−)} 6 max{λ1(V+), λ1(V−)} 6 λ2(V ),

as required. If u2 does not change sign, then we consider V+ = sup{V,∞{u2=0}} and
V− = sup{V,∞{u1=0}}, where u1 is the first eigenfunction of −∆ + V (x). Then the
claim follows by the same argument as above. �

References
[1] H. W. Alt & L. A. Caffarelli – “Existence and regularity for a minimum problem with free

boundary”, J. Reine Angew. Math. 325 (1981), p. 105–144.
[2] M. S. Ashbaugh & E. M. Harrell, II – “Maximal and minimal eigenvalues and their associated

nonlinear equations”, J. Math. Phys. 28 (1987), no. 8, p. 1770–1786.
[3] T. Briançon & J. Lamboley – “Regularity of the optimal shape for the first eigenvalue of the

Laplacian with volume and inclusion constraints”, Ann. Inst. H. Poincaré Anal. Non Linéaire
26 (2009), no. 4, p. 1149–1163.

[4] D. Bucur & G. Buttazzo – Variational methods in shape optimization problems, Progress in Non-
linear Differential Equations and their Applications, vol. 65, Birkhäuser Boston, Inc., Boston,
MA, 2005.

[5] , “On the characterization of the compact embedding of Sobolev spaces”, Calc. Var.
Partial Differential Equations 44 (2012), no. 3-4, p. 455–475.

[6] D. Bucur, G. Buttazzo & B. Velichkov – “Spectral optimization problems for potentials and
measures”, Preprint available at http://cvgmt.sns.it.

[7] G. Buttazzo – Semicontinuity, relaxation and integral representation in the calculus of varia-
tions, Pitman Research Notes in Mathematics Series, vol. 207, Longman Scientific & Technical,
Harlow, 1989.

[8] , “Spectral optimization problems”, Rev. Mat. Univ. Complut. Madrid 24 (2011), no. 2,
p. 277–322.

[9] G. Buttazzo & G. Dal Maso – “Shape optimization for Dirichlet problems: relaxed formulation
and optimality conditions”, Appl. Math. Optim. 23 (1991), no. 1, p. 17–49.

[10] , “An existence result for a class of shape optimization problems”, Arch. Rational Mech.
Anal. 122 (1993), no. 2, p. 183–195.

[11] G. Buttazzo, N. Varchon & H. Zoubairi – “Optimal measures for elliptic problems”, Ann. Mat.
Pura Appl. (4) 185 (2006), no. 2, p. 207–221.

[12] E. A. Carlen, R. L. Frank & E. H. Lieb – “Stability estimates for the lowest eigenvalue of a
Schrödinger operator”, Geom. Funct. Anal. 24 (2014), no. 1, p. 63–84.

[13] G. Dal Maso – An introduction to Γ-convergence, Progress in Nonlinear Differential Equations
and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

[14] G. Dal Maso & U. Mosco – “Wiener’s criterion and Γ-convergence”, Appl. Math. Optim. 15
(1987), no. 1, p. 15–63.

[15] H. Egnell – “Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems”,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 1, p. 1–48.

J.É.P. — M., 2014, tome 1

http://cvgmt.sns.it


100 G. Buttazzo, A. Gerolin, B. Ruffini & B. Velichkov

[16] M. Essén – “On estimating eigenvalues of a second order linear differential operator”, in General
inequalities, 5 (Oberwolfach, 1986), Internat. Schriftenreihe Numer. Math., vol. 80, Birkhäuser,
Basel, 1987, p. 347–366.

[17] L. C. Evans – Partial differential equations, 2nd ed., Graduate Texts in Math., vol. 19, American
Mathematical Society, Providence, RI, 2010.

[18] L. C. Evans & R. F. Gariepy – Measure theory and fine properties of functions, Studies in Ad-
vanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[19] D. Gilbarg & N. S. Trudinger – Elliptic partial differential equations of second order, Classics in
Mathematics, Springer-Verlag, Berlin, 2001.

[20] E. M. Harrell, II – “Hamiltonian operators with maximal eigenvalues”, J. Math. Phys. 25
(1984), no. 1, p. 48–51, Erratum: J. Math. Phys. 27 (1986) no. 1, p. 419.

[21] A. Henrot – “Minimization problems for eigenvalues of the Laplacian”, J. Evol. Equ. 3 (2003),
no. 3, p. 443–461.

[22] , Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics,
Birkhäuser Verlag, Basel, 2006.

[23] A. Henrot & M. Pierre – Variation et optimisation de formes. Une analyse géométrique, Mathé-
matiques & Applications (Berlin), vol. 48, Springer, Berlin, 2005.

[24] G. Talenti – “Estimates for eigenvalues of Sturm-Liouville problems”, in General inequalities, 4
(Oberwolfach, 1983), Internat. Schriftenreihe Numer. Math., vol. 71, Birkhäuser, Basel, 1984,
p. 341–350.

Manuscript received November 29, 2013
accepted May 2, 2014

Giuseppe Buttazzo, Dipartimento di Matematica, Università di Pisa
Largo B. Pontecorvo 5, 56127 Pisa, Italy
E-mail : buttazzo@dm.unipi.it
Url : http://www.dm.unipi.it/pages/buttazzo/

Augusto Gerolin, Dipartimento di Matematica, Università di Pisa
Largo B. Pontecorvo 5, 56127 Pisa, Italy
E-mail : gerolin@mail.dm.unipi.it
Url : http://www.dm.unipi.it/cluster-pages/gerolin/

Berardo Ruffini, Laboratoire Jean Kuntzmann, Université de Grenoble
BP 53, 38041 Grenoble Cedex 9, France
E-mail : berardo.ruffini@sns.it
Url : http://cvgmt.sns.it/person/973/

Bozhidar Velichkov, Dipartimento di Matematica, Università di Pisa
Largo B. Pontecorvo 5, 56127 Pisa, Italy
E-mail : b.velichkov@sns.it
Url : http://www.velichkov.it/

J.É.P. — M., 2014, tome 1

mailto:buttazzo@dm.unipi.it
http://www.dm.unipi.it/pages/buttazzo/
mailto:gerolin@mail.dm.unipi.it 
http://www.dm.unipi.it/cluster-pages/gerolin/
mailto:berardo.ruffini@sns.it
http://cvgmt.sns.it/person/973/
mailto:b.velichkov@sns.it
http://www.velichkov.it/

	1. Introduction
	2. Capacitary measures and g-convergence
	3. Existence of optimal potentials in LpO
	4. Existence of optimal potentials for unbounded constraints
	5. Optimization problems in unbounded domains
	6. Further remarks on the optimal potentials for spectral functionals
	References

