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Abstract

This paper extends the classical repeated duopoly model with quantity-setting firms of
Bischi et al. (1998) by assuming that production of goods is subject to some gestation lags
but exchanges take place continuously on the market. The model is expressed in the form of
differential equations with discrete delays. By using some recent mathematical techniques
and numerical experiments, results show some dynamic phenomena that cannot be observed
when delays are absent. In addition, depending on the extent of time delays and inertia,
synchronisation failure can arise even in the event of homogeneous firms.
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1 Introduction

The literature on nonlinear duopolies has developed models to study the behaviour of quantity-
setting firms with limited information in a discrete time context (Bischi et al., 1998, 2007). The
main aim of these works was essentially to question the results of stability of equilibria in dynamic
models under the hypotheses of rational expectations (that require strong assumptions, such as,
e.g., full information of decision makers and the efficient use of the set of available information)
and homogeneous economic agents, showing that models with more realistic assumptions such
as "bounded rationality" and heterogeneity may predict instability and more complex long-term
dynamics. Since obtaining and using efficiently information is costly, agents may adopt some
behavioural rules to overcome their informational lacunae and try to go beyond the restrictions
implied by the rational expectations paradigm, for which instability of equilibria is essentially
related to the existence of exogenous stochastic shocks. Then, the emergence of endogenous
fluctuations and chaotic motions, and the study of the topology of the basins of attraction
(to emphasise the crucial role played by initial conditions that may lead economies starting by
looking very similar to end up with very different long-term outcomes), represent some of the
most relevant findings.

The majority of contributions in this literature has used a discrete time framework because
production processes may require gestation lags (time-to-build technology). Nevertheless, it
seems reasonable to consider that markets work on a continuous time scale where trading takes

∗L. Gori, Department of Law, University of Genoa, Via Balbi, 30/19, I—16126 Genoa (GE), Italy, e-mail:
luca.gori@unige.it or dr.luca.gori@gmail.com, tel.: +39 010 209 95 03, fax: +39 010 209 55 36.

†L. Guerrini (corresponding author), Department of Management, Marche Polytechnic University, Piazza
Martelli 8, I—60121, Ancona (AN), Italy, e-mail: luca.guerrini@univpm.it, tel.: +39 071 22 07 055.

‡M. Sodini, Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, I—56124
Pisa (PI), Italy, e-mail: mauro.sodini@unipi.it, tel.: +39 050 22 16 234, fax: +39 050 22 10 603.

1



place repeatedly. Precisely because of the coexistence of continuous time and discrete time
phenomena, a modelling approach characterised by differential equations with discrete delays
seems to be a good compromise to capture the essence of the behaviour of economic agents in
this context. The starting point of the present paper, therefore, is the discrete time repeated
Cournot duopoly of Bischi et al. (1998), with the aim of studying it in continuous time with
discrete delays. To this end, in this work we use the method proposed by Berezowski (2001) - and
adopted by Matsumoto and Szidarovszky (2014) in the economic literature to describe complex
dynamics in a monopoly market - by introducing a form of inertia to capture in a more realistic
way the existence of frictions in the production process. The paper provides some findings about
local and global bifurcations and chaotic dynamics that cannot be observed in both discrete
time models and continuous time models without discrete delays. The introduction of discrete
time delays and inertia may cause chaotic dynamics even in the event of homogeneous firms.
In addition, when a certain form of heterogeneity is introduced (e.g., by considering different
degrees of inertia and/or different lengths in production processes), it is possible to observe
synchronisation failures and complex dynamics.

The rest of the paper proceeds as follows. Section 2 builds on the model. Section 3 describes
the dynamic setting. Section 4 studies the particular case of homogeneous degrees of both
inertia and production gestation lags (dynamics on the diagonal). Section 5 analyses existence
and stability of the equilibrium when 1) only one of the two firms produces with time lags,
and 2) both firms have production gestation lags. Section 6 deepens the analysis of the case of
homogeneous production gestation lags by applying some recent techniques proposed by Chen
et al. (2013). Section 7 outlines the conclusions and briefly discusses future research.

2 The model

We consider a Cournot duopoly for a single homogeneous product with normalised linear inverse
demand given by p = 1−X, where p is the market price and X < 1 is the sum of output x1 ≥ 0
and output x2 ≥ 0 produced by firm 1 and firm 2, respectively. The average and marginal cost
of producing an additional unit of output is 0 < k < 1 for every firm. Therefore, the technology
of firm i = 1, 2 has constant marginal returns to labour (Li) and it is equal to xi = Li. Profits
of firm i are expressed as follows:

Πi = (p− k)xi = (1− x1 − x2 − k)xi, i = 1, 2. (1)

3 Dynamics

A classical work in the discrete time literature on nonlinear oligopolies is Bischi et al. (1998),
where it is assumed that each firm i does not have a global knowledge of the market but it is
able to correctly estimate its own marginal profit at time t given by

∂Πi(t)

∂xi(t)
= 1− 2xi(t)− xj(t)− k, (2)

and then uses (2) to choose that quantity that will be produced at time t + 1 by using the
following behavioural rule:

xi(t + 1) = xi(t) + αxi(t)
∂Πi(t)

∂xi(t)
, i = 1, 2 (3)
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where α > 0. This mechanism aims at capturing the "real world" evolution of economic variables
(where fluctuations seem to be more plausible than the monotonic approach of the corresponding
variables to stationary state values) in a context in which oscillations are not related to any
exogenous stochastic influences.

We now clarify the reasons why we adopt a continuous time model with discrete delays to
study the behaviour of quantity-setting firms over time. In the discrete time model of Bischi
et al. (1998) there are two distinct implicit assumptions. 1) Firms perfectly realise production
plans period by period through (3). This may represent a strong assumption especially when the
time required to produce goods is long. 2) Trading takes place in discrete time (t = 0, 1, 2, ...)
in the market, so that in the intervals between two subsequent periods production occurs but
trading does not. The market price is in fact realised only for t ∈ N .

This last consideration is closely related to the (still open) debate about whether it is better
to build on models in discrete time or continuous time to describe and explain some economic
phenomena, especially in financial markets (He and Zheng, 2010; He and Li, 2012). Indeed,
this debate is not only philosophical but there may produce relevant differences in both the
mathematical properties (especially under bounded rationality of agents) and final outcomes
of models. For instance, Dixit (1986) studies a continuous time oligopoly model where firms
uses an adjustment mechanism similar to the one used by Bischi et al. (1998), and finds that
dynamics converge to the stationary state that results therefore to be representative of long-term
behaviours of economic variables.

A modelling approach that can somehow overcome problems related to the temporal dimen-
sion of production plans and the functioning of markets is one that includes the time-to-build
technology in continuous time (this kind of models were introduced for the study of problems re-
lated, for instance, to economic growth, e.g., Asea and Zak, 1999; Matsumoto and Szidarovszky,
2011; Guerrini and Sodini, 2013; Bambi and Gori, 2014; Ferrara et al., 2014). With regard to
the issue of the functioning of markets with time-to-build technology, we recall the work of Mat-
sumoto and Szidarovszky (2012) that studies a monopoly with bounded rationality. In order to
include also problems related to the difficulty of adjusting production over time, we consider the
modelling approach proposed by Berezowski (2001) and introduced in the economic literature by
Matsumoto and Szidarovszky (2014). Specifically, we assume the existence of a friction in the
production process so that the adjustment of quantities chosen by firm i at time t− τ i for time
t is not perfectly achieved but it is subject to a feedback that acts in the opposite direction with
respect to the instantaneous change in the quantity produced at the time t, that is ẋ(t).

Definitely, a possible compromise in the debate between discrete time models and continuous
time models is the use of a continuous time framework with time discrete delays (also augmented
with frictions to capture the idea that production plans do not perfectly adjust from one period
to another). In particular, the model is given by the following two-dimensional system with
distinct time delays:

�
σ1ẋ1(t) + x1(t) = x1(t− τ1) + αx1(t− τ1) [1− k − 2x1(t− τ1)− x2(t− τ1)] ,

σ2ẋ2(t) + x2(t) = x2(t− τ2) + αx2(t− τ2) [1− k − 2x2(t− τ2)− x1(t− τ2)] ,
(4)

where σ1, σ2 ≥ 0 weights the inertia in the production process of firm 1 and firm 2, respectively,
and τ1, τ2 ≥ 0 are two parameters that capture time delays. We note that dynamic system
(4) is the continuous time version with different discrete time delays of the discrete time two-
dimensional system of Bischi et al. (1998) with normalised inverse demand. Specifically, when
σ1 = σ2 = 0 and τ1 = τ2 = 1 (4) replicates the two-dimensional discrete time map of Bischi et
al. (1998) given by (3).
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4 Dynamics on the diagonal

In the particular case τ1 = τ2 = τ and σ1 = σ2, and by assuming the same initial conditions
(i.e., x1(t) = x2(t) ∀t ∈ [−τ , 0]), dynamics are described by the following equation:

σ1ẋ1(t) + x1(t) = x1(t− τ) + αx1(t− τ) [1− k − 3x1(t− τ)] , (5)

and lie on the diagonal. In this case the two firms produce and sell the same quantity on
the market for any t (synchronised trajectories). However, although there are some strong
assumptions of symmetry long-term dynamics may show complex behaviours.

Obviously, x∗1 = (1 − k)/3 is the unique positive equilibrium of Eq. (5). In order to study
the stability properties, by setting x = x1 − x∗1 we consider the following linearization of (5) at
x = 0:

ẋ(t) = − 1

σ1
x(t) +

1− 3αx∗1
σ1

x(t− τ). (6)

The characteristic equation corresponding to (6) is

λ +
1

σ1
− 1− 3αx∗1

σ1
e−λτ = 0. (7)

For τ = 0, the only root of (7) is λ = −3αx∗1/σ1 < 0. Hence, the equilibrium point of system
(5) is locally asymptotically stable. Clearly, λ = 0 is not a root of (7). Suppose that λ = iω
(ω > 0) is a root of Eq. (7). Then we get

ω = −1− 3αx∗1
σ1

sinωτ,
1

σ1
=

1− 3αx∗1
σ1

cosωτ,

which implies

ω2 =

�
1− 3αx∗1

σ1

�2
−
�

1

σ1

�2
=

3αx∗1(3αx∗1 − 2)

σ21
.

This is possible if and only if α > 2/(1− k). It is immediate that when α ≤ 2/(1− k), all roots
of (7) have negative real parts. For α > 2/(1− k), let

τ0 =
1

ω0

�
tan−1 (−σ1ω0) + π

�
, (8)

where

ω0 =
1

σ1

�
3αx∗1(3αx∗1 − 2).

A direct computation shows that λ = iω0 is a simple root for (7). Let λ (τ) denote the root of
Eq. (7) satisfying Re(τ0) = 0 and Im(τ0) = ω0. We can obtain

�
dλ

dτ

�−1
= − 1

λ

�
λ +

1

σ1

� − τ

λ
.

Hence

sign

�
dRe(λ)

dτ

�

τ=τ0

= sign

	

Re

�
dλ

dτ

�−1


τ=τ0

= sign

�
σ21

σ21ω
2
0 + 1

�
> 0.

We have the following result.
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Theorem 1 Let τ0 be defined as in (8).

1) If α ≤ 2/(1− k), then the equilibrium x∗1 is locally asymptotically stable for all τ ≥ 0.

2) If α > 2/(1− k), then the equilibrium x∗1 is locally asymptotically stable for τ ∈ [0, τ0) and
unstable for τ > τ0. Furthermore, Eq. (5) undergoes a Hopf bifurcation at x∗1 when τ = τ0.

By considering the parameter set α = 5.7, σ1 = 0.3, k = 0.6 Figure 1 panel a illustrates a
limit cycle for τ = 1 born after the Hopf bifurcation (τ0 ≃ 0.92646), while Figure 1 panel b shows
stability and instability regions in the parameter space (α, σ, τ). This last figure shows that the
stabilizing (resp. destabilizing) role of σ1 (resp. α), that is for larger values of σ1 (resp. α) the
fixed point is destabilized for larger (resp. lower) values of τ .

Figure 1. (a) Hopf bifurcation for τ (τ = 1). (b) Stability and instability regions in the
parameter space (α,σ, τ). Regions of stability (resp. instability) are below (resp. above) the red
plane in Figure 1.b.

Until now we have formally characterised the local stability properties of the stationary
equilibrium. In order to get some insights about the global properties of system (5), we will
consider some numerical simulations that allow us to understand the role of α, σ1 and τ .

For the first numerical exercise, we take the parameter set α = 7, k = 0.6, τ = 1.5 and let
σ1 vary (the initial condition is x1(t) = 0.15, with −1.5 ≤ t ≤ 0). We note that by starting
from a discrete time dynamic system characterised by chaos (σ1 = 0), Figure 2 panel a shows
that when the degree of inertia (σ1) increases the system tends to converge towards a ω-limit
set characterised by more and more regular dynamics until σ1 ≃ 1.0394, after which trajectories
that start from initial conditions close enough to the fixed point converge towards it.1

The role of α on the dynamics of system (5) is the same as that played in Bischi et al. (1998)
for homogeneous firms. In particular, Figure 2 panel b - obtained for k = 0.6, σ1 = 0.3 and τ = 1
- shows the evolution of the dynamics of the system restricted on the diagonal when α varies.
If α < 5.6243 the system converges towards the fixed point. An increase in α causes a cascade
of period-doubling bifurcations that eventually lead to chaotic dynamics (also confirmed by the
calculus of the maximum Lyapunov exponent)2 for sufficiently high values of α.

1 Initial conditions that start too far from the stationary equilibrium generate non-feasible trajectories that
involve negative values of the state variable.

2The maximum Lyapunov exponent can be computed by starting from the time series generated by the system,
for instance through the use of the Wolf algorithm.
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Consider now the behaviour of system (5) when τ varies. The Hopf bifurcation found at
τ = τ0 is the first step towards more complex and eventually chaotic dynamics, as shown in
Figure 2 panel c plotted for the parameter set: α = 8, k = 0.6 and σ1 = 1 (initial condition
x1(t) = 0.15, with −τ ≤ t ≤ 0). Figure 2 panel d also shows the chaotic behaviour of the system
over time for this parameter set and τ = 2.8.

Figure 2. (a) Bifurcation diagram for σ1. (b) Bifurcation diagram for α. (c) Bifurcation
diagram for τ . (d) Time series for the parameter set as in panel c and τ = 2.8. The bifurcation
diagrams show the birth and evolution of local maxima and local minima when one parameter
varies. By looking for instance at Figure 2.a, it is possible to deduce that by starting from a
situation in which some local maxima and local minima exist for the generic trajectory, it is
possible to have the birth of new local maxima and local minima that start from the inflexion
points that lie between maxima and minima. This phenomenon - that can be seen by looking
also at Figures 2.b and 2.c - is pointed out by the existence of interrupted branches in the figures.

5 Existence and stability of positive equilibrium

In this section, we shall study the stability of the positive fixed point and existence of Hopf
bifurcation of system (4) through the study of the distribution of the eigenvalues.

Lemma 2 System (4) has a unique positive equilibrium (x∗1, x
∗
1), where x∗1 = (1− k)/3.
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Proof. One can see that (x∗1, x
∗
2) is an equilibrium of system (4) if and only if (x∗1, x

∗
2) solves

�
x∗1 (1− k − 2x∗1 − x∗2) = 0,

x∗2 (1− k − 2x∗2 − x∗1) = 0.

A direct computation shows that this leads to (0, 0), (0, (1 − k)/2), ((1 − k)/2, 0) and ((1 −
k)/3, (1− k)/3). This completes the proof.

Setting x = x1 − x∗1, y = x2 − x∗1, and linearizing the resulting system at (0, 0), we have






ẋ(t) = − 1

σ1
x(t) +

(1− 2αx∗1)

σ1
x(t− τ1)−

αx∗1
σ1

y(t− τ1),

ẏ(t) = − 1

σ2
y(t)− αx∗1

σ2
x(t− τ2) +

(1− 2αx∗1)

σ2
y(t− τ2).

(9)

The characteristic equation associated with (9) is given by

���������

− 1

σ1
− λ +

(1− 2αx∗1)

σ1
e−λτ1 −αx∗1

σ1
e−λτ1

−αx∗1
σ2

e−λτ2 − 1

σ2
− λ +

(1− 2αx∗1)

σ2
e−λτ2

���������

= 0,

namely

λ2 +

�
1

σ1
+

1

σ2

�
λ +

1

σ1σ2
+

�
−(1− 2αx∗1)

σ1σ2
− (1− 2αx∗1)

σ1
λ

�
e−λτ1

+

�
−(1− 2αx∗1)

σ1σ2
− (1− 2αx∗1)

σ2
λ

�
e−λτ2 +

�
(1− 2αx∗1)

2 − (αx∗1)
2

σ1σ2

�
e−λ(τ1+τ2) = 0. (10)

Lemma 3 Let τ1 = τ2 = 0. The equilibrium point of system (4) is locally asymptotically stable.

Proof. In the absence of delay, Eq. (10) becomes

λ2 +

��
1

σ1
+

1

σ2

�
2αx∗1

�
λ +

3(αx∗1)
2

σ1σ2
= 0.

Clearly �
1

σ1
+

1

σ2

�
2αx∗1 > 0,

3(αx∗1)
2

σ1σ2
> 0.

Hence, all roots have negative real parts. The conclusion is immediate.

In what follows we will show that the existence of delays can destabilize the equilibrium
point. In particular, we will start the analysis by letting τ2 vary when τ1 is fixed at zero and we
will find some hypotheses such that there exists a threshold value of τ2 (i.e., τ20) that separates
the stability and instability regions for the stationary solution. In addition, we will deepen the
stability properties in the case in which τ2 ∈ [0, τ20) and let τ1 vary.
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5.1 The case τ1 = 0, τ2 > 0

The characteristic equation (10) takes the form

λ2 + pλ + r + (sλ + q) e−λτ2 = 0, (11)

where

p =
1

σ2
+

2αx∗1
σ1

, r =
2αx∗1
σ1σ2

, s = −(1− 2αx∗1)

σ2
and q =

(3αx∗1 − 2)αx∗1
σ1σ2

.

The stability of the trivial equilibrium point will change when the system under consideration
has zero or a pair of imaginary eigenvalues. The former cannot occur since it would give the
contradiction x∗1 = 0. Let λ = iω (ω > 0) be a purely imaginary root of (11). Then substituting
λ = iω in (11), and separating the real and imaginary parts, we have

ω2 − r = q cosωτ2 + sω sinωτ2, pω = −sω cosωτ2 + q sinωτ2. (12)

Squaring and adding yields that ω satisfies

ω4 −
�
s2 − p2 + 2r

�
ω2 + r2 − q2 = 0, (13)

We notice that

r2 − q2 =
3(αx∗1)

3(−3αx∗1 + 4)

σ21σ
2
2

, (14)

s2 − p2 + 2r =
4αx∗1

�
(σ21 − σ22)αx∗1 − σ21

�

σ21σ
2
2

. (15)

Lemma 4 Let α = 4/(1− k).

1) If σ1 ≤ 2σ2, then Eq. (13) has no positive root. In particular, this holds true for σ1 = σ2.

2) If σ1 > 2σ2, then Eq. (13) has only one positive root ω0, where

ω0 =
4

3σ1σ2

�
σ21 − 4σ22.

Proof. Since −3αx∗1 + 4 = 0 we have r2− q2 = 0. Thus, Eq. (13) yields ω2 = s2− p2 + 2r. The
statement follows noting that sign(s2 − p2 + 2r) = sign(σ21 − 4σ22).

Lemma 5 Let α �= 4/(1− k).

1) Let σ1 = σ2.

a) If α < 4/(1− k), then Eq. (13) has no positive root.

b) If α > 4/(1− k), then Eq. (13) has only one positive root ω0, where

ω0 =

�
αx∗1(3αx∗1 − 4)

σ1
.

2) Let σ1 �= σ2.
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a) Let α < 4/(1− k).

• If σ1 ≤ 2σ2, or σ1 ≥ 2σ2 and αx∗1 ≤ σ21/(σ21 − σ22), then Eq. (13) has no positive root.

• If σ1 > 2σ2 and σ21/(σ21 − σ22) < αx∗1, then Eq. (13) have no positive root if sign(∆) < 0,
one positive root ω0 if sign(∆) = 0, with

ω0 =

�
αx∗1

σ1σ2

�
2 [(σ21 − σ22)αx∗1 − σ21],

and two positive roots ω± if sign(∆) > 0, with

ω± =

�
αx∗1

σ1σ2

�
2 [(σ21 − σ22)αx∗1 − σ21]±

√
M,

where
sign(∆) = sign (M) ,

and
M =

�
4σ41 + 4σ42 + σ21σ

2
2

�
(αx∗1)

2 − 4σ41
�
2σ41 + σ22

�
αx∗1 + 4σ41. (16)

b) If α > 4/(1− k), then Eq. (13) has only one positive root ω0, where

ω0 =

�
αx∗1

σ1σ2

�
2 [(σ21 − σ22)αx∗1 − σ21] +

√
M.

Proof.

1) Let σ1 = σ2. Eq. (13) becomes

ω4 +
4αx∗1
σ21

ω2 +
3(αx∗1)

3(−3αx∗1 + 4)

σ41
= 0. (17)

a) The statement is immediate being the left hand side of (17) a positive number.

b) Eq. (17) gives

ω2 =
−αx∗1 [2± (−3αx∗1 + 2)]

σ21

and so the conclusion.

2) Let σ1 �= σ2.

a) We have r2 − q2 > 0 and sign(−
�
s2 − p2 + 2r

�
) = sign((σ22 − σ21)αx∗1 + σ21). If σ2 > σ1,

then Eq. (13) has no positive solution since −
�
s2 − p2 + 2r

�
> 0. If σ2 < σ1, then

−
�
s2 − p2 + 2r

�
� 0.

i) If αx∗1 = σ21/(σ21 − σ22), then −
�
s2 − p2 + 2r

�
= 0. If σ1 ≤ 2σ2, then σ21/(σ21 − σ22) ≥ 4/3

and so the hypothesis α < 4/(1− k) implies that (σ22 − σ21)αx∗1 + σ21 = 0 is not possible. If
σ1 > 2σ2, then (σ22 − σ21)αx∗1 + σ21 = 0 holds since αx∗1 = σ21/(σ21 − σ22) < 4/3.

ii) If (σ22 − σ21)αx∗1 + σ21 > 0, then −
�
s2 − p2 + 2r

�
> 0. Hence, αx∗1 < σ21/(σ21 − σ22). If

σ1 ≤ 2σ2 then σ21/(σ21 − σ22) ≥ 4/3 and so the hypothesis α < 4/(1 − k) implies that
(σ22 − σ21)αx∗1 + σ21 > 0 is always true. If σ1 > 2σ2, then σ21/(σ21 − σ22) < 4/3 and so
(σ22 − σ21)αx∗1 + σ21 > 0 holds if αx∗1 < σ21/(σ21 − σ22).
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iii) If (σ22 − σ21)αx∗1 + σ21 < 0, then −
�
s2 − p2 + 2r

�
< 0. Hence, αx∗1 > σ21/(σ21 − σ22). If

σ1 ≤ 2σ2, then σ21/(σ21−σ22) ≥ 4/3 and so (σ22−σ21)αx∗1+σ21 < 0 is not possible. If σ1 > 2σ2,
then σ21/(σ21−σ22) < 4/3 and so (σ22−σ21)αx∗1 +σ21 < 0 holds if σ21/(σ21− σ22) < αx∗1 < 4/3.

To sum up the analysis in i)− iii) :

I) If σ1 ≤ 2σ2, or σ1 > 2σ2 and αx∗1 < σ21/(σ21 − σ22), then −
�
s2 − p2 + 2r

�
> 0. Hence, Eq.

(13) has no positive root.

II) If σ1 > 2σ2 and αx∗1 = σ21/(σ21 − σ22), then −
�
s2 − p2 + 2r

�
= 0. Hence, Eq. (13) has no

positive root.

III) If σ1 > 2σ2 and σ21/(σ21 − σ22) < αx∗1, then −
�
s2 − p2 + 2r

�
< 0. Now from

∆ =
�
s2 − p2 + 2r

�2 −
�
r2 − q2

�
,

(14) and (15), we find

sign(∆) = sign
��

4σ41 + 4σ42 + σ21σ
2
2

�
(αx∗1)

2 − 4σ41
�
2σ41 + σ22

�
αx∗1 + 4σ41

�
.

Therefore, we can conclude that

� if sign(∆) = 0, then Eq. (13) has only one positive root ω0, where

ω0 =

�
s2 − p2 + 2r

2
;

� if sign(∆) < 0, then Eq. (13) has no positive root;

� if sign(∆) > 0, then Eq. (13) has two positive roots ω±, where

ω± =

�
s2 − p2 + 2r ±

√
∆

2
.

The statement follows by using (14) and (15).

b) We have r2− q2 < 0 and ∆ =
�
s2 − p2 + 2r

�2−
�
r2 − q2

�
> 0. Therefore, from (13) we get

ω2 =
s2 − p2 + 2r ±

√
∆

2
,

which yields

ω0 =

�
s2 − p2 + 2r +

√
∆

2
.

Now use (14) and (15). If Eq. (13) has a unique positive root ω0, then from (12) we can
determine

τ2n =
1

ω0
cos−1

�
(q − ps)ω20 − rq

s2ω20 + q2

�
+

2nπ

ω0
, n = 0, 1, 2, ... (18)

at which Eq. (11) has a pair of purely imaginary roots ±iω0. Similarly, if Eq. (13) has
two positive root ω±, the characteristic equation (11) has purely imaginary roots when τ2
takes the critical values

τ±2j =
1

ω±
cos−1

�
(q − ps)ω2

±
− rq

s2ω2± + q2

�

+
2jπ

ω±
, j = 0, 1, 2, ... (19)
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Proposition 6 Let λ (τ2) be the root of (11) satisfying Re(τ2n) = 0 (resp. Re(τ±2j ) = 0) and

Im(τ2n) = ω± (resp. Re(τ±2j ) = ω±). Then

�
dRe(λ)

dτ2

�

τ=τ2n,ω=ω0

> 0,

�
dRe(λ)

dτ2

�

τ=τ+
2j
,ω=ω+

> 0,

�
dRe(λ)

dτ2

�

τ=τ−
2j
,ω=ω−

< 0.

Proof. Substituting λ (τ2) into (11) and taking the derivative with respect to τ2, we get

�
dλ

dτ2

�−1
=

(2λ + p)eλτ2 + s

λ(sλ + q)
− τ2

λ
. (20)

Now (11) yields eλτ2 = − (sλ + q) /(λ2 + pλ + r). Hence, using this identity and (12) in (20) we
arrive at

sign

�
dRe(λ)

dτ2

�

λ=iω

= sign

	

Re

�
dλ

dτ2

�−1


λ=iω

= sign

�
p2 − 2(r − ω2)

p2ω2 + (ω2 − r)2
− s2

s2ω2 + q2

�

= sign
�
p2 − 2r − s2 + 2ω2

�

where ω = ω0 or ω = ω±. If ω = ω0, then sign
�
p2 − 2r − s2 + 2ω2

�
= +1, while if ω = ω±,

then sign
�
p2 − 2r − s2 + 2ω2

�
= sign

�
±
√

∆
�
, namely the sign is positive for ω+ and negative

for ω−.

The previous Proposition implies that if only one imaginary root iω0 exists for (11), then
only crossing of the imaginary axis from left to right is possible as τ2 increases. Thus, stability
of the equilibrium is lost but not regained. On the other hand, if two imaginary roots iω± exist
for (11), then crossing from left to right with increasing τ2 occurs whenever τ2 assumes a value
corresponding to ω+, and crossing from right to left occurs for values of the τ2 corresponding to
ω−.

Theorem 7 Let M, τ2n , τ
±

2j
be defined as in (16), (18) and (19), respectively.

1) If αx∗1 = 4/3 and σ1 ≤ 2σ2, or αx∗1 < 4/3 and σ1 = σ2, or αx∗1 < 4/3 and σ1 ≤ 2σ2, or
αx∗1 < 4/3, σ1 ≥ 2σ2 and αx∗1 ≤ σ21/(σ21−σ22), or αx∗1 < 4/3, σ1 > 2σ2, σ

2
1/(σ21−σ22) < αx∗1

and M < 0 hold, then the equilibrium (x∗1, x
∗
1) is locally asymptotically stable for all τ2 ≥ 0.

2) If αx∗1 = 4/3 and σ1 > 2σ2, or αx∗1 > 4/3, or αx∗1 < 4/3, σ1 > 2σ2, σ
2
1/(σ21 − σ22) < αx∗1

and M = 0 hold, then the equilibrium (x∗1, x
∗
1) is locally asymptotically stable for τ2 < τ20

and unstable for τ2 > τ20 . Furthermore, system (4) undergoes a Hopf bifurcation at (x∗1, x
∗
1)

when τ2 = τ20 if the corresponding root λ = iω0 of (11) is simple.

3) If αx∗1 < 4/3, σ1 > 2σ2, σ21/(σ21 − σ22) < αx∗1 and M > 0 hold, then there is a positive
integer m such that the equilibrium (x∗1, x

∗
1) is locally asymptotically stable when τ2 ∈

[0, τ+20) ∪ (τ−20 , τ
+
21

) ∪ · · · ∪ (τ−2m−1
, τ+2m) and unstable when τ2 ∈ (τ+20 , τ

−

20
) ∪ (τ+21 , τ

−

21
) ∪

· · · ∪ (τ+2m−1
, τ−2m−1

) ∪ (τ+2m ,∞). Furthermore, system (4) undergoes a Hopf bifurcation at

(x∗1, x
∗
1) when τ2 = τ±2m, m = 0, 1, 2, ..., if the corresponding root λ = iω± of (11) is simple.

11



Proof. Since Eq. (11) is stable for τ2 = 0, then necessarily τ+20 < τ−20 . From τ+2j+1 − τ+2j =

2π/ω+ < 2π/ω− = τ−2j+1 − τ−2j , we have that there exists an integer m > 0 such that 0 < τ+20 <

τ−20 < τ+21 < · · · < τ−2m−1
< τ+2m and there are m switches from stability to instability to stability,

that is when τ2 ∈ [0, τ+20) ∪ (τ−20 , τ
+
21

) ∪ · · · ∪ (τ−2m−1
, τ+2m) all root of Eq. (11) have negative real

parts, and when τ2 ∈ (τ+20 , τ
−

20
) ∪ (τ+21 , τ

−

21
) ∪ · · · ∪ (τ+2m−1

, τ−2m−1
) and τ2 > τ+2m Eq. (11) has

at least one root with positive real part. The statement follows from the previous Lemmas and
Proposition.

Remark 8 If
�
d
�
λ2 + pλ + r + (sλ + q) e−λτ2

�
/dτ2

�
λ=iω̂

�= 0, where ω̂ = ω0, ω±, then λ = iω̂
is a simple root of (11).

5.2 The case τ1 > 0 and τ2 fixed in the interval [0, τ 20)

We consider Eq. (10) with τ2 in its stable interval, i.e. τ2 ∈ [0, τ20), and τ1 is regarded as a
parameter. It is convenient to rewrite the characteristic equation (10) as

λ2 + Aλ + B + (C + Dλ) e−λτ1 + (C + Eλ) e−λτ2 + Fe−λ(τ1+τ2) = 0, (21)

where

A =
1

σ1
+

1

σ2
, B =

1

σ1σ2
, C = −(1− 2αx∗1)

σ1σ2
, D = −(1− 2αx∗1)

σ1
,

E = −(1− 2αx∗1)

σ2
, F =

(1− 2αx∗1)
2 − (αx∗1)

2

σ1σ2
.

The complicated form of (21) is an obstruction to predict nature of roots. For analytical reasons
and in order to avoid cumbersome calculations, we now focus on the study of Eq. (21) under the
following assumption.

Assumption A.1 αx∗1 > 4/3.

In this case, the characteristic equation (21) has only a pair of purely imaginary roots ±iω0.

Remark 9 When 3(αx∗1)
2 − 4αx∗1 + 1 = 0, i.e. if αx∗1 = 1 or αx∗1 = 1/3 then F = 0. In this

case, the term e−λ(τ1+τ2) vanishes and Eq. (21) boils down to

λ2 + Aλ + B + (C + Dλ) e−λτ1 + (C + Eλ) e−λτ2 = 0.

Furthermore, from Theorem 7 we have that the equilibrium (x∗1, x
∗
1) is locally asymptotically

stable for every τ2 ≥ 0. Since αx∗1 > 4/3, the analysis of these two cases will not be not included
in our discussion.

It is clear that λ = 0 is not a solution of (21). If it were, then we would have 3(αx∗1)
2 = 0,

which is impossible having this equation no real solution. Let λ = iω (ω > 0) be a root of (21).
Similar to what done in the previous section, by separating real and imaginary parts, after long
and tedious calculations, we can get

g(ω) = 0, (22)

12



where

g(ω) = ω4 +
�
A2 + E2 − 2B −D2

�
ω2 + B2 − F 2

+ 2
�
(DF −AC + BE)ω −Eω3

�
sinωτ2

+ 2
�
−CF + BC + (AE −C)ω2

�
cosωτ2.

Since αx∗1 > 4/3 one has

g(0) = −3(αx∗1)
3(3αx∗1 − 4)

σ21σ
2
2

< 0.

Moreover, g(+∞) = +∞. Hence, we obtain that (22) has at least one positive root. From the
expression of g(ω) we have that (22) has finite positive roots ω1, ω2, ..., ωN . For every fixed ωl,
l = 1, 2, ..., N, there exists a sequence τj1l > 0 (j = 1, 2, ...) such that such that (22) holds. Let

τ10 = min
�
τ j1l , l = 1, 2, ..., N, j = 1, 2, ...

�
.

When τ1 = τ10 the characteristic equation (21) has a pair of purely imaginary roots ±iω̃ for
τ2 ∈ [0, τ20). Let λ (τ1) be the root of (21) near τ1 = τ10 satisfying Re(τ10) = 0 and Im(τ10) = ω̃.
Differentiating (21) with respect to τ1, we get

�
dλ

dτ1

�−1
=

2λ + A + De−λτ1 + Ee−λτ2 − (C + Eλ)τ2e−λτ2 − Fτ2e−λ(τ1+τ2)

λ
�
(C + Dλ)e−λτ1 + Fe−λ(τ1+τ2)

� − τ1
λ

.

Using (21), this becomes

�
dλ

dτ1

�−1
= −2λ + A + De−λτ1 + Ee−λτ2 + τ2

�
λ2 + Aλ + B + (C + Dλ) e−λτ1

�

λ
�
λ2 + Aλ + B + (C + Eλ) e−λτ2

� − τ1
λ

,

Substituting τ1 = τ10 we get

�
dλ

dτ1

�−1

τ1=τ10

=
a1 + ia2

ω̃ (b1 − ib2)
− τ10

iω̃
,

where

a1 = A + D cos ω̃τ10 + E cos ω̃τ2 + τ2
�
−ω̃2 + B + C cos ω̃τ10 + Dω̃ sin ω̃τ10

�
,

a2 = 2ω̃ −D sin ω̃τ10 −E sin ω̃τ2 + τ2 (Aω̃ −C sin ω̃τ10 + Dω̃ cos ω̃τ10) ,

b1 = Aω̃ −C sin ω̃τ2 + Eω̃ cos ω̃τ2,

b2 = B − ω̃2 + C cos ω̃τ2 + Eω̃ sin ω̃τ2.

Hence,

sign

�
dRe(λ)

dτ1

�

τ1=τ10

= sign

	

Re

�
dλ

dτ1

�−1


τ1=τ10

= sign (a1b1 − a2b2) , (23)

13



with

a1b1 − a2b2 = ω̃
�
2ω̃2 + A2 + E2 − 2B

�
+ ADω̃ cos ω̃τ10 + D(B −Dω̃) sin ω̃τ10

+ 2ω̃(AE −C) cos ω̃τ2 + [−AC + E(B − 3ω̃2)] sin ω̃τ2

+ DEω̃ cos ω̃(τ10 − τ2) + CD sin ω̃(τ10 − τ2)

+ τ2
�
ω̃
�
AC + D

�
ω̃2 −B

��
cos ω̃τ10 +

�
BC + ω̃2(AD −C)

�
sin ω̃τ10

+ ω̃
�
−AC + E(B − ω̃2)

�
cos ω̃τ2 +

�
−BC + ω̃2(C −AE)

�
sin ω̃τ2

+(C2 + DE) sin ω̃(τ10 − τ2) + Cω̃(−D + E) cos ω̃(τ10 − τ2)
�
.

Theorem 10 Let τ2 ∈ [0, τ20).

1) If g(ω) has no positive zero, then the equilibrium (x∗1, x
∗
1) of system (4) is locally asymptot-

ically stable for τ1 ≥ 0.

2) Under Assumption A.1 there exists a positive number τ10 such that equilibrium (x∗1, x
∗
1)

of system (4) is locally asymptotically stable for τ1 ∈ [0, τ10) and unstable for τ1 > τ10 .
System (4) undergoes a Hopf bifurcation at the equilibrium (x∗1, x

∗
1) for τ1 = τ10 if the

corresponding root λ = iω̃ of (21) is simple and expression in (23) is positive.

Remark 11 The critical delay τ10 depends on τ2.

In order to show the existence of the Hopf bifurcation, in Point 2 of Theorem 10 we had to
assume that the expression in (23) is positive (transversality condition). This because such an
expression is impossible to be handle analytically. However, by following Krawiec and Szydlowski
(1999) it is possible to get some analytical results - also related to the transversality condition
- under the assumption that delays are small. According to Assumption A.1, in the following
theorem we will study only the case αx∗1 > 4/3.

Theorem 12 Let τ2 ∈ [0, τ20). Let 4/3 < αx∗1 < 2 (τ2 + σ1 + σ2) / (3τ2) and τ2 < σ1 + σ2 <
3/5. If τ1 is small, then there exists a positive number τ10 such the equilibrium (x∗1, x

∗
1) of

system (4) is locally asymptotically stable for τ1 ∈ [0, τ10) and unstable for τ1 > τ10. System (4)
undergoes a Hopf bifurcation at the equilibrium (x∗1, x

∗
1) for τ1 = τ10 since the corresponding root

λ = iω of (21) is simple and condition (23) holds.

Proof. Since τ1 and τ2 are small, we have e−λτ1 ∼= 1− λτ1, e
−λτ2 ∼= 1− λτ2 and e−λ(τ1+τ2) ∼=

1− λ(τ1 + τ2). In this case, (21) takes the approximate form

λ2 + Aλ + B + (C + Dλ) (1− λτ1) + (C + Eλ) (1− λτ2) + F [1− λ(τ1 + τ2)] = 0, (24)

Let λ = iω (ω > 0) be a root of (24). Separating real and imaginary parts leads to
�

ω2(1−Dτ1 − Eτ2) = B + 2C + F,

A + D + E = (C + F )(τ1 + τ2),
(25)

with

B+2C+F =
3 (αx∗1)

2

σ1σ2
> 0, A+D+E =

2 (αx∗1) (σ1 + σ2)

σ1σ2
> 0, C+F =

αx∗1(3αx∗1 − 2)

σ1σ2
> 0.
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One has C + F > 0 since αx∗1 > 4/3. From (25), we derive

ω =

�
B + 2C + F

1−Dτ1 −Eτ2
, τ1 =

2 (σ1 + σ2)

3αx∗1 − 2
− τ2 ≡ τ10 .

We have that τ10 > 0 since αx∗1 < 2 (τ2 + σ1 + σ2) / (3τ2), with the assumption τ2 < σ1 + σ2
implying 4/3 < 2 (τ2 + σ1 + σ2) / (3τ2) . Finally, σ1+σ2 < 3/5 and (25) yield 1−Dτ1−Eτ2 > 0.
In fact,

1−Dτ1 −Eτ2 = 1 +
(1− 2αx∗1)

σ1
τ1 +

(1− 2αx∗1)

σ2
τ2 > 1 + (1− 2αx∗1) (τ1 + τ2)

= 1 +
2 (σ1 + σ2) (1− 2αx∗1)

3αx∗1 − 2
,

and

1 +
2 (σ1 + σ2) (1− 2αx∗1)

3αx∗1 − 2
> 0 ⇐⇒ αx∗1 >

2 [1− (σ1 + σ2)]

3− 4 (σ1 + σ2)
, (26)

where σ1 + σ2 < 3/5 gives 3 − 4 (σ1 + σ2) > 0 and 2 [1− (σ1 + σ2)] /[3 − 4 (σ1 + σ2)] < 4/3.
Thus, the last inequality in (26) holds true. Next, we need to prove that λ = iω is a simple
root of (24) when τ1 = τ10 and verify the validity of the transversality condition. If λ = iω is a
repeated root of (24), then

2iω + A + D (1− iωτ10)− (C + Diω) τ10 + E (1− iωτ2)− (C + Eiω) τ2 − F (τ10 + τ2) = 0

holds true. By separating the real and imaginary parts yields
�

1−Dτ10 −Eτ2 = 0,

A + D + E = (C + F )(τ10 + τ2).

Hence, it follows from (25) that B + 2C +F = 0, which is a contradiction. In order to determine
the crossing direction of characteristic root through the λ = iω, we differentiate (24) with respect
to τ1 and get

�
dλ

dτ1

�−1
=

2λ + A + D(1− λτ1) + E(1− λτ2)− (C + Dλ) τ1 − (C + Eλ) τ2 − F (τ1 + τ2)

Fλ
.

Therefore, we have

sign

�
dRe(λ)

dτ

�

τ=τ10

= sign

	

Re

�
dλ

dτ

�−1


τ=τ10

= sign

�
1−Dτ10 −Eτ2

F

�

= sign

�
B + 2C + F

F

�
= sign (F ) .

Now, sign(F ) > 0 if αx∗1 < 1/3 and αx∗1 > 1. Being αx∗1 > 4/3, sign(F ) is positive. This
completes the proof.

Numerical explorations can also be useful in this case to observe phenomena on the dynamics
of the system that go beyond those stated in Theorems 7 and 10. In particular, we will now
concentrate on phenomena related to the so called synchronisation. We recall that synchroni-
sation occurs if limt→+∞ |x1(t)− x2(t)| = 0. In particular, it certainly occurs if the stability
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conditions of the stationary equilibrium shown in Theorems 7 and 10 hold true. In addition,
we find that when firms are homogeneous in both inertia and time delays numerical evidences
show that trajectories generated by initial conditions with x1(t) �= x2(t) in the interval [−τ , 0]
synchronise also when a periodic or chaotic attractor exists for system (5) (see Figure 3 panel a
and panel b, where - similar to the discrete time case - it is shown that convergence occurs in a
sufficiently long time period).

We now continue to keep the equality σ1 = σ2 and start from the case in which there exists a
chaotic attractor on the diagonal (whose birth has been described in Section 4, and for which the
Hopf bifurcation occurred on the diagonal has represented the first step towards its existence);
by introducing a difference between τ1 and τ2, we note that it is possible to have the loss of
synchronisation (see Figure 3, panel c) and the chaotic attractor so generated does not lie on the
diagonal anymore (see Figure 3, panel d).

Other cases of synchronisation failure can hold through a transverse Hopf bifurcation. We will
show their occurrence in the next section by introducing the stronger hypothesis τ1 = τ2 = τ .

Figure 3. (a) Chaotic attractor on the diagonal. Parameter set: α = 7, σ1 = σ2 = 0.1,
k = 0.6 and τ1 = τ2 = 1. (b) Time series (synchronisation) for the parameter set as in panel
a. Initial condition: x1(t) = 0.12, x2(t) = 0.21, −1 ≤ t ≤ 0. (c) A small mismatch in τ causes
the loss of synchronisation. The figure depicts a trajectory of x1(t) and x2(t) that converges to
the chaotic attractor and shows synchronisation failure between the two variables. Parameter
set: α = 7, σ1 = 0.1, σ2 = 0.1, k = 0.6, τ1 = 1.15 and τ2 = 1. Initial condition: x1(t) = 0.12,
−1.15 ≤ t ≤ 0, x2(t) = 0.2, −1 ≤ t ≤ 0. (d) Chaotic attractor outside the diagonal for the
parameter set as in panel c.
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6 The case τ 1 = τ 2 = τ

In this section, we will deepen some analytical results related to the particular case of equality
between time delays by using some recent techniques proposed by Chen et al. (2013). By
assuming τ1 = τ2 = τ , the characteristic equation (10) becomes

λ2 + aλ + b + (d + cλ) e−λτ + he−2λτ = 0, (27)

with

a =
1

σ1
+

1

σ2
> 0, b =

1

σ1σ2
> 0, c = −

�
1

σ1
+

1

σ2

�
(1− 2αx∗1),

d = −2(1− 2αx∗1)

σ1σ2
, h =

(1− 2αx∗1)
2 − α2x∗21

σ1σ2
.

It is clear that the equilibrium of system (4) is locally asymptotically stable if τ1 = τ2 = τ = 0,
that is, all the roots of (27) with τ = 0 have negative real parts.

Proposition 13 Let 3αx∗1−1 = 0 or αx∗1−1 = 0 or 1−2αx∗1 = 0. Then the equilibrium (x∗1, x
∗
1)

of system (4) is locally asymptotically stable for all τ ≥ 0.

Proof. If 3αx∗1 − 1 = 0 or αx∗1 − 1 = 0, then h = 0. As a result, Eq. (27) takes the form
λ2 + aλ + b + (d + cλ) e−λτ = 0. The statement now follows from Theorem 6.

If 1−2αx∗1 = 0, then c = d = 0, so that Eq. (27) is in the form λ2+aλ+b+he−2λτ = 0. Suppose
λ = iω (ω > 0) is a root of this equation. Then we have −ω2−aiω+b+h cos 2ωτ−ih sin 2ωτ = 0,
which leads to ω4 + (a2 − 2b)ω2 + b2 − h2 = 0. Noticing that a2 − 2b =

�
σ21 + σ22

�
/
�
σ21σ

2
2

�
> 0

and b2 − h2 = 15/
�
16σ21σ

2
2

�
> 0, we obtain the statement.

Henceforth, we assume 3αx∗1− 1 �= 0, αx∗1−1 �= 0 and 1− 2αx∗1 �= 0, namely c �= 0, d �= 0 and
h �= 0.

We remark that, when at least one of c and d is not zero, and h is not zero, Chen et al. (2013)
provided criteria for examining the existence of simple purely imaginary roots of (27), and the
transversality at all corresponding bifurcation values. In the sequel, we use their approach.

Let λ = iω (ω > 0) be a root of (27). Then, we have

−ω2 + aiω + b + (d + ciω) e−iωτ + he−2iωτ = 0,

If (ωτ)/2 �= (π/2) + jπ, j ∈ N
0 = N ∪ {0} , then we have e−iωτ = (1 − iθ)/(1 + iθ), with

θ = tan [(ωτ)/2] . Separating the real and imaginary parts, one has that θ satisfies
� �

ω2 − b + d− h
�
θ2 − 2aωθ = ω2 − b− d− h,

(c− a)ωθ2 +
�
−2ω2 + 2b− 2h

�
θ = − (c + a)ω.

(28)

Define

D(ω) =

�����
ω2 − b + d− h −2aω

(c− a)ω −2ω2 + 2b− 2h

�����
, (29)

E(ω) =

�����
ω2 − b− d− h −2aω

− (c + a)ω −2ω2 + 2b− 2h

�����
.
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F (ω) =

�����
ω2 − b + d− h ω2 − b− d− h

(c− a)ω − (c + a)ω

�����
.

Chen et al. (2013) proved that ω satisfies D(ω)E(ω) = [F (ω)]
2
, and ω2 is a positive root of

z4 + s1z
3 + s2z

2 + s3z + s4 = 0, (30)

where

s1 = 2a2 − 4b− c2,

s2 = 6b2 − 2h2 − 4ba2 − d2 + a4 − a2c2 + 2c2b + 2hc2,

s3 = 2d2b− a2d2 − 4b3 + 2b2a2 − c2b2 − 2bc2h + 4acdh− 2d2h + 4bh2 − 2h2a2 − c2h2,

s4 = (b− h)2[−d2 + (b + h)2].

Lemma 14 [Chen et al. (2013)] If ±iω (ω > 0) is a pair of purely imaginary roots of the
characteristic equation (27), then ω2 is a positive root of the quartic polynomial equation (30).

The next lemma gives the algorithm of solving the critical delay values for purely imaginary
roots of (27).

Lemma 15 [Chen et al. (2013)] If Eq. (30) has a positive root ω2N (ωN > 0) and D(ωN) �= 0,
then system (28) has a unique real root

θN =
F (ωN)

D(ωN)
,

when ω = ωN . Hence, the characteristic equation (27) has a pair of purely imaginary roots ±iωN
when

τ = τ jN =
2 tan−1 (θN) + 2jπ

ωN
, j ∈ N0. (31)

The following result guarantees that the condition D(ωN) �= 0 can be verified in certain
situations.

Lemma 16 Let αx∗1 ≤ 4/3 or αx∗1 > 4/3 and σ1 �= σ2. Then D(ω) �= 0. In particular, we have
D(ωN) �= 0.

Proof. Use Lemma 2.3 in Chen et al. (2013). If αx∗1 ≤ 4/3, then b + h ≤ (ad) /c holds true
being equivalent to αx∗1 (3αx∗1 − 4) ≤ 0. If αx∗1 > 4/3, then a �= c being αx∗1 − 1 �= 0. Moreover,
(d/c) [2h− (ad)/c]−a [b + h− (ad)/c] �= 0 is equivalent to σ1 �= σ2. The conclusion is immediate.

Remark 17 Let αx∗1 > 4/3 and σ1 = σ2. Then D(ω) �= 0 or D(ω) = 0. In case D(ω) = 0, then
we have a �= c and (2ahd) /c− d2 < 0. Hence, Lemma 2.6, 2), in Chen et al. (2013) implies that
(27) has no purely imaginary roots.

Chen et al. (2013) provided a route of determining the purely imaginary roots of the char-
acteristic equation (27) and the corresponding delay value τ . They also formulated for (27) the
transversality condition for the roots moving across the imaginary axis. A complete formulation
of their analysis would be cumbersome to be presented. Here, we only adapt to our model their
main Theorem [Chen et al. (2013), Theorem 2.14].
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Theorem 18 Let D(ω) be defined as in (29).

1) Let αx∗1 > 4/3, σ1 = σ2 and D(ω) = 0. Then the equilibrium (x∗1, x
∗
1) of system (4) is

locally asymptotically stable for all τ ≥ 0.

2) Let αx∗1 > 4/3, σ1 = σ2 and D(ω) �= 0, or αx∗1 > 4/3 and σ1 �= σ2, or αx∗1 ≤ 4/3 and
3αx∗1 − 1 �= 0, αx∗1 − 1 �= 0 and 1− 2αx∗1 �= 0.

i) The quartic polynomial equation (30) has a root ω2N for ωN > 0.

ii) The characteristic equation (27) has a pair of roots ±iωN when τ = τ jN , j ∈ N0, with τ jN
defined as in (31).

iii) Let

G(ω, θ) =
�
d(1 + θ2) + 2h(1− θ2)

�
[2ω(1− θ2) + 2aθ]

− [cω(1 + θ2)− 4hθ][a(1− θ2)− 4ωθ + c(1 + θ2)].

If G(ωN , θN) > 0, then iωN is a simple root of the characteristic equation for τ = τjN and

there exists λ(τ) = ν(τ) + iω(τ) which is the unique root for τ ∈ (τjN − ε, τ jN + ε) for some

small ε > 0 satisfying ν(τjN) = 0, ω(τjN) = ωN and ν′(τ jN) > 0.

iv) If G(ωN , θN) > 0, then there exists τ∗ > 0 such that the equilibrium (x∗1, x
∗
1) of system (4)

is locally asymptotically stable when τ ∈ [0, τ∗) and it is unstable when τ ∈ (τ∗, τ∗ + ε) for
ε > 0 and small. Furthermore, a Hopf bifurcation occurs at τ = τ∗.

By relying on Theorem 18, we now show through simulations another possible cause of syn-
chronisation failure. Specifically, by starting from a stable equilibrium on the diagonal when
σ1 = σ2, Figure 4 shows that a difference in these parameters produces a Hopf bifurcation that
generates an attractor that does not lie on the diagonal (see Figure 4).

Figure 4. Limit cycle. Parameter set: α = 7, σ1 = 0.3, σ2 = 0.1, k = 0.6 and τ = 0.3.

19



7 Conclusions

This paper has studied a dynamic oligopoly Cournot model with two firms by extending the
related discrete time literature pioneered by Bischi et al. (1998) to the case of continuous time
with discrete delays. We have emphasised that in the case tradings can occur at any time, i.e.
continuously (in continuous time), and there exist lags in the production process (time-to-build
technology), it is possible to observe complex phenomena. Specifically, through the study of
stability properties of the stationary equilibrium point, we have characterised the birth of Hopf
bifurcations (cycles in production). In the particular case in which time delays in production are
the same for both firms, we have also applied some recent techniques introduced by Chen et al.
(2013). In order to study the occurrence of Hopf bifurcations when time delays in production are
different, a possible extension of the present work may be the use of analytical and geometrical
results proposed by Lin and Wang (2012). The paper has also stressed the possibility of other
dynamic phenomena, such as synchronisation failures and chaotic dynamics.
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