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Abstract. This paper aims at studying, in the image space, an approxi-
mation of a vector optimization problem obtained by substituting the involved
functions with their G-derivatives. It is shown that, under the hypothesis of
G-differentiability, the existence of a lower semistationary point is equivalent
to the linear separation between the image of the approximated problem and a
suitable convex subset of the image space. Applications to optimality conditions
are provided.
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1 Introduction and preliminaries

The concept of G-semidifferentiability was introduced by Giannessi in [4] to
develop in an axiomatic way the theory of generalized directional derivatives;
further important results concerning this approach have been obtained in [12,
14, 18].

In [6] it has been stressed the importance of separation arguments in the
image space for the analysis of many topics in Vector Optimization, such as
optimality conditions, scalarization and duality. In order to obtain necessary
optimality conditions, in this paper we develop the study of the separation
between the image of an approximation of the vector problem given by the G-
derivatives of the involved functions and a suitable convex cone in the image
space. This approach has been exploited in [4, 13] to analyze optimality condi-
tions for a scalar optimization problem and in [6] for a vector one; subsequently,
a generalization to Vector Variational Inequalities has been proposed in [9].

Let us mention some notations and definitions that will be used in what
follows. If M ⊆ Rn, clM denotes the closure of M , intM the interior and
riM the relative interior of M , convM the convex hull of M and coneM :=
{y ∈ Rn : y = λx, λ ≥ 0, x ∈ M} the cone generated by M ; if A,B ⊆ Rn,
A ± B := {x ∈ Rn : x = a ± b, a ∈ A, b ∈ B}. The set P ⊆ Rn is a cone
iff λx ∈ P , ∀x ∈ P and ∀λ > 0; the conic extension of M with respect to the
cone P , denoted with E(M,P ), is defined by M − P . The polar cone of P is
P ∗ := {y ∈ Rn : 〈y, x〉 ≥ 0, ∀x ∈ P}. Let x ∈ clM , T (x;M) := {v ∈ Rn : ∃tk >
0,∃xk ∈M,xk → x, tk(xk − x)→ v} is the Bouligand tangent cone to M at x.
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With On we denote the n-uple, whose entries are zero; when there is no fear of
confusion, the suffix is omitted; for n = 1, we set O1 = 0. Let D be a convex
cone in Rm, a, b ∈ Rm; a ≥D b iff a − b ∈ D, a 6≥D b iff a − b 6∈ D; a ≥ O iff
ai ≥ 0, i = 1, . . . ,m. Rm+ := {x ∈ Rm : x ≥ O}. The function g : X −→ Rm is
called D–convexlike on X ⊆ Rn iff ∀x1, x2 ∈ X, ∀α ∈ [0, 1],

∃x̂ ∈ X s.t. (1− α)g(x1) + αg(x2)− g(x̂) ∈ D.

It is known [17] that g is a D–convexlike function on X, iff the set g(X) +D is
convex.

Let φ : Rn → R; the set epi φ := {(x, u) ∈ Rn × R : u ≥ φ(x)} is the
epigraph of φ.

We will denote with φ−(x̄; z) the lower Dini directional derivative of φ at
x̄ ∈ Rn in the direction z ∈ Rn:

φ−(x̄; z) = lim inf
t→0+

φ(x̄+ tz)− φ(x̄)

t
.

The lower Dini-Hadamard directional derivative of φ at x̄ ∈ Rn in the direction
z is

φ−DH(x̄; z) = lim inf
t→0+

y→z

φ(x̄+ ty)− φ(x̄)

t
.

The upper Dini and upper Dini-Hadamard derivatives are obtained replacing
”liminf” with ”limsup” and are denoted by φ+ and φ+

DH , respectively. When the
limit exists we will say that φ admits the Dini or the Dini-Hadamard derivative
and this latter will be denoted by φDH ; the Dini-Hadamard derivative is also
known as Neustadt derivative [10].

Consider the following Vector Optimization Problem (for short, VOP):

minC f(x), x ∈ R := {x ∈ X : gi(x) = 0, i ∈ I0; gi(x) ≥ 0, i ∈ I+} (1.1)

where X ⊆ Rn, C := R`+, `,m and p are positive integers with p ≤ m,
J := {1, ..., `}, I0 := {1, . . . , p}, I+ := {p + 1, . . . ,m}, fj : X → R, j =
1, ..., `, and f(x) = (f1(x), . . . , f`(x)), gi : X → R, i = 1, . . . ,m and g(x) =
(g1(x), . . . , gm(x)). Let C0 := C \ {O}. x̄ ∈ R is a (global) vector minimum
point (for short, v.m.p.) of VOP, iff

f(x̄) 6≥C0
f(x) , ∀x ∈ R, (1.2)

x̄ ∈ R is a (global) weak v.m.p. of VOP iff

f(x̄) 6≥intC f(x) , ∀x ∈ R. (1.3)

We recall the main definitions concerning the image space. Let D := Op ×
Rm−p+ . Observe that (1.2) is satisfied iff the system (in the unknown x):

f(x̄)− f(x) ≥C0
O , g(x) ≥D O , x ∈ X, (1.4)

is impossible.
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Suppose that x̄ ∈ R and define F (x) := (f(x̄)− f(x), g(x)). The set

Kx̄ := {(u, v) ∈ R` × Rm : u = f(x̄)− f(x), v = g(x), x ∈ X} = F (X)

is called the image of VOP and the space R` × Rm the image space. Consider
the following subsets of the image space:

HC0
:= {(u, v) ∈ R` × Rm : u ≥C0

O, v ≥D O }, E(Kx̄) := E(Kx̄, clHC0
).

Obviously, x̄ ∈ R is a v.m.p. of VOP iff

Kx̄ ∩HC0
= ∅, (1.5)

which is proved [6] to be equivalent to

E(Kx̄) ∩HC0
= ∅. (1.6)

Similarly, defining:

HintC := {(u, v) ∈ R` × Rm : u ≥intC O, v ≥D O },

x̄ ∈ R is a weak v.m.p. of V OP iff

Kx̄ ∩HintC = ∅, (1.7)

or, equivalently [6], iff
E(Kx̄) ∩HintC = ∅. (1.8)

In order to consider necessary optimality conditions for nondifferentiable
VOP, we will use an approximation scheme based on the concept of G–semidifferentiability
introduced in [4]. Denote by G a given subset of the set, say G, of positively
homogeneous functions of degree one on X − x̄; by C ⊆ G the set of convex pos-
itively homogeneous functions, by L the set of linear functions, provided that
X is a convex cone.

Definition 1.1 [4] A function φ : X → R is said lower G–semidifferentiable at
x̄ ∈ X iff there exist functions DGφ : X×(X−x̄)→ R and εφ : X×(X−x̄)→ R
such that:

(i) DGφ(x̄; ·) ∈ G;

(ii) φ(x)− φ(x̄) = DGφ(x̄;x− x̄) + εφ(x̄;x− x̄) , ∀x ∈ X;

(3i) lim inf
x→x̄

εφ(x̄;x− x̄)

‖x− x̄‖
≥ 0;

(4i) for every pair (h, ε) of functions which satisfy (i)–(3i) (in place of DGφ and
εφ, respectively), we have epih ⊇ epiDGφ.

DGφ(x̄; x−x̄
‖x−x̄‖ ) is called the lower G–semiderivative of φ at x̄.

A function φ : X → R is said upper G–semidifferentiable at x̄ ∈ X iff there
exist functions DGφ : X × (X − x̄)→ R and εφ : X × (X − x̄)→ R such that:

(i’) DGφ(x̄; ·) ∈ G;
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(ii’) φ(x)− φ(x̄) = DGφ(x̄;x− x̄) + εφ(x̄;x− x̄) , ∀x ∈ X;

(3i’) lim sup
x→x̄

εφ(x̄;x− x̄)

‖x− x̄‖
≤ 0;

(4i’) for every pair (h, ε) of functions which satisfy (i’)–(3i’) (in place of DGφ
and εφ, respectively), we have epih ⊆ epiDGφ.

DGφ(x̄; x−x̄
‖x−x̄‖ ) is called the upper G–semiderivative of φ at x̄.

When lower and upper G–semiderivatives coincide at x̄, then φ is said to be G–
differentiable at x̄ and its G–derivative is denoted by DGφ(x̄; x−x̄

‖x−x̄‖ ). In such a

case, we have lim
x→x̄

εφ(x̄;x− x̄)

‖x− x̄‖
= 0.

Remark 1.1 From Definition 1.1, it is immediate that

DGφ = −D(−G)(−φ), (1.9)

so that φ is lowerG–semidifferentiable at x̄ iff−φ is upper (−G)–semidifferentiable
at x̄. Moreover, we observe that the set of L–differentiable functions coincides
with the set of Fréchet differentiable functions; for G = G, the class of G-
differentiable functions at x̄ coincides with the class of B-differentiable functions
at x̄, in the sense of Robinson [16].

Definition 1.2 Let G ⊆ C. The generalized subdifferential of a lower (upper)
G–semidifferentiable function φ at x̄, denoted by ∂Gφ(x̄), is defined as the sub-
differential at x̄ of the convex function DGφ(x̄;x − x̄) (DGφ(x̄;x − x̄)); that
is

∂Gφ(x̄) = ∂DGφ(x̄, 0) (or ∂Gφ(x̄) = ∂DGφ(x̄, 0)).

If G ⊆ (−C) then the generalized superdifferential of a lower (or upper)
G–semidifferentiable function φ is defined as the superdifferential of its concave
approximation DGφ (or DGφ).

Let us recall the main properties of G-semidifferentiable functions, that will
be used in what follows.

Proposition 1.1 [11] Suppose that G satisfies the following conditions:

ψ1, ψ2 ∈ G implies ψ1 + ψ2 ∈ G; ψ ∈ G implies αψ ∈ G, ∀α > 0.

(i) If φ1, φ2 and φ1 + φ2 are lower (upper) G-semidifferentiable at x̄ then

DGφ1 +DGφ2 ≥ DG(φ1 + φ2) (DGφ1 +DGφ2 ≤ DG(φ1 + φ2)).

(ii) If φ is lower (upper) G-semidifferentiable at x̄ then ∀α > 0, αφ is lower (up-
per) G-semidifferentiable at x̄ with αDGφ (αDGφ) as lower (upper) G-semiderivative.
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Throughout the paper we will assume that the properties of Proposition 1.1
are fulfilled.

We propose to study the linear separation of an approximation of the im-
age of VOP obtained by substituting the functions −f and g with their G–
approximations. If −f and g are lower G-semidifferentiable at x̄, then we define:

KG := DGF (X) + F (x̄). (1.10a)

We adopt a similar definition in the case where−f and g are upperG-semidifferentiable;
in such a case, we set:

KG := DGF (X) + F (x̄). (1.10b)

When −f and g are G-differentiable at x̄, (1.10a) and (1.10b) are equivalent,
i.e., KG = KG and they will be both denoted by KG. We observe that KG and
KG are cones with vertex at F (x̄); they are also called homogeneizations of the
image Kx̄. In [4], where the scalar case with inequality constraints is considered,
G is the set C of the convex positively homogeneous functions; in such a case,
X is assumed to be a convex cone and f and −g upper C-semidifferentiable.
Such a choice allows one to obtain a convex approximation of the problem,
whose image is linearly separable from HC0

. Linear separation in the image
space is a source of optimality conditions; in particular, it has been shown that,
under G-differentiability assumptions, the homogeneization of the image of a
scalar problem with equality and inequality constraints, is linearly separable
from HC0

iff the point x̄ is a semistationary point for the problem [13].
In this paper, we will extend such results to the vector case by means of

the analysis of the homogeneization associated with VOP. A first step in this
direction can be found in [6] where, by means of a generalization of the classic
linearization lemma of Abadie [1], necessary optimality conditions are estab-
lished.

In section 2, we analyse the properties of the homogeneized image and its
relationships with the image Kx̄. In section 3, we study the connections between
the existence of a linear separation for KG (or KG) and HC0

and the semista-
tionarity of the point x̄ (see Definition 3), comparing our results with those
obtained in [4, 6, 13]. Section 4 is devoted to the applications to Lagrangian
type necessary optimality conditions for VOP.

2 Some properties of the homogeneized image

In this section, we will consider the relationships between the set Kx̄ and its
homogeneization KG. We will suppose that X is convex.

Proposition 2.1 Let −fj, j ∈ J , and gi, i ∈ I+ be lower G-semidifferentiable
at x̄ and assume that the lower limits in (3i) of Definition 1 are finite; let gi,
i ∈ I0 be G-differentiable at x̄. Then

KG ⊆ (ū, v̄) + E [T ((ū, v̄),Kx̄)], (2.1)

where (ū, v̄) := F (x̄).
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Proof Let (ũ, ṽ) ∈ KG = {(u, v) ∈ R` × Rm : uj = DG(−fj(x̄;x − x̄)), j ∈
J, vi = DG(gi(x̄;x − x̄)), i ∈ I0, vi = gi(x̄) + DG(gi(x̄;x − x̄)), i ∈ I+, x ∈ X};
hence there exists x̃ ∈ X such that (ũ, ṽ) = DGF (x̃) + F (x̄). We observe
that (2.1) is equivalent to prove that there exist (u′, v′) ∈ T ((ū, v̄),Kx̄) and
(c, d) ∈ C ×D such that

(ũ, ṽ) = (ū, v̄) + (u′, v′)− (c, d). (2.2)

Since X − x̄ is convex, then

(ũr, ṽr) ∈ KG, ∀r ∈ N \ {0},

where ũrj = DG(−fj(x̄; x̃−x̄r )), j ∈ J , ṽri = DGgi(x̄; x̃−x̄r ), i ∈ I0, ṽri
= DGgi(x̄; x̃−x̄r ), i ∈ I+.
Consider the sequence {(ur, vr)} defined by:

urj := DG(−fj(x̄; x̃−x̄r )) + ε(−fj)(x̄; x̃−x̄r ), j ∈ J
vri := DGgi(x̄; x̃−x̄r ) + εgi(x̄; x̃−x̄r ), i ∈ I0

vri := gi(x̄) +DGgi(x̄; x̃−x̄r ) + εgi(x̄; x̃−x̄r ), i ∈ I+.

By Definition 1.1, we have that (ur, vr) ∈ Kx̄,∀r ∈ N \ {0} and that

lim inf
r→+∞

rε(−fj)

(
x̄;
x̃− x̄
r

)
≥ 0, j ∈ J ; (2.3a)

lim
r→+∞

rεgi

(
x̄;
x̃− x̄
r

)
= 0, i ∈ I0; (2.3b)

lim inf
r→+∞

rεgi

(
x̄;
x̃− x̄
r

)
≥ 0, i ∈ I+. (2.3c)

By assumptions, the lower limits in (2.3a) and (2.3c) are finite and hence con-
ditions (2.3) imply the existence of a subsequence {rh} ⊆ N \ {0} such that

lim
h→+∞

rhε(−fj)(x̄;
x̃− x̄
rh

) ≥ 0, j ∈ J ; (2.4a)

lim
h→+∞

rhεgi(x̄;
x̃− x̄
rh

) = 0, i ∈ I0; (2.4b)

lim
h→+∞

rhεgi(x̄;
x̃− x̄
rh

) ≥ 0, i ∈ I+ (2.4c)

exist and are finite.
Recalling that (ū, v̄) = (0, g(x̄)) and that the G−semiderivatives are positively
homogeneous, we have

lim
h→+∞

rh[(urh , vrh)−(ū, v̄)] ≥C×D (DG(−fj(x̄; x̃−x̄)), j ∈ J,DGgi(x̄; x̃−x̄), i ∈ I0∪I+),

(2.5)
so that, setting

(u′, v′) := lim
h→+∞

rh[(urh , vrh)− (ū, v̄)] ∈ T ((ū, v̄),Kx̄),
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from (2.5) we obtain that

(ū, v̄)+(u′, v′) ≥C×D (ū, v̄)+(DG(−fj(x̄; x̃−x̄))), j ∈ J,DGgi(x̄; x̃−x̄), i ∈ I0∪I+) = (ũ, ṽ).

Hence (2.2) holds.

Remark 2.1 In the statement of Proposition 2.1, the finiteness of the lower
limits in (3i) of Definition 1.1 can be replaced by the assumption that the lower
Dini derivatives (−fj)−(x̄;x − x̄), j ∈ J and (gi)

−(x̄;x − x̄), i ∈ I+ exist and
are finite ∀x ∈ X, which guarantees that the limits (2.3a) and (2.3c) are finite.
Indeed, since −fj , j ∈ J are lower G-semidifferentiable at x̄, considering in (ii)
of Definition 1.1 x = xr := x̄+ 1

r (x̃− x̄), we obtain

−fj(x̄+
1

r
(x̃− x̄)) + fj(x̄) = DG(−fj(x̄;

x̃− x̄
r

)) + ε(−fj)(x̄;
x̃− x̄
r

), j ∈ J.

Multiplying both sides by r yields

−fj(x̄+ 1
r (x̃− x̄)) + fj(x̄)

1/r
= DG(−fj(x̄; x̃− x̄)) + rε(−fj)(x̄;

x̃− x̄
r

), j ∈ J.

(2.6)
Taking the liminf in (2.6) as r → +∞ and recalling that (−fj)−(x̄; x̃ − x̄) is
finite, we prove that the limits in (2.3a) exist finite. The proof is analogous for
(2.3c).

Lemma 2.1 Let ȳ ∈ Kx̄ ∩ clHC0 ; then

E [T (ȳ,Kx̄)] ⊆ T (0, E(Kx̄)).

Proof y ∈ E [T (ȳ,Kx̄)] iff ∃{αn > 0}, {yn} ⊆ Kx̄, h ∈ clHC0 , yn → ȳ such
that

y = lim
n→+∞

αn(yn − ȳ)− h.

If {αn} is bounded, then y = −h ∈ −clHC0 ⊆ T (0, E(Kx̄)). Otherwise, (taking
a subsequence, if necessary) we can suppose that lim

n→+∞
αn = +∞. Since y =

lim
n→+∞

αn(yn − ȳ)− h = lim
n→+∞

αn(yn − ȳ − h
αn

), then the thesis follows, taking

into account that ȳ + h
αn
∈ clHC0 and, therefore, yn − (ȳ + h

αn
) ∈ E(Kx̄) ∀n,

and yn − (ȳ + h
αn

)→ 0, n→ +∞.

Proposition 2.2 Let (ū, v̄) = F (x̄) ∈ Kx̄∩clHC0 . Under the same assumptions
of Proposition 2.1, the following inclusion holds:

KG ⊆ (ū, v̄) + T (0, E(Kx̄)).

Proof By Proposition 2.1 and Lemma 2.1 with ȳ = (ū, v̄) it follows
KG ⊆ (ū, v̄) + E [T ((ū, v̄),Kx̄)] ⊆ (ū, v̄) + T (0, E(Kx̄)).

Remark 2.2 If E(Kx̄) is convex, then T (0, E(Kx̄)) is convex and, since (ū, v̄) ∈
E(Kx̄), we have

(ū, v̄)+T (0, E(Kx̄)) ⊆ E(Kx̄)+T (0, E(Kx̄)) ⊆ T (0, E(Kx̄))+T (0, E(Kx̄)) = T (0, E(Kx̄)).
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3 Separation and semistationarity conditions

The definition of semistationarity has been considered in literature both for a
function [4] and for a constrained optimization problem [13].

Now we extend to a VOP the definition introduced in [13] of lower semis-
tationary point for a scalar problem by considering the generalized Lagrangian
function L(x, ϑ, λ) := 〈ϑ, f(x)〉 − 〈λ, g(x)〉.

Definition 3.1 x̄ ∈ X will be called a lower semistationary point for VOP iff
∃ (ϑ̄, λ̄) ∈ R`+ × (Rp × Rm−p+ ), (ϑ̄, λ̄) 6= O such that:

lim inf
x→x̄

L(x, ϑ̄, λ̄)− L(x̄, ϑ̄, λ̄)

‖x− x̄‖
≥ 0; (3.1a)

〈λ̄, g(x̄)〉 = 0; (3.1b)

gi(x̄) = 0, i ∈ I0; gi(x̄) ≥ 0, i ∈ I+. (3.1c)

Let h̄ = (ū, v̄) = F (x̄), x̄ ∈ R; we say that KG (KG) is linearly separable
from clHC0

iff ∃ ω̄ = (ϑ̄, λ̄) ∈ R` × Rm, ω̄ 6= O, such that:

〈ω̄, k − h̄〉 ≤ 0 ∀k ∈ KG (KG); 〈ω̄, k − h̄〉 ≥ 0 ∀k ∈ clHC0 . (3.2)

Since h̄ ∈ clHC0 and clHC0 is a convex cone then h̄+k ∈ clHC0 , ∀k ∈ clHC0 .
By the second inequality in (3.2) it follows that

〈ω̄, k〉 ≥ 0, ∀k ∈ clHC0 ,

i.e., ω̄ ∈ (clHC0
)∗ = R`+ × Rp × Rm−p+ .

The following theorem gives a sufficient condition for the semistationarity of
x̄ for VOP in terms of the linear separation between KG and clHC0 .

Theorem 3.1 Let −f and gi, i ∈ I+ be upper G–semidifferentiable functions
at x̄ ∈ R and gi, i ∈ I0 be G–differentiable at x̄. If KG and clHC0 are linearly
separable, then x̄ is a lower semistationary point for VOP.

Proof Let us suppose that KG and clHC0 are linearly separable, hence
∃ ω̄ = (ϑ̄, λ̄) ∈ (clHC0

)∗ \ {O} such that

〈ω̄, (DG(−f)(x̄;x− x̄),DGg(x̄;x− x̄))〉 ≤ 0, ∀x ∈ X,

or, equivalently, by property (1.9),

〈ω̄, (D(−G)f(x̄;x− x̄),D(−G)(−g)(x̄;x− x̄))〉 ≥ 0, ∀x ∈ X.

This inequality implies that

lim inf
x→x̄

〈ω̄, (D(−G)f(x̄;x− x̄),D(−G)(−g)(x̄;x− x̄))〉
‖x− x̄‖

≥ 0. (3.3)
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We observe that the assumptions on −f and g are equivalent to affirm that f and
−g are lower (−G)–semidifferentiable functions; hence, recalling that ϑ̄ ≥ O`,
λ̄i ≥ 0, i ∈ I+, (3.3) implies that:

0 ≤ lim inf
x→x̄

〈ω̄, (D(−G)f(x̄;x− x̄),D(−G)(−g)(x̄;x− x̄))〉
‖x− x̄‖

+ lim inf
x→x̄

∑
i∈J

ϑ̄iεfi(x̄;x− x̄) +
∑
i∈I

λ̄iε(−gi)(x̄;x− x̄)

‖x− x̄‖
≤

lim inf
x→x̄

∑
i∈J

ϑ̄i

[
D(−G)fi(x̄;x− x̄) + εfi(x̄;x− x̄)

]
+
∑
i∈I

[
λ̄i(D(−G)(−gi)(x̄;x− x̄) + ε(−gi)(x̄;x− x̄)

]
‖x− x̄‖

=

= lim inf
x→x̄

〈ϑ̄, f(x)− f(x̄)〉+ 〈λ̄,−g(x) + g(x̄)〉
‖x− x̄‖

= lim inf
x→x̄

L(x, ϑ̄, λ̄)− L(x̄, ϑ̄, λ̄)

‖x− x̄‖

that is (3.1a).
To complete the proof of the lower semistationarity of x̄, since x̄ ∈ R and h̄ :=
F (x̄) = (0, . . . , 0; 0, . . . , 0; gi(x̄), i ∈ I+), it is enough to prove that 〈ω̄, h̄〉 = 0.
From h̄ ∈ clHC0

and ω̄ ∈ (clHC0
)∗ we have 〈ω̄, h̄〉 ≥ 0; computing the second

inequality in (3.2) at k = O ∈ clHC0
, we obtain 〈ω̄,−h̄〉 ≥ 0, so that 〈ω̄, h̄〉 = 0.

Under analogous assumptions, the linear separation between KG and clHC0

is a necessary condition for the lower semistationarity of x̄. To prove this result
we need the following lemma.

Lemma 3.1 Let φ : X → R and ψ : X → R be such that

lim inf
x→x̄

(φ(x) + ψ(x)) ≥ 0 and lim sup
x→x̄

ψ(x) ≤ 0.

Then, lim inf
x→x̄

φ(x) ≥ 0.

Proof Ab absurdo, assume that lim inf
x→x̄

φ(x) < 0. Then, there exists a se-

quence {xk} → x̄ such that lim
k→∞

φ(xk) < 0. Therefore, taking into account

the assumption lim sup
x→x̄

ψ(x) ≤ 0, we get lim sup
k→∞

ψ(xk) ≤ 0 and there exists a

subsequence {xkh} such that lim
h→∞

ψ(xkh) ≤ 0. Finally, we have

lim
h→∞

(φ(xkh) + ψ(xkh)) = lim
h→∞

φ(xkh) + lim
h→∞

ψ(xkh) < 0,

which contradicts the assumptions.
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Theorem 3.2 Let −f and gi, i ∈ I+ be lower G–semidifferentiable functions
at x̄ ∈ R and gi, i ∈ I0 be G–differentiable at x̄. If x̄ is a lower semistationary
point for VOP, then KG and clHC0

are linearly separable.

Proof Let us suppose that x̄ is a lower semistationary point for VOP. Then
(3.1a) holds; i.e., we have

0 ≤ lim inf
x→x̄

L(x, ϑ̄, λ̄)− L(x̄, ϑ̄, λ̄)

‖x− x̄‖
= lim inf

x→x̄

〈ϑ̄, f(x)− f(x̄)〉 − 〈λ̄, g(x)− g(x̄)〉
‖x− x̄‖

or, equivalently, from Definition 1.1

0 ≤ lim inf
x→x̄

[
〈ϑ̄,−DG(−f)(x̄;x− x̄)〉 − 〈λ̄,DGg(x̄;x− x̄)〉

‖x− x̄‖
+

∑
i∈J ϑ̄i(−ε(−fi))(x̄;x− x̄)−

∑
i∈I λ̄iεgi(x̄;x− x̄)

‖x− x̄‖

]
.

Now we prove that the lower G–semidifferentiability implies that the upper limit
of the 2-nd term in square brackets is ≤ 0. From Definition 1.1, it follows that

lim inf
x→x̄

ε(−fi)(x̄;x− x̄)

‖x− x̄‖
≥ 0, i ∈ J

or equivalently,

lim sup
x→x̄

(−ε(−fi))(x̄;x− x̄)

‖x− x̄‖
≤ 0, i ∈ J.

Similarly, we obtain

lim sup
x→x̄

(−εgi)(x̄;x− x̄)

‖x− x̄‖
≤ 0, i ∈ I+.

By the properties of the upper limit our claim is proved.
Exploiting the above inequalities and applying Lemma 3.1 we deduce

0 ≤ lim inf
x→x̄

〈ϑ̄,−DG(−f)(x̄;x− x̄)〉 − 〈λ̄,DGg(x̄;x− x̄)〉
‖x− x̄‖

= lim
ρ↓0

inf
x∈Nρ\{x̄}

〈ϑ̄,−DG(−f)(x̄;x− x̄)〉 − 〈λ̄,DGg(x̄;x− x̄)〉
‖x− x̄‖

,

where Nρ is a neighbourhood of x̄, with radius ρ. Hence, if x∗ ∈ X and if we
set x(α) = αx∗ + (1− α)x̄, with 0 < α ≤ 1, it turns out that

0 ≤ lim
α↓0

inf
x∈(x̄,x(α)]

〈ϑ̄,−DG(−f)(x̄;x− x̄)〉 − 〈λ̄,DGg(x̄;x− x̄)〉
‖x− x̄‖

.
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Since every x ∈ (x̄, x(α)] is expressed as (1 − t)x̄ + tx(α), with 0 < t ≤ 1, we
have x− x̄ = t(x(α)− x̄); from the positive homogeneity of DG(−f) and DGg,
it follows that:

lim
α↓0

inf
x∈(x̄,x(α)]

〈ϑ̄,−DG(−f)(x̄;x− x̄)〉 − 〈λ̄,DGg(x̄;x− x̄)〉
‖x− x̄‖

=

= lim
α↓0

〈ϑ̄,−DG(−f)(x̄;x(α)− x̄)〉 − 〈λ̄,DGg(x̄;x(α)− x̄)〉
‖x(α)− x̄‖

=

= lim
α↓0

〈ϑ̄,−DG(−f)(x̄;α(x∗ − x̄))〉 − 〈λ̄,DGg(x̄;α(x∗ − x̄))〉
‖α(x∗ − x̄)‖

.

Again from the positive homogeneity of DG(−f) and DGg, we have

0 ≤ 〈ϑ̄,−DG(−f)(x̄;x∗ − x̄)〉 − 〈λ̄,DGg(x̄;x∗ − x̄)〉 ∀x∗ ∈ X,

or, equivalently,

0 ≥ 〈ϑ̄,DG(−f)(x̄;x∗ − x̄)〉+ 〈λ̄,DGg(x̄;x∗ − x̄)〉 ∀x∗ ∈ X. (3.4)

From the definition of KG and from (3.4), recalling that h̄ = F (x̄), we have
〈ω̄, k − h̄〉 ≤ 0, ∀k ∈ KG. From the definition of H, it results:

〈ω̄, k〉 ≥ 0 ∀k ∈ clHC0 ; (3.5)

moreover, from (3.1b), we have 〈ϑ̄, f(x̄)−f(x̄)〉+ 〈λ̄, g(x̄)〉 = 0, or, equivalently,
〈ω̄, h̄〉 = 0, that, together with (3.5), implies 〈ω̄, k− h̄〉 ≥ 0, ∀k ∈ clHC0

. Hence
the linear separation between KG and clHC0 follows.

A straightforward consequence of Theorems 3.1 and 3.2 is the following the-
orem, that characterizes the semistationarity of x̄ in terms of linear separation
between KG and clHC0

.

Theorem 3.3 If −f and g are G–differentiable at x̄ ∈ R, then x̄ is a lower
semistationary point for VOP iff KG and clHC0 are linearly separable.

Under G-differentiability assumptions, Proposition 2.2 implies that the ap-
proximation KG is included in the set (ū, v̄) + T (0; E(Kx̄)); therefore, it can be
employed as a source of sufficient conditions for the semistationarity of x̄.

Theorem 3.4 Let −fj, j ∈ J , and gi, i ∈ I be G–differentiable at x̄. If

conv[(ū, v̄) + T (0; E(Kx̄))] ∩ riHC0
= ∅, (3.6)

then x̄ is a lower semistationary point for VOP.

Proof Under G-differentiability assumptions, by Proposition 2.2 and (3.6),
we obtain:

convKG ∩ riHC0
= ∅. (3.7)
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Recalling that the convexity ofHC0 implies riHC0 = ri(clHC0) (see Theorem 6.3
of [15]), (3.7) yields that KG and clHC0 are linearly separable. The conclusion
follows from Theorem 3.3.

Unlike the analogous condition (6) in [2], the assumption (3.6) does not
imply the optimality of the point x̄ as proved by the following example.

Example 3.1 In (1.1) set ` = p = 1 and m = 2, X = R, f(x) = −x, g1(x) =
x(1 − x), g2(x) = −x2(1 − x)2; x̄ = 0 is a feasible point, but it is not optimal,
in fact f(1) < f(0); (ū, v̄1, v̄2) = (0, 0, 0). Kx̄ = {(u, v1, v2) ∈ R3 : u = x, v1 =
x(1−x), v2 = −x2(1−x)2, x ∈ R}. Hence, Kx̄ ⊆ {(u, v1, v2) ∈ R3 : v2 ≤ 0} and
the same inclusion holds for (ū, v̄) + T (0; E(Kx̄)) and for its convex hull. This
proves that the intersection with riHC0

is empty and (3.6) is fulfilled.

Under suitable convexity assumptions, (3.6) can be simplified as shown in
the next results.

Proposition 3.1 Let −fj, j ∈ J , and gi, i ∈ I be G-differentiable at x̄, −F be
clHC0

-convexlike. If
T (0; E(Kx̄)) ∩ riHC0

= ∅, (3.8)

then x̄ is a lower semistationary point for VOP.

Proof Since −F is clHC0-convexlike, then E(Kx̄) is convex [17]. By Re-
mark 2.2 we have [(ū, v̄) + T (0; E(Kx̄))] ⊆ T (0; E(Kx̄)) and, hence, (3.8) implies
[(ū, v̄) + T (0; E(Kx̄))] ∩ riHC0

= ∅. Observing that also T (0; E(Kx̄)) is convex,
we have that (3.6) holds and applying Theorem 3.4 we complete the proof.

Proposition 3.2 Let −fj, j ∈ J , and gi, i ∈ I be G–differentiable at x̄ with
G ⊆ (−C). If

[(ū, v̄) + T (0; E(Kx̄))] ∩ riHC0
= ∅, (3.9)

then x̄ is a lower semistationary point for VOP.

Proof By Proposition 2.2 and (3.9), we obtain that KG and riHC0
have an

empty intersection. Now we prove that KG∩riHC0
= ∅ ⇔ E(KG)∩riHC0

= ∅.
To this aim, observe that, by Theorem 6.1 of [15] and since HC0

is a convex
cone, the following equalities hold:

KG − riHC0
= KG − (clHC0

+ riHC0
) = E(KG)− riHC0

.

Therefore, 0 6∈ KG− riHC0
⇔ 0 6∈ E(KG)− riHC0

. The assumption G ⊆ (−C)
implies that E(KG) is convex [4]; hence, KG and clHC0

are linearly separable
and applying Theorem 3.3 we complete the proof.

Let us observe that, if all the inequality constraints are binding at x̄, i.e.,
gi(x̄) = 0,∀i ∈ I+, then (3.9) collapses to (3.8).
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4 Applications to optimality conditions

In this section we consider problem (1.1) with inequality constraints only, and
we prove that the semistationarity of a solution is a necessary optimality con-
dition that can be expressed by means of the generalized subdifferential of the
Lagrangian function.

Proposition 4.1 Let I0 = ∅ and assume that −fj, j ∈ J and gi, i ∈ I+ are
G–differentiable at x̄, with G ⊆ (−C). If x̄ is a weak v.m.p. of VOP, then
(i) x̄ is a lower semistationary point for VOP;

(ii) there exists (ϑ̄, λ̄) ∈ (R`+ × Rm+ ) \ {O} such that O ∈ ∂(−G)L(x̄, ϑ̄, λ̄).

Proof (i) The assumptions of the proposition imply those of Theorem 5 in [6]
(see also Theorem 6.19 in [8]) , i.e. fj , j ∈ J are upper Φ–semidifferentiable at x̄,
with Φ ⊆ C, and gi, i ∈ I+ are lower Γ–semidifferentiable at x̄, with Γ ⊆ (−C).
By such a theorem, it follows that there exists a vector (ϑ̄, λ̄) ∈ (R`+×Rm+ )\{O},
such that

〈ϑ̄,DΦf(x̄;x− x̄)〉 − 〈λ̄,DΓg(x̄;x− x̄)〉 ≥ 0, ∀x ∈ X,

or, equivalently by (1.9), that

〈ϑ̄,D(−Φ)(−f)(x̄;x− x̄)〉+ 〈λ̄,DΓg(x̄;x− x̄)〉 ≤ 0, ∀x ∈ X, (4.1)

If we set −Φ = Γ = G since by assumptions D(−Φ) = DG and DΓ = DG, then
(4.1) is equivalent to the linear separation between KG and clHC0

. By Theorem
3.3, x̄ is a lower semistationary point for VOP.
(ii) As shown in the proof of (i), KG and clHC0 are linearly separable, i.e., there
exist (ϑ̄, λ̄) ∈ (R`+ × Rm+ ) \ {O} such that

〈ϑ̄,DG(−f)(x̄;x− x̄)〉+ 〈λ̄,DGg(x̄;x− x̄))〉 ≤ 0, ∀x ∈ X. (4.2)

Then, by Proposition 1.1, it follows that

〈ϑ̄,DG(−f)(x̄;x−x̄)〉+〈λ̄,DGg(x̄;x−x̄))〉 = DG(〈ϑ̄,−f〉+〈λ̄, g〉)(x̄;x−x̄) ≤ 0, ∀x ∈ X,

which, by (1.9), is equivalent to

D(−G)(〈ϑ̄, f〉 − 〈λ̄, g〉)(x̄;x− x̄) ≥ 0, ∀x ∈ X,

i.e., O ∈ ∂(−G)L(x̄, ϑ̄, λ̄).

The following corollary improves Proposition 3.2 by assuming a Slater type
regularity condition.

Corollary 4.1 Let I0 = ∅ and assume that −fj, j ∈ J , gi, i ∈ I+ are G–
differentiable at x̄, with G ⊆ (−C), and that there exists x̃ ∈ X such that

DGg(x̄; x̃− x̄) > O. (4.3)

If x̄ is a weak v.m.p. of VOP, then the thesis of Proposition 4.1 holds with
ϑ̄ 6= O.
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Proof It is enough to show that ϑ̄ 6= O in (4.2). Ab absurdo, assume that (4.2)
holds with ϑ̄ = O; then λ̄ 6= O and, taking into account (4.3), the following
inequalities hold:

0 < 〈λ̄,DGg(x̄; x̃− x̄))〉 ≤ 0,

and a contradiction is achieved.
Finally, we consider the relationships with known results in the literature

obtained by means of Dini-Hadamard derivatives [7]. To this aim, we first
provide a characterization of the concept of semistationary point in terms of
the lower Dini-Hadamard derivative.

Proposition 4.2 Given a function φ : Rn → R, x̄ ∈ Rn is a semistationary
point for φ, i.e.,

lim inf
x→x̄

φ(x)− φ(x̄)

‖x− x̄‖
≥ 0, (4.4)

iff
φ−DH(x̄; z) ≥ 0, ∀z ∈ S := {z ∈ Rn : ‖z‖ = 1}.

Proof (4.4) is equivalent to the following condition: lim inf
k→+∞

φ(xk)−φ(x̄)
‖xk−x̄‖ ≥

0, ∀{xk} → x̄. Observe that every element of the sequence {xk} → x̄ can be
equivalently expressed as xk = x̄+tkzk with zk ∈ S and tk > 0. Since {xk} → x̄
then {tk} → 0+ and, if we observe that ‖xk − x̄‖ = tk, we have that (4.4) is
equivalent to the statement

lim inf
k→+∞

φ(x̄+ tkzk)− φ(x̄)

tk
≥ 0, ∀{zk} ⊂ S, ∀{tk} → 0+. (4.5)

Moreover, the condition φ−DH(x̄; z) ≥ 0, ∀z ∈ S is equivalent to the following:

∀z ∈ S, lim inf
k→+∞

φ(x̄+ tkzk)− φ(x̄)

tk
≥ 0, ∀{zk} → z, ∀{tk} → 0+. (4.6)

Hence the statement of the proposition is equivalent to prove that (4.5)⇔ (4.6).
Only if ((4.5) ⇒ (4.6)). Ab absurdo, suppose that (4.6) does not hold; hence,
assume that there exist z̄ ∈ S and sequences {zk} → z̄, {tk} → 0+ such that

lim inf
k→+∞

φ(x̄+tkzk)−φ(x̄)
tk

< 0. Since {zk} → z̄ ∈ S, then {‖zk‖} → 1 and the

normalized sequence
{

zk
‖zk‖

}
converges to z̄ ∈ S. Let hk := tk‖zk‖, we have

that {hk} → 0+. Therefore it follows that

0 > lim inf
k→+∞

φ(x̄+ tkzk)− φ(x̄)

tk‖zk‖
= lim inf

k→+∞

φ
(
x̄+ hkzk

‖zk‖

)
− φ(x̄)

hk
.

Since
{

zk
‖zk‖

}
⊂ S and {hk} → 0+, we contradict (4.5).

If ((4.5) ⇐ (4.6)). Ab absurdo, if (4.5) does not hold, there exist sequences

{zk} ⊂ S, {tk} → 0+ such that lim inf
k→+∞

φ(x̄+tkzk)−φ(x̄)
tk

< 0. Since S is compact,
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then {zk} admits a subsequence {sh} := {zkh} converging to a point z̄ ∈ S and

such that, letting {th} := {tkh}, lim inf
k→+∞

φ(x̄+thsh)−φ(x̄)
th

< 0. This is against (4.6)

and we achieve a contradiction.
From Proposition 4.2 and since the Dini-Hadamard derivative is a positively

homogeneous function, it follows that (3.1a) can be replaced by to L−DH(x̄, ϑ̄, λ̄; z) ≥
0, ∀z 6= 0.

Now, let us recall Theorem 2.1 of [18], where it is affirmed that, if G is
a subset of the continuous positively homogeneous functions and φ is upper
G-semidifferentiable at x̄, then

φ+
DH(x̄; z) ≤ DGφ(x̄; z), ∀z ∈ X − x̄.

Under the same assumption on G, if φ is lower G-semidifferentiable at x̄, then

φ−DH(x̄; z) ≥ DGφ(x̄; z), ∀z ∈ X − x̄.

Hence, by definition of Dini-Hadamard derivatives, it turns out that

DGφ(x̄; z) ≤ φ−DH(x̄; z) ≤ φ+
DH(x̄; z) ≤ DGφ(x̄; z), ∀z ∈ X − x̄. (4.7)

If, furthermore, φ is G-differentiable at x̄, then DGφ(x̄; z) = DGφ(x̄; z); from
(4.7) it follows that

DGφ(x̄; z) = lim
t→0+

y→z

φ(x̄+ ty)− φ(x̄)

t
=: φDH(x̄, z), ∀z ∈ X − x̄. (4.8)

By Theorem 3.3 the semistationarity of x̄ is characterized by the linear
separation between KG and HC0

; therefore, there exist θ̄ ∈ R`+; λ̄i ∈ R, i ∈ I0;
λ̄i ≥ 0, i ∈ I+, with (θ̄, λ̄) 6= O such that

〈θ̄,DG(−f(x̄; z))〉+ 〈λ̄,DGg(x̄; z)〉 ≤ 0, ∀z ∈ X − x̄,

or equivalently, by the positively homogeneity of DGf and DGg,

〈θ̄,DG(−f(x̄; z))〉+ 〈λ̄,DGg(x̄; z)〉 ≤ 0, ∀z ∈ cl(cone(X − x̄)).

Since X is convex, then cl(cone(X − x̄)) = T (x̄;X). Moreover, if in Theorem
3.3 the G is a subset of the continuous positively homogeneous functions, then
by (4.8), the previous condition collapses to

〈θ̄, (−fDH(x̄; z))〉+ 〈λ̄, gDH(x̄; z)〉 ≤ 0, ∀z ∈ T (x̄;X).

Hence, we have obtained the Fritz John conditions as defined in Remark 3.2 of
[7].
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5 Concluding remarks

We have considered an approximation of a vector optimization problem ob-
tained by replacing the objective and the constraint functions by means of their
G-derivatives. After analysing in details such an approximation scheme, we
have deepened the connections with the semistationarity of the generalized La-
grangian function associated with the vector optimization problem; furthermore,
we have studied the relationships with classic necessary optimality conditions
obtained by means of Dini-Hadamard derivatives.
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