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Abstract 
 

Purpose: Magnetic resonance spectroscopy of hyperpolarized 13C pyruvate and its 

metabolites in large animal models is a powerful tool for assessing cardiac metabolism in 

patho-physiological conditions. In 13C studies the Signal-to-Noise Ratio (SNR) could be 

crucial, to overcome intrinsic data quality limitation due to the low molar concentration of 

certain metabolites as well as the low flux of conversion. On the other hand, since 13C-MRS 

is essentially a semi-quantitative technique, the SNR among the spectra acquired in different 

myocardial segments should be homogeneous. MR coil design plays an important role in 

achieving both targets.  

Materials and Methods: In this study, a receive 16-channels surface coil was designed for 

13C hyperpolarized studies of pig heart with a clinical 3T scanner. The coil performances 

were characterized by phantom experiments, and compared with a birdcage coil used in 

transmit/receive mode. Segmental signal distribution in the left ventricle (LV) was assessed 

by experiments on six healthy mini pigs.  

Results: The proposed coil showed a significant increase in SNR in the LV wall close to the 

coil surface with respect to the birdcage but also a significant segmental inhomogeneity. 

Conclusion: The use of the 16-channel coil would be recommended in studies of septal 

and anterior LV walls.  

 

Keywords: Hyperpolarized 13C; Magnetic Resonance Imaging; pig model; heart 

metabolism; RF coils; Dynamic Nuclear Polarization (DNP); 13C-pyruvate 

 

Abbreviations used: FOV, field of view; LV, left ventricle; AHA, American Heart 

Association; TE, echo time; TR, repetition time 
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1 Introduction 

13C hyperpolarization through dissolution-DNP has recently been introduced in the field of 

Magnetic Resonance Spectroscopy (MRS) and Chemical Shift Imaging (CSI) to significantly 

increase the available SNR [1] for studies in vivo. However, in vivo MRS and CSI studies 

with hyperpolarized 13C-labeled tracers require the set-up of sophisticated approaches for 

the acquisition of the spectroscopic signal, including suitable time- and spatially-resolved 

RF sequences and dedicated coils.  

The design and development of dedicated RF coils are necessary constraints for maximizing 

SNR in hyperpolarized MR experiments. In fact, high SNR is desirable for the evaluation of 

the in vivo kinetic of metabolites, after the injection of hyperpolarized 13C-labelled 

compounds [2]. In particular, cardiac metabolism assessment with hyperpolarized 13C in pig 

models requires the design of a dedicated transmit and receive coil operating at the 13C 

frequency (32.1MHz at 3T), which has to provide the desired field-of-view (FOV) and an 

optimal SNR. Volume coils are generally used for transmission (TX) due to their 

homogeneous excitation patterns over a large volume within the coil. Although volume coils 

can be used for reception (RX) as well, usually surface coils provide the better filling factor 

and thus the better SNR. The missing B1 homogeneity of the surface coil is no constraint 

during reception since the B1 profile can be corrected during data reconstruction. 

To date, several coil configurations have been implemented and tested for in vivo 

experiments with MRS of hyperpolarized 13C in different experimental animal models. 

In small animal models such as rabbits [3] and mice [4], dual tuned volume 1H/13C coils were 

employed for hyperpolarized 13C studies; to increase the SNR for tumour detection, a 13C 

surface coil [5] was described. For cardiac studies in large animal models (pigs), 13C volume 

TX/RX coils were specifically designed [6]. A dedicated 13C TX/RX surface coil for metabolic 

studies was also proposed including a SNR model [7]. A comparison between a commercial 

13C quadrature birdcage coil and a homebuilt 13C circular coil, both designed for 

hyperpolarized studies of the porcine heart with a clinical 3T scanner, was introduced in [8], 

and was carried out in terms of sensitivity regions and SNR. Furthermore two RX butterfly 

coils were presented with different geometries for 13C hyperpolarized studies of pigs [9]; 

experimental SNR profiles acquired in a phantom highlight the advantage of this 

configuration over a volume birdcage coil in a wide range of coil-to-voxel distances. 

Moreover, in [10] the design and implementation of a quadrature surface coil constituted by 

a circular loop and a butterfly coil, is described; the coil was then tested by acquiring 
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metabolic maps with hyperpolarized [1–13C]pyruvate injected in vivo in a pig on a 3T clinical 

scanner. Dominguez-Viqueira et al. [11] demonstrated that by using a dual channel 

overlapping receive coil it is possible to extend the field of view (FOV) while retaining the 

SNR performance of a single-element coil. All these studies suggest that joining an 

appropriate design of RX surface coils with an increased number of channels may enlarge 

the achievable FOV with stable SNR. 

In this study, the performance of a 16-channel RX coil for imaging pyruvate and its 

metabolites in the whole mini pig heart was investigated. The study also contained phantom 

tests as in vivo imaging on six healthy mini pigs with a birdcage as TX and the 16-channel-

array as RX coil, respectively. Maximal SNR and signal uniformity through the left ventricle 

(LV) were assessed. 

 

2 Materials and Methods 

 

2.1 Coil design 

The receive (RX) coil has an 1H-like flexible array configuration for humans and it is 

composed of 16 elements resonating at 32.1 MHz (13C frequency at 3T) (Fig. 1(a)) [12].  

Each elliptic element has a size of 5 x 8 cm2 with a conductor width of 2 mm (Fig. 1(b)). 

Symmetric coupling schemes including cable traps were used for fixed tuning and matching 

(Fig. 1(c)). Active decoupling was performed by PIN diodes within 13C traps; passive 1H traps 

including 1H cable traps were used for decoupling resonator and wiring from the 1H body 

coil. In order to evaluate the potential performance in human applications, all safety 

mechanisms such as passive PIN diode traps and fuses were included although these mean 

a lower Q, and thus lower overall SNR. Preamplifier decoupling was performed by 

transforming the high S11 of the preamplifier input to a high impedance in the coil circuit by 

phase shifters. Neighbouring elements were decoupled by overlap, resulting in a total array 

size of 19 x 26 cm. This design was chosen to cover more than half of the mini pig chest 

(about 50cm) and to simplify the placement of the coil in the experimental setting. The 4 x 4 

array is made from flexible printed circuit board, "baked" into PE foam in order to obtain high 

flexibility.  

A single tuned quadrature 13C birdcage coil (Rapid Biomedical, Rimpar, Germany) with an 

inner diameter of 35 cm and a length of 36 cm was used as TX resonator. It contains no RF 
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shield but, as the RX array, includes 1H traps for allowing 1H imaging with the body coil. It is 

actively decoupled by PIN diodes in each leg.  

 

2.2 MR experiments  

MR experiments were conducted with a clinical 3T GE scanner (Excite HDx GE Healthcare, 

USA), using the scanner body coil for proton imaging. For 13C imaging a volumetric TX 

birdcage coil (Rapid Biomedical, Rimpar, Germany) was used together with the 16-channel 

RX surface coil previously described.  

Coil performance was assessed using a homogenous cylindrical acetate phantom of 

dimensions 2 cm x 17 cm (diameter x length) and containing 8.5 g [1-13C]acetate, 70 ml H2O 

and 0.5 mmol Dotarem. The phantom simulating the mini pig filling factor was placed with 

its axis perpendicular to the surface coil plane and perpendicular to the birdcage longitudinal 

axis. The cylinder was inserted between two cubic phantoms 15 x 15 x 30 cm3 (2.4 g/l NaCl) 

to mimic the coil load induced by a mini pig. 

Phantom 13C acquisition was performed using an “elliptic FIDCSI” sequence with the 

following parameters: axial plane, FOV 210 mm, 20 x 20 matrix with reduced k-space 

sampling (208 phase encoding steps), 1024 spectral points, bandwidth 5000 Hz, slice 

thickness 3 cm, FA 30°, TR 3000 ms. Phantom acquisition was conducted as well with the 

birdcage as a TX/RX coil as with the birdcage as TX coil and the 16-channel coil in RX 

mode. 

For each channel the 20 x 20 matrix was interpolated onto a 100 x 100 FIDs matrix by 2D 

FFT spatial decoding, each FID consisting of 1024 points. The SNR profile of the channel k 

was obtained as: 

 

),(

),(
),(
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jiS
jiSNR

k

k
k


                       for k = 1,…,16                      (1)                                   

 

where Sk(i,j) is the mean of absolute values of the first 15 points of the FID at the i-th, j-th 

location of the CSI and σk is the standard deviation of the last 256 points of the same FID, 

where only noise is present.  

The global FIDs were obtained with the phased and weighted coil combination method [13]. 

The global SNR map was computed as previously described for single channels. Single 

SNR profile and global SNR map were extracted at the center of the acetate phantom. 
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Animal studies were performed on six healthy male mini pigs (body weight 25 ± 3 kg). The 

animal was placed inside the birdcage coil in right decubitus position, with the birdcage coil 

center corresponding to the pig heart. The 16-channel coil was placed next to the chest of 

the pig with the center of the coil in correspondence to the pig heart (Fig. 2). 

Mini pigs were were fasted overnight (12–16 h) and maintained in deep sedation with a 

continuous infusion of Propofol (2 mg/kg/h, i.v.) and left in spontaneous breathing while 

monitoring the main living parameters (blood oxygenation, heart rate). A catheter was 

introduced into a vein of each ear for tracer injection, drugs and solution infusion. This 

protocol was approved by the Italian Ministry of Health and was in accordance with Italian 

law (DL.116, 27 January 1992).  

Large doses (350 μl) of [1-13C]pyruvate were formulated with concentration values of: [13C] 

= 14 M, [OX063] = 15 mM and [Gd3+] = 1 mM. A DNP HyperSense (Oxford Instruments, 

UK). Polariser was used in combination with a three-step procedure described in [14]. The 

sample was dissolved in 10 ml of dissolution medium (0.27 mM Na2EDTA in MQ water), the 

final formulation was obtained by mixing with a buffer solution (200 Trizma, 0.4 mM NaOH 

in MQ water) externally of the HyperSense, to get a final [1-13C]pyruvate concentration of 

230 mM. The dissolved hyperpolarized solution was characterized by a temperature of 37 ± 

2°C and 7.6 pH, and was close to isotonic. Then 20 ml of hyperpolarized [1-13C]pyruvate 

solution were manually injected in a bolus of about 10 s into the right ear vein of the mini pig 

(effective injected dose = 0.13 mmol/kg body weight); 1 ml was simultaneously transferred 

to a 1.05 T spectrometer (Bruker BioSpin GmbH, Germany) for T1 relaxation time and liquid-

state polarization assessment as reported in [14].  

Proton imaging acquisition included short axis views covering the entire LV by a 2D TOF 

FSPGR sequence, ECG triggered, with TR = 16.6 ms, TE = 2.7 ms, FOV = 30 x 30 cm2, 

matrix 288 x 192, slice thickness 4 mm , number of slices 24.  

To cover all the LV allowing segmental analysis 13C 3D imaging was performed with a stack 

of axial plane single-shot spiral trajectory with a FOV of 30 cm, a nominal resolution of 8 mm 

and a duration of 42 ms using the maximal gradient strength of 40 mT/m and maximal slew 

rate of 150 T/m of the system. A single time step with seven echo time shifts and twelve 

phase encoding steps in z-direction was acquired over a FOV of 10 cm in the z-direction. A 

multiband pulse was used for the excitation, to acquire the metabolites lactate and 

bicarbonate with a higher flip angle (15°) than pyruvate [15], [16]. Additionally, FIDs of the 

whole slice were recorded during the acquisition, used for the IDEAL reconstruction and for 
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inspection of the signal development during the acquisition. Sequence was prescribed 

following the same short axis orientation defined in the anatomical images. Measurement 

was started 18 s after injection, at the expected bolus maximum [17]. The data was 

reconstructed onto a 64 x 64 x 60 grid. 

To assess signal distribution on LV wall, three representative SA planes (basal, median and 

apical) were selected using anatomical images as reference. LV segments were manually 

defined following the AHA standardized segmentation [18] and the average value of the 

signal in each of the 16 segments was recorded. AHA model was designed to obtain 

segments with the same volume. Images were analyzed using the MIPAV software (v 7.1.0, 

NIH, Bethesda, MD, USA) [19]. Segmental value variations were expressed as percent 

deviation from the global value obtained by averaging signal values in all segments. 

 

3 Results  

The 16-channel surface coil was tuned and matched manually, achieving an S11 (reflection 

coefficients) and an S12 (transmission coefficient) of better than -20 dB. Average S11 of all 

RX elements was -22 dB. Ratio of unloaded to loaded Q was 135/98 = 1.4. 

Mean S12 of neighbouring elements of the array was -17 dB. The worst S12 of non-

neighbouring elements of -8.6 dB was compensated for by the preamplifier decoupling. The 

sufficient functioning of this decoupling is shown in the noise correlation which was obtained 

by a noise scan (max 40%, mean 27%, min 10%). 

Fig. 3 reports the SNR profiles for each channel evaluated on phantom. The main 

contribution to the signal was provided by four channels (#6, #7, #10, #11) at the center of 

the coil in correspondence with the location of the (small) phantom, while contribution of the 

other channels was negligible.  

The sensitivity of the 16-channel coil decreases with the distance as shown in Fig. 4, in 

which the SNR profile of the combined signal of all channels is reported. For comparison, 

the SNR profile evaluated with the birdcage coil in TX/RX mode is shown as well. The setup 

with the birdcage coil permits a more homogeneous image of the entire heart, but losing 

SNR compared to 16-channel surface coil. 

Fig. 5 shows triplanar maps of hyperpolarized [1-13C] pyruvate, lactate and bicarbonate of a 

pig heart using the 16-channel surface coil. The colour scale represents normalized intensity 

values of metabolite signals in logarithmic scale. As expected, the signal decreases with the 

distance of the coil to the chest wall. 
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Fig. 6(a) and Fig. 6(b) represent the percent variation of signal in LV segments for lactate 

and bicarbonate in the six imaged mini pigs, respectively. Measured signal deviations were 

generally consistent throughout the experiments. A longitudinal pattern across the long axis 

of the LV was well visible. Positive deviations (i.e., signal values higher than average global 

LV value) were detected in the anterior wall in all slices (segments 1, 7, 13) and in the 

anterior septum in medium and apical slices (segments 8, 14). A consistent drop of the 

signal was found in the inferior and lateral-inferior walls (segments 4, 5, 10, 11, 15). Signal 

in the lateral wall was strongly reduced in the apical slice (segment 16) while in basal and 

middle slices there was a consistent reduction in some experiments (segments 6 and 12).  

Statistical analysis performed by repeated measures analysis of variance (ANOVA) with 

Scheffè test revealed a significant difference between segments (F-ratio = 7.64, P < 0.001). 

A significant difference was detected between segments 1 vs 16, 4 vs 5-7, 7 vs 11-16, and 

8 vs 16 as shown in Fig. 6(a). For bicarbonate signal, a significant difference between 

segments was detected as well (F-ratio = 3.77, P = 0.001). A significant difference was 

detected between segments 1 vs 3-4, 3 vs 7-13, 4 and 7-13 as shown in Fig. 6.(b).  

 

4 Discussion  

In most hyperpolarized 13C heart studies the region of interest is identified with the LV wall, 

as most of the heart pathologies are related to regional dysfunctions of this region. A typical 

example is coronary stenosis or occlusion, that leads to a perfusion defect in some LV wall 

segments, depending on the affected coronary vessel [20]. A standardized LV wall 

segmentation [18] was proposed by the AHA, which is commonly adopted in clinical and 

physiological studies. Hence, imaging techniques applied in cardiac studies should provide 

a uniform sensitivity in the whole LV wall, to avoid variations due to artefacts of segmental 

signals related to the segment position in LV. On the other hand, the sensitivity of the 

imaging technique exploiting hyperpolarized agents enriched in 13C should be high enough 

to detect the signal related to derivate metabolites, which in certain cases could be low due 

to the reduced flux of conversion [21]. The design of the RF coil configuration to be used in 

cardiac 13C experiments should take into account both these aspects. This is a challenging 

task, as a single channel of a multiple channel surface coil provides a high SNR close to the 

coil surface but a non-uniform sensitivity in depth, while volumetric coils (such as birdcages) 

provide a uniform sensitivity over the FOV paying in SNR. In this study, we assess the 

performance of a flexible 16-channel phased array coil to be used in mini pig heart studies, 

assessing both SNR and signal uniformity by phantom and animal experiments.  
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In surface coil characterization the ratio of unloaded to loaded Q = 1.4 displays the coil noise 

dominance. This effect is due to the low frequency of 13C combined with the small coil 

element size of a multi-channel array while having additional safety measures such as fuses 

and 1H traps, ensuring  patient safety for 13C and for 1H imaging with the body coil. 

As shown in Fig. 3, the contribution of coil channels to signal formation in the phantom 

experiment was concentrated in four channels at the middle of the coil, where the phantom 

was placed. Since the phantom was small with respect to the coil area, the contribution of 

peripheral channels was negligible. The global SNR profile (Fig. 4) shows the typical pattern 

of a surface coil, with a rapid decrease of the SNR with the depth. The comparison with the 

SNR profile obtained by the birdcage coil used in both transmission and receive mode 

demonstrates the gain in SNR obtained by the 16-channel coil at a depth below 6 cm. The 

maximum depth with a reasonable SNR seems to be about 7-8 cm. This depth may be 

adequate for mini pig LV imaging as in the present study.  

In-vivo experiments showed a good metabolite signal in the left ventricular wall, especially 

in regions nearest to the coil (Fig. 5). The flexible design of the coil allowed detection of 

signal also in the inferior LV wall, which is a more remote region with respect to the coil 

surface.  

As shown in Fig. 6 for segmental lactate signal, the pattern of signal intensity in the LV 

segments was reproducible among experiments. A significant drop in the signal was 

demonstrated in the inferior wall in basal, median and apical slices (segments 4-5, 10-11, 

15-16 in AHA model). The maximum signal was measured in the anterior and antero-septal 

regions (segments 1-2, 7-8, 13-14). The same pattern was detected in bicarbonate signal 

segmental distribution, although the bicarbonate signal was more difficult to analyze due to 

the lower intensity. Differences between segments were statistically significant for both 

lactate and bicarbonate. 

The proposed configuration (16-channel flexible surface coil in RX mode and volumetric 

birdcage coil in TX mode) provided a good signal quality over the whole LV, allowing 

visualization of the heart metabolism in all LV segments. However, the signal intensity 

assessed on a normal pig model was significantly different among LV segments. Hence, 

assessing segmental signal changes may be difficult as variations induced by coil geometry 

may mask “true” variations induced by physiological changes in LV wall. In principle, it may 

be possible to correct measurements using a “segmental map” of systematic variations 

assessed in a normal model [22]. However, an optimized phased array coil configuration 
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able to provide a near-uniform sensitivity over the FOV would be desirable, such as the two-

fold phased array coil with an anterior and a posterior array currently used in heart imaging 

in clinical practice.  

The present study was limited to healthy animals in fasting state, with the objective to have 

a homogenous concentration of the tracer in the heart to evaluated the homogeneity of the 

signal acquired by the 16-channels coil. The MR acquisition sequence developed for the 

study allowed effective 3D heart imaging, but was not designed to monitor the time course 

of metabolites during the acquisition. Although pre-clinical studies were not yet performed, 

we would expect that the 16-channel coil could be useful in several protocols. Heart 

diseases involving the whole LV wall could be better investigated thanks to the higher SNR 

provided by the coil, as in tachycardia-induced dilated cardiomyopathy studies [23]. Other 

forms of metabolic heart diseases, such as diabetic cardiomyopathy and Anderson-Fabry 

disease could benefit from the proposed technology as well [24]. Investigation of the normal 

cardiac metabolism may represent another important field of application [24]. Heart 

metabolism could be modulated by infusion of glucose manipulating the metabolic state of 

the animal towards a fed state following an overnight fast, providing important physiological 

information [25]. However, following of glucose induced changes would require the design 

of fast acquisition MR sequences optimized for multi-channels coils [26]. Finally, the 16-

channel surface coil in RX mode could be the solution of choice for studying the downstream 

metabolites of other 13C-enriched molecules, other than pyruvate, for which the SNR could 

be non-favorable. Recent work on 13C-acetate [21 ] and 13C-butyrate [27], used as a 

metabolic probe for short-chain fatty acid metabolism, demonstrated several limitations 

arising mainly from the low fluxes of conversion and from the low SNR [21] and initial low 

level of polarization [27]. Further limitations could be recognized in the study. Full 3D 

covering of the heart was obtained using a 3D sequence with high resolution allowing 

detailed segmental analysis. However the acquisition of pig images with birdcage only 

configuration wasn’t possible with this sequence due to the low sensitivity of the coil. For 

this reason the acquisition sequence using in phantom imaging was slightly different in 

respect to the one used in pig experiments. 

  

5 Conclusions 

A significant improvement of SNR in LV wall near the coil surface could be provided by the 

coil configuration hereby described, while the drastic reduction of signal in the inferior wall 
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should discourage the use of the coil in segmental assessment of metabolite distribution in 

the LV. 
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Figure Captions 

 

Fig. 1. a) Housing of the flexible RX array; b) Disposition of elements on the coil plane; c) 

electrical circuitry of a single coil element, including tune, match, active and passive 

detuning, fuse, preamplifier (VV) and cable trap (MWS)  

 

Fig. 2. Experimental setup including the TX birdcage and the RX array on a pig 

 

Fig. 3. SNR profiles of a 2.4 g/l NaCl cylinder phantom inserted between two cubic 

phantoms with a size of 15 x 15 x 30 cm for each of the 16 channels. Channel disposition 

illustrated in Fig. 2.d 

 

Fig. 4. Global SNR profile for the RX16-channel surface coil and the TX/RX birdcage coil 

 

Fig. 5. Triplanar views of pyruvate, lactate and bicarbonate on the three main heart axes  

 

Fig. 6. Box-and-whisker plots illustrating segmental variability of the lactate (a) and 

bicarbonate (b) signal in animal experiments for each segment 
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